

TEST REPORT

PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP **Applicant:**

COMPANY LIMITED

Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road, **Address:**

Kowloon, Hong Kong

Product Name: Amateur Radio

FCC ID: 2AJGM-5RHPRO

Standard(s): FCC Part 15B ANSI C63.4-2014

Report Number: 2402V26469E-RF-00A

Report Date: 2024/8/26

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Ganh Xn

Reviewed By: Gavin Xu **Approved By:** Ivan Cao

> Title: RF Engineer Title: EMC Manager

from Cas

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★.

CONTENTS

DOCUMENT REVISION HISTORY	3
1. GENERAL INFORMATION	4
1.1 GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	4
1.2 ACCESSORY INFORMATION	
1.3 EQUIPMENT MODIFICATIONS	4
2. SUMMARY OF TEST RESULTS	5
3. DESCRIPTION OF TEST CONFIGURATION	6
3.1 OPERATION FREQUENCY AND TEST CHANNEL:	6
3.2 DESCRIPTION OF TEST CONFIGURATION	
3.3 EUT Exercise Software	
3.4 SUPPORT EQUIPMENT LIST AND DETAILS	
3.5 SUPPORT CABLE LIST AND DETAILS	6
3.6 BLOCK DIAGRAM OF TEST SETUP	7
3.7 Test Facility	
3.8 Measurement Uncertainty	8
4. REQUIREMENTS AND TEST RESULTS	9
4.1 AC LINE CONDUCTED EMISSIONS	9
4.1.1 Applicable Standard	9
4.1.2 EUT Setup	
4.1.3 EMI Test Receiver Setup	10
4.1.4 Test Procedure	
4.1.5 Corrected Amplitude & Margin Calculation	10
4.1.6 Test Data and Result	11
4.2 RADIATION SPURIOUS EMISSIONS	
4.2.1 Applicable Standard	
4.2.2 Test System Setup	
4.2.3 EMI Test Receiver Setup	
4.2.4 Test Procedure	
4.2.5 Corrected Result & Margin Calculation.	18
4.2.6 Test Data and Result	19
4.3 SCANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SCANNING RECEIVERS	
4.3.1 Applicable Standard	
4.3.2 Test Procedure	
4.3.3 Test Data and Result	
EXHIBIT A - EUT PHOTOGRAPHS	38
EXHIRIT R - TEST SETUP PHOTOGRAPHS	39

Bay Area Compliance Laboratories Corp. (Dongguan)

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0 2402V26469E-RF-00A		Original Report	2024/8/26

Report No.: 2402V26469E-RF-00A

Report Template Version: FCC-Part 15B-V1.2 Page 3 of 39

1. GENERAL INFORMATION

1.1 General Description Of Equipment under Test

Product Name:	Amateur Radio	
Test Model:	5RH PRO	
Multiple Models:	K5 PRO, RD-55PRO, AS-51H PRO, UV-16H PRO	
Highest Operation Frequency:	600 MHz	
Rated Input Voltage:	DC 7.4V from battery or DC 5V from Adapter	
Serial Number:	2O8S-2	
EUT Received Date:	2024/7/10	
EUT Received Status:	Good	

Report No.: 2402V26469E-RF-00A

Note:

The Multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Adapter	Jiangxi Jian Aohai Technology Co., Ltd.	A318-050100W-US2	Input: 100-240Vac 50/60Hz 0.2A Output: 5Vdc 1A

1.3 Equipment Modifications

No modifications are made to the EUT during all test items.

Report Template Version: FCC-Part 15B-V1.2

Page 4 of 39

2. SUMMARY OF TEST RESULTS

Standard Clause	Description of Test	Test Result
FCC§15.107	Conducted emissions	Compliant
FCC§15.109	Radiated emissions	Compliant
FCC§15.121(b)	Scanning receivers and frequency converters used with scanning receivers	Compliant

Report No.: 2402V26469E-RF-00A

Report Template Version: FCC-Part 15B-V1.2 Page 5 of 39

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency And Test Channel:

Operation Modes	Operation Frequency Range (MHz)	Test Frequency (MHz)
Scanning	108-600	108-600
Receiving	108-600	108.0125, 354, 599.9875

Report No.: 2402V26469E-RF-00A

3.2 Description of Test Configuration

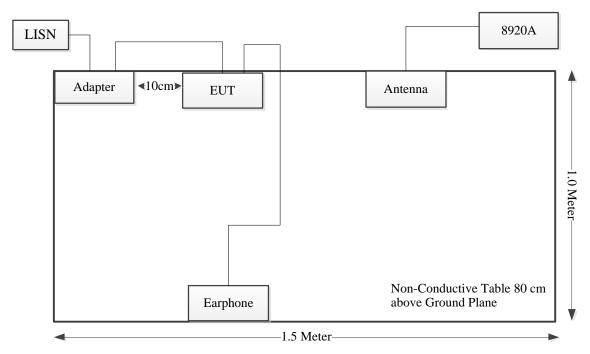
The system was configured for testing in a typical fashion (as normally used by a typical user). The following summary table is showing all test modes to demonstrate in compliance with the standard:

Test Items	Test Mode(s)	
Radiated Spurious Emission: Test Mode 1: Charging & Scanning Test Mode 2: Charging & Receiving		
AC Line Conducted Emission:	Test Mode 1: Charging & Scanning Test Mode 2: Charging & Receiving	

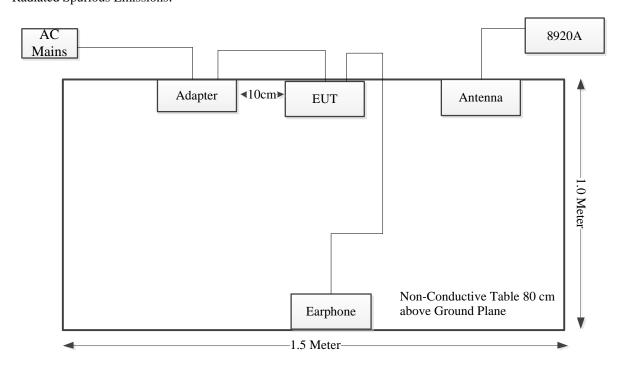
3.3 EUT Exercise Software

No software was used to test.

3.4 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Antenna	Unknown	Unknown
НР	RF Communications Test Set	8920A	3438A05201

3.5 Support Cable List and Details


Cable Description	Shielding Cable	Ferrite Core	Length (m)	From Port	То
Adapter cable	No	No	1	Adapter	EUT
Earphone cable	No	No	1.2	EUT	Earphone
Antenna cable	No	No	10	8920A	Antenna

3.6 Block Diagram of Test Setup

AC line conducted emissions:

Radiated Spurious Emissions:

3.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

Report No.: 2402V26469E-RF-00A

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 829273, the FCC Designation No.: CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.8 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

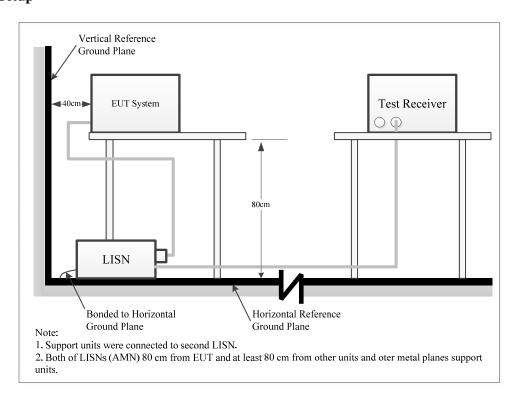
Parameter	Measurement Uncertainty
	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz:
Unwanted Emissions, radiated	5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,
	18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1℃
Humidity	±5%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

Report Template Version: FCC-Part 15B-V1.2 Page 8 of 39

4. REQUIREMENTS AND TEST RESULTS

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard


FCC§15.107

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges

Fraguency of amission (MUT)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15 B Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: 2402V26469E-RF-00A

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

Report Template Version: FCC-Part 15B-V1.2

Page 10 of 39

4.1.6 Test Data and Result

Serial Number:	2O8S-2	Test Date:	2024/7/16
Test Site:	CE	Test Mode:	Mode 1, Mode 2
Tester:	Lane Sun	Test Result:	Pass

Report No.: 2402V26469E-RF-00A

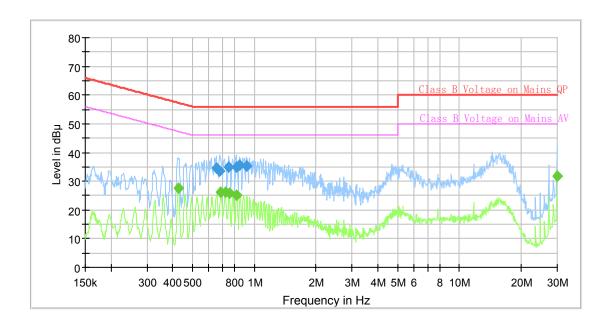
Environmental Conditions:

Temperature: (°C)	27.2	Relative Humidity: (%)	69	ATM Pressure: (kPa)	100.2
-------------------	------	------------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2023/9/7	2024/9/6
R&S	EMI Test Receiver	ESCI	100035	2023/8/18	2024/8/17
R&S	Test Software	EMC32	V9.10.00	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Report Template Version: FCC-Part 15B-V1.2

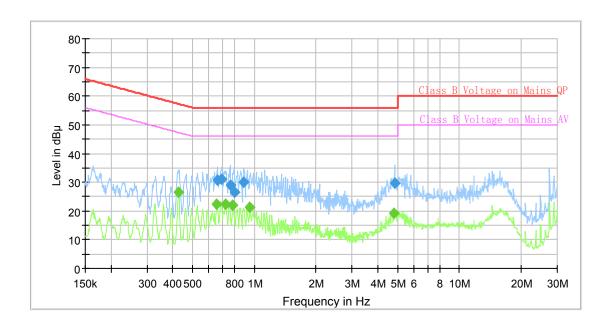
Test Date: 2024-7-16 Test Engineer: Lane Sun

Port: L

Test Mode: Mode 1
Power Source: AC 120V/60Hz

Note: Scanning 108-600MHz

Final_Result


Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB μ V)	(dB µ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.425401		27.65	47.34	19.69	9.000	L1	10.8
0.653250	34.57		56.00	21.43	9.000	L1	10.8
0.679842	33.41		56.00	22.59	9.000	L1	10.9
0.686657		26.29	46.00	19.71	9.000	L1	10.9
0.721773		26.25	46.00	19.75	9.000	L1	10.9
0.751154	34.76		56.00	21.24	9.000	L1	10.9
0.754910		25.95	46.00	20.05	9.000	L1	10.9
0.817621	34.77		56.00	21.23	9.000	L1	10.9
0.817621		24.98	46.00	21.02	9.000	L1	10.9
0.846671	35.51		56.00	20.49	9.000	L1	10.9
0.912443	35.20		56.00	20.80	9.000	L1	10.9
30.00000		31.83	50.00	18.17	9.000	L1	10.9

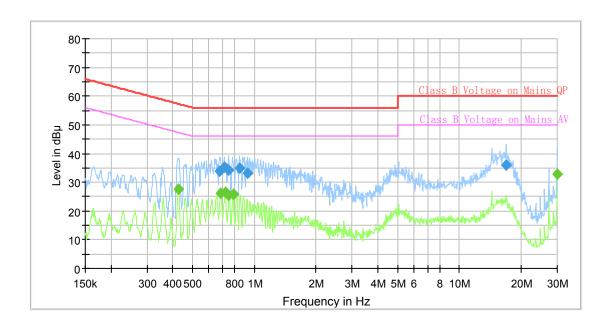
Test Date: 2024-7-16
Test Engineer: Lane Sun

Port: N Test Mode: Mode 1

Power Source: AC 120V/60Hz

Note: Scanning 108-600MHz

Final Result

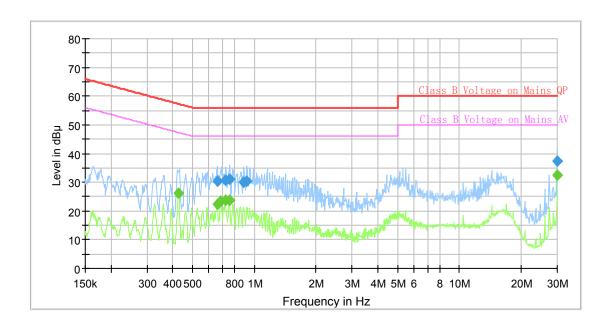

<u> </u>	Juit						
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB μ V)	(dB µ V)	(dB μ V)	(dB)	(kHz)		(dB)
0.427528		26.41	47.30	20.89	9.000	N	10.8
0.656516		22.34	46.00	23.66	9.000	N	10.7
0.659799	30.67		56.00	25.33	9.000	N	10.7
0.693541	30.99		56.00	25.01	9.000	N	10.8
0.725382		22.51	46.00	23.49	9.000	N	10.8
0.762478	29.12		56.00	26.88	9.000	N	10.8
0.785640		22.08	46.00	23.92	9.000	N	10.8
0.797484	26.56		56.00	29.44	9.000	N	10.8
0.889970	30.03		56.00	25.97	9.000	N	10.8
0.954334		21.21	46.00	24.79	9.000	N	10.8
4.779012		19.23	46.00	26.77	9.000	N	10.8
4.851056	29.75		56.00	26.25	9.000	N	10.8

Test Date: 2024-7-16 Test Engineer: Lane Sun

Port: L

Test Mode: Mode 2
Power Source: AC 120V/60Hz

Note: Receiving Frequency: 108.0125MHz



Final_Result

	· ··· ··· ····								
Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB µ V)	Limit (dB µ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)		
0.425401	· · · ·	27.55	47.34	19.79	9.000	L1	10.8		
0.679842	34.00		56.00	22.00	9.000	L1	10.9		
0.686657		26.31	46.00	19.69	9.000	L1	10.9		
0.714609	35.38		56.00	20.62	9.000	L1	10.9		
0.721773		26.44	46.00	19.56	9.000	L1	10.9		
0.751154	34.40		56.00	21.60	9.000	L1	10.9		
0.751154		25.57	46.00	20.43	9.000	L1	10.9		
0.789569		25.71	46.00	20.29	9.000	L1	10.9		
0.846671	34.89		56.00	21.11	9.000	L1	10.9		
0.926198	33.06		56.00	22.94	9.000	L1	10.9		
16.963591	35.95		60.00	24.05	9.000	L1	10.9		
30.000000		32.92	50.00	17.08	9.000	L1	10.9		

Test Date: 2024-7-16
Test Engineer: Lane Sun
Port: N
Test Mode: Mode 2
Power Source: AC 120V/60Hz

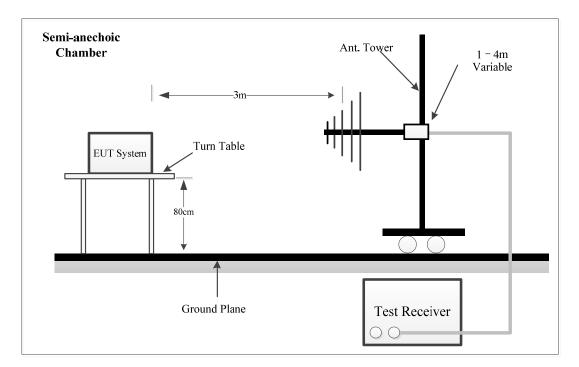
Note: Receiving Frequency: 108.0125MHz

Final Result

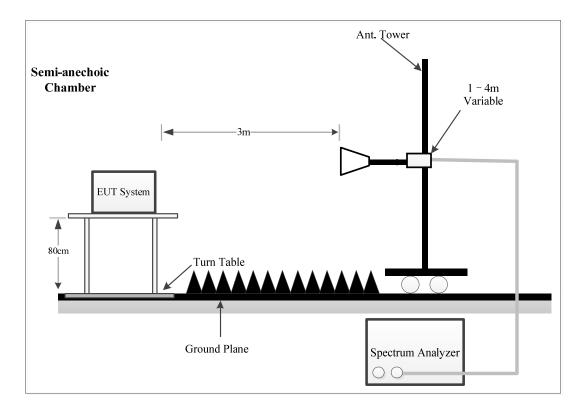
i mai_rrocait								
Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.	
(MHz)	(dB μ V)	(dB μ V)	(dB µ V)	(dB)	(kHz)		(dB)	
0.427528		26.14	47.30	21.16	9.000	N	10.8	
0.659799		22.44	46.00	23.56	9.000	N	10.7	
0.659799	30.33		56.00	25.67	9.000	N	10.7	
0.686657		23.31	46.00	22.69	9.000	N	10.8	
0.721773		23.79	46.00	22.21	9.000	N	10.8	
0.725382	30.79		56.00	25.21	9.000	N	10.8	
0.754910		23.62	46.00	22.38	9.000	N	10.8	
0.758685	31.12		56.00	24.88	9.000	N	10.8	
0.889970	30.08		56.00	25.92	9.000	N	10.8	
0.921590	30.49		56.00	25.51	9.000	N	10.8	
30.000000		32.34	50.00	17.66	9.000	N	11.0	
30.000000	37.39		60.00	22.61	9.000	N	11.0	

4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard


FCC§15.109

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:


Frequency of emission (MHz)	Field strength (microvolts/meter)
30-88	100
88-216	150
216-960	200
Above 960	500

4.2.2 Test System Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed at the 3 meters distance, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15B Class B limits.

4.2.3 EMI Test Receiver Setup

The system was investigated from 30 MHz to 6 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
20MHz 1000 MHz	100 kHz	300 kHz	/	Peak
30MHz – 1000 MHz	/	/	120kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	Peak
Above I GHZ	1 MHz	3MHz	/	AVG

4.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The data was recorded in the Quasi-peak detection mode for below 1 GHz, peak and average detection mode above 1 GHz.

If the maximized peak measured value complies with under the QP limit more than 6dB, then it is unnecessary to perform an QP measurement.

Ba	y Area	Compl	iance	Labora	tories	Corp.	(Dongguan))
----	--------	-------	-------	--------	--------	-------	------------	---

4.2.5 Corrected Result & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

Report Template Version: FCC-Part 15B-V1.2

Page 18 of 39

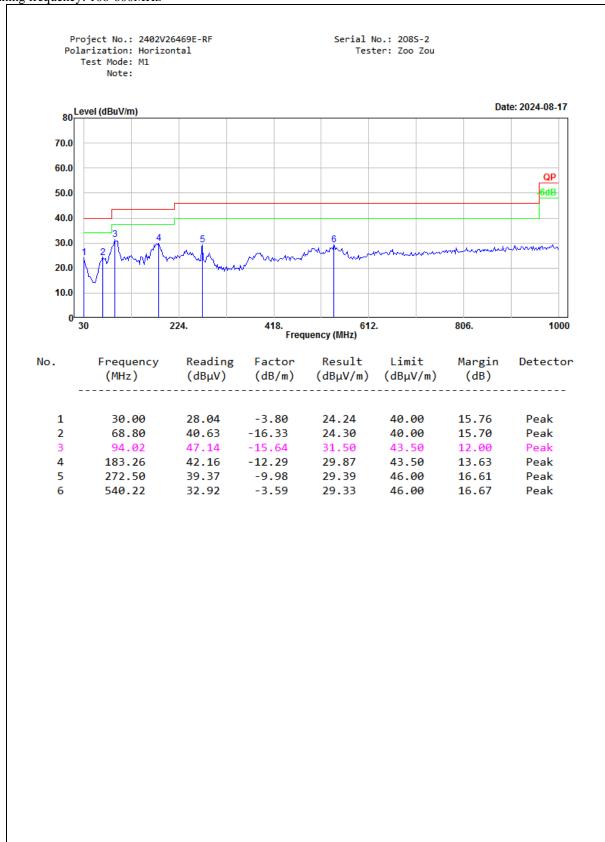
4.2.6 Test Data and Result

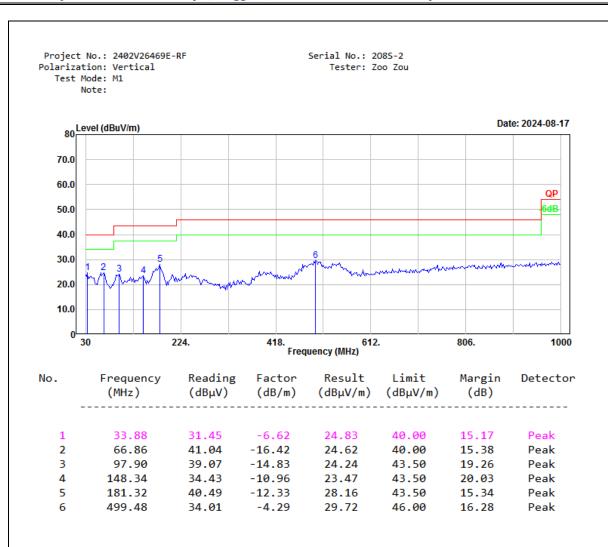
Serial Number:	2O8S-2	Test Date:	Below 1G: 2024/8/17 Above 1G: 2024/7/27
Test Site:	Chamber A, Chamber 10m	Test Mode:	Mode 1, Mode 2
Tester:	Jayce Wang, Zoo Zou	Test Result:	Pass

Report No.: 2402V26469E-RF-00A

Environmental Cor	Environmental Conditions:										
Temperature: $(^{\circ}\mathbb{C})$	28.1~28.5	Relative Humidity: (%)	30~59	ATM Pressure: (kPa)	99.9~100						

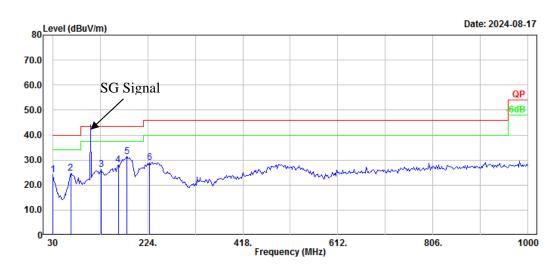
Test Equipment List and Details:

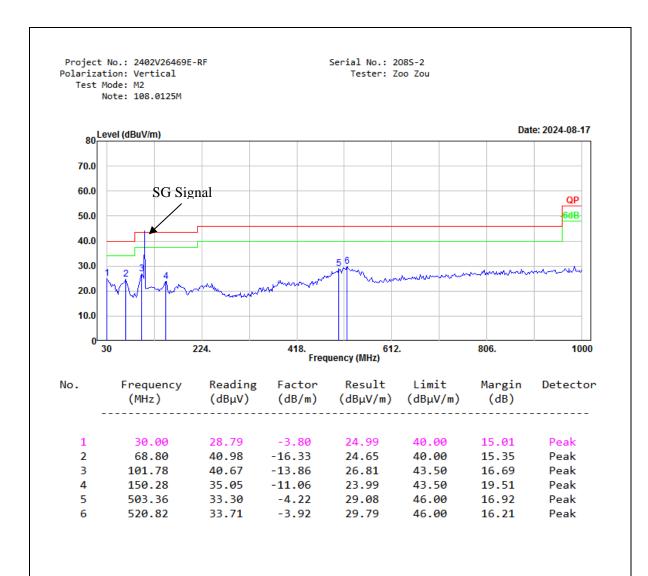

Manufacturer	Description Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Below	1G		
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/8/1	2025/7/31
Sonoma	Amplifier	310N	185914	2024/8/1	2025/7/31
R&S	EMI Test Receiver	ESCI	101121	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 V9	N/A	N/A
		Above	1G		
AH	Horn Antenna	SAS-571	1177	2023/2/22	2026/2/21
Mini-Circuits	Preamplifier	ZVZ-183-S+	5696001267	2024/3/2	2025/3/1
HUBER+SUHNER	Coaxial Cable	SUCOFLEX 126EA	MY369/26/26EA	2023/9/6	2024/9/5
Agilent	Spectrum Analyzer	E4440A	MY44303352	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 V9	N/A	N/A


^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report Template Version: FCC-Part 15B-V1.2

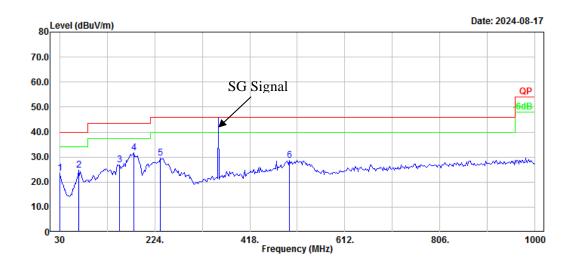
1) 30MHz-1GHz:


scanning frequency: 108-600MHz

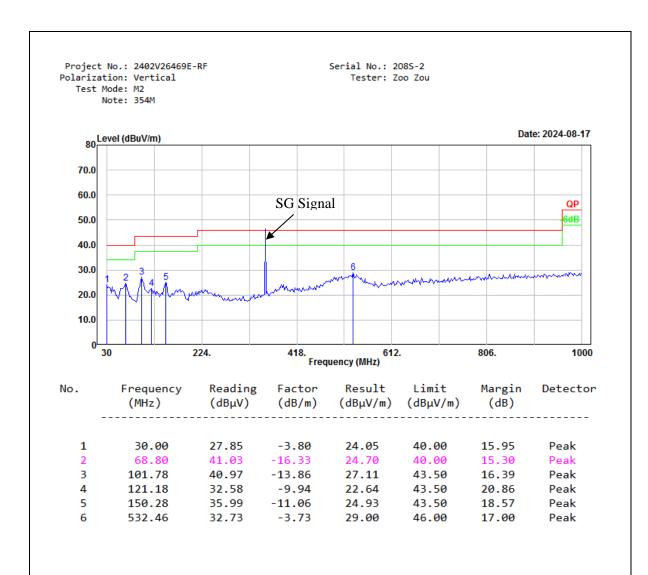


Project No.: 2402V26469E-RF Polarization: Horizontal Test Mode: M2 Serial No.: 2085-2 Tester: Zoo Zou

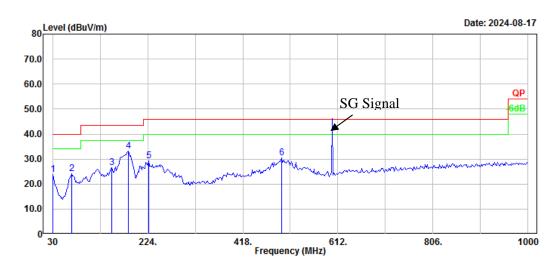
Note: 108.0125M



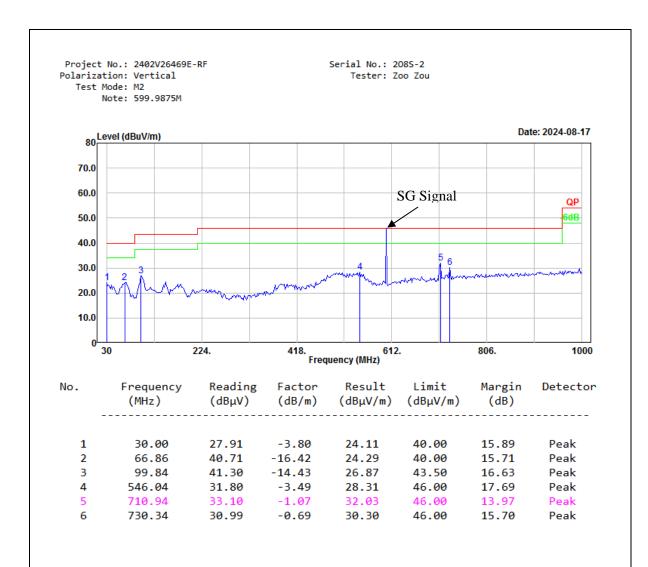
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	30.00	28.10	-3.80	24.30	40.00	15.70	Peak
2	66.86	41.25	-16.42	24.83	40.00	15.17	Peak
3	128.94	36.15	-9.86	26.29	43.50	17.21	Peak
4	163.86	39.49	-11.39	28.10	43.50	15.40	Peak
5	181.32	43.60	-12.33	31.27	43.50	12.23	Peak
6	227.88	41.23	-12.28	28.95	46.00	17.05	Peak



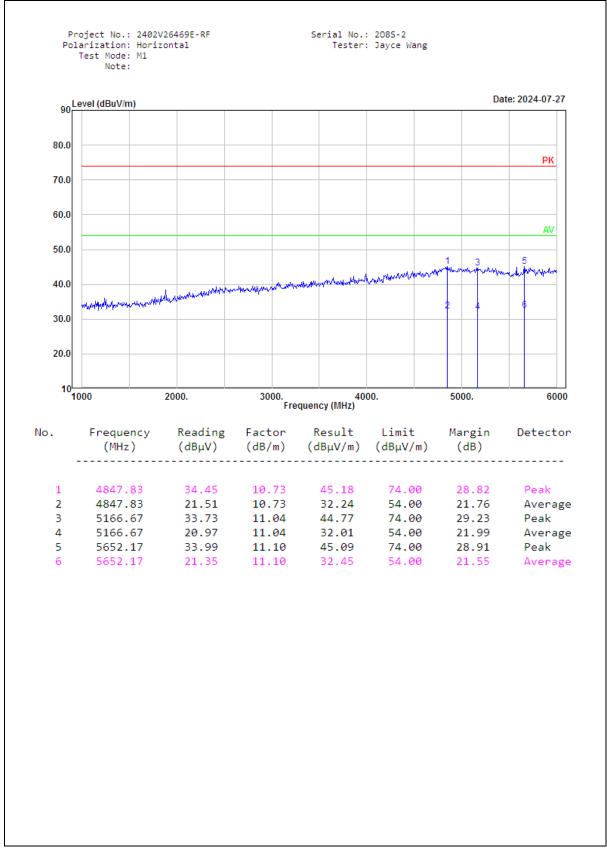
Receiving frequency: 354MHz

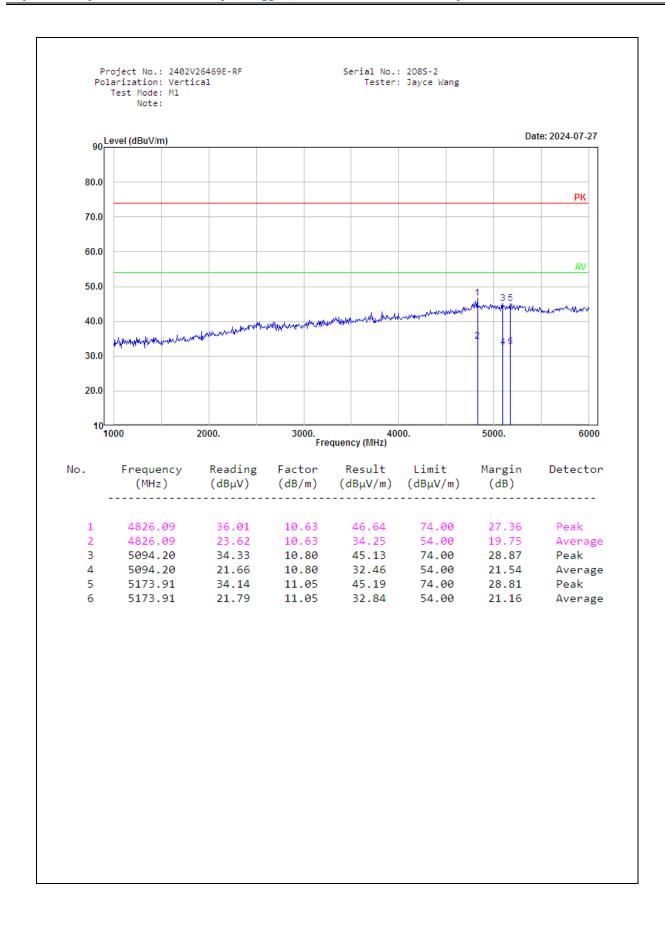


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	30.00	27.41	-3.80	23.61	40.00	16.39	Peak
2	68.80	41.23	-16.33	24.90	40.00	15.10	Peak
3	152.22	37.85	-11.08	26.77	43.50	16.73	Peak
4	181.32	43.94	-12.33	31.61	43.50	11.89	Peak
5	235.64	41.61	-11.96	29.65	46.00	16.35	Peak
6	499.48	33.11	-4.29	28.82	46.00	17.18	Peak

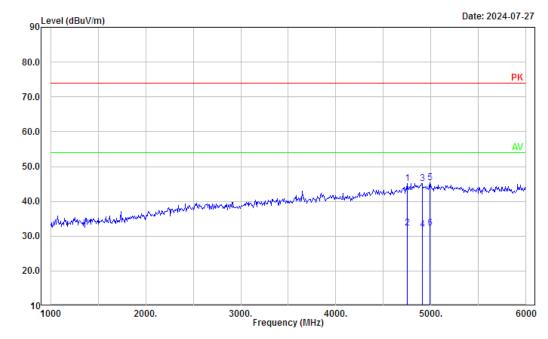


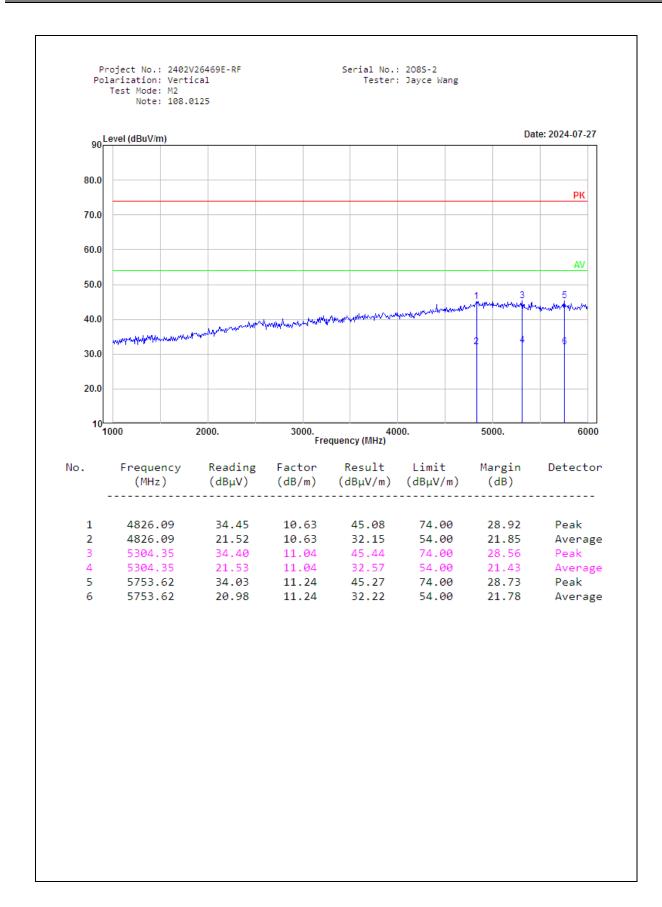
Receiving frequency: 599.9875MHz



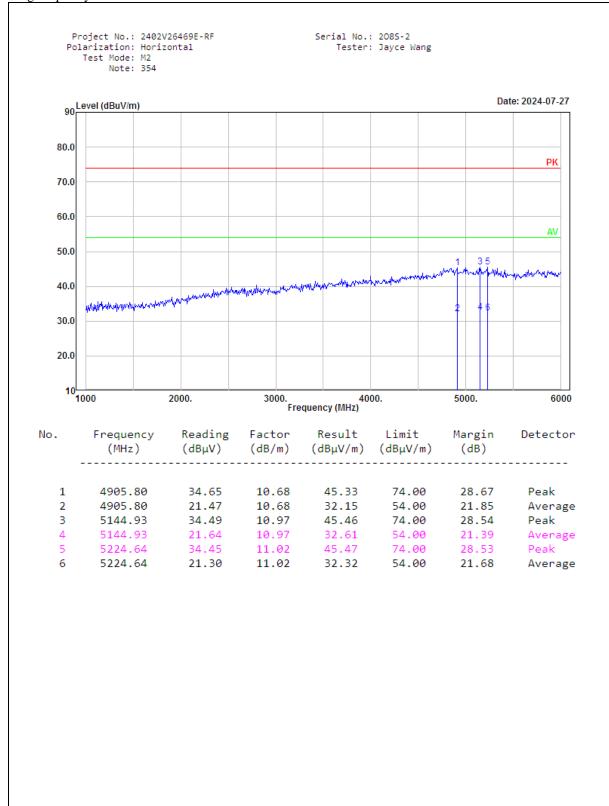

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	30.00	27.61	-3.80	23.81	40.00	16.19	Peak
2	68.80	40.38	-16.33	24.05	40.00	15.95	Peak
3	150.28	37.65	-11.06	26.59	43.50	16.91	Peak
4	185.20	45.30	-12.24	33.06	43.50	10.44	Peak
5	225.94	41.60	-12.33	29.27	46.00	16.73	Peak
6	497.54	34.78	-4.34	30.44	46.00	15.56	Peak

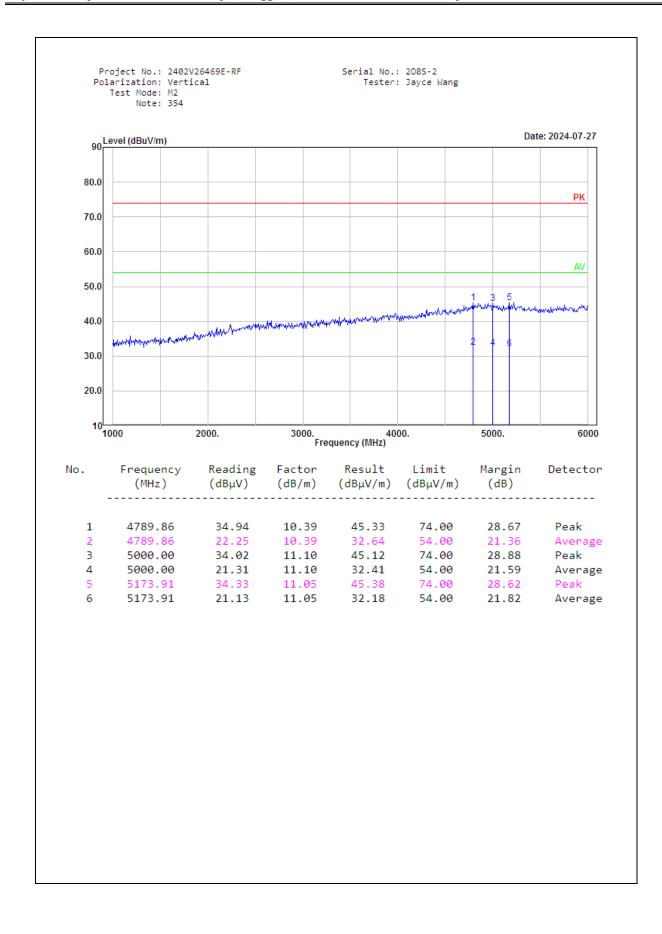

2) 1GHz-6GHz:


scanning frequency: 108-600MHz



Receiving frequency:108.0125MHz





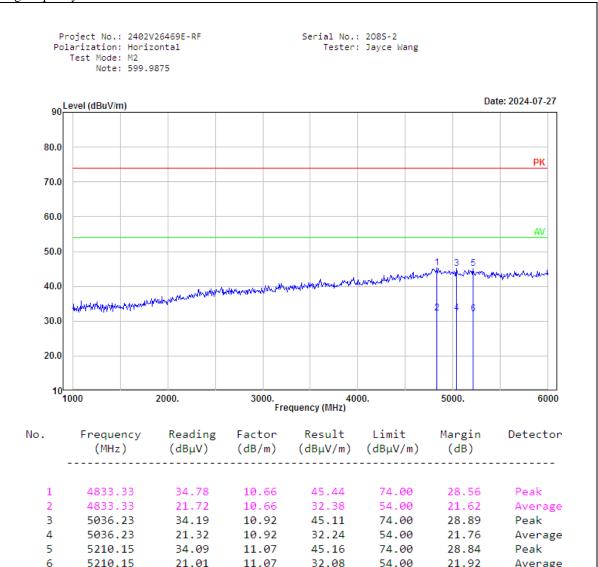
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	4753.62	35.24	9.94	45.18	74.00	28.82	Peak
2	4753.62	22.40	9.94	32.34	54.00	21.66	Average
3	4905.80	34.46	10.68	45.14	74.00	28.86	Peak
4	4905.80	21.16	10.68	31.84	54.00	22.16	Average
5	4985.51	34.24	11.06	45.30	74.00	28.70	Peak
6	4985.51	21.37	11.06	32.43	54.00	21.57	Average

Receiving frequency:354MHz

28.84

21.92

Peak


Average

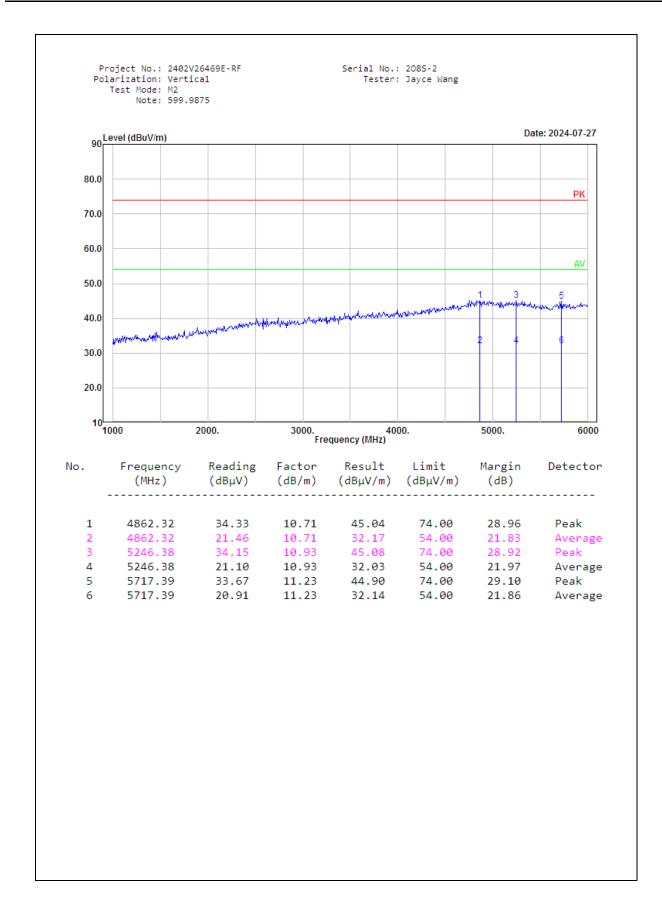
Receiving frequency:599.9875MHz

5

5210.15

5210.15

10.92 11.07


11.07

32.08

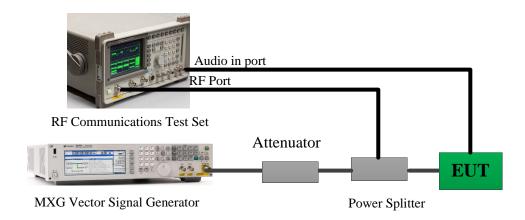
54.00

34.09

21.01

4.3 Scanning Receivers and Frequency Converters Used with Scanning Receivers

4.3.1 Applicable Standard


FCC §15.121(b).

(b) Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

Report No.: 2402V26469E-RF-00A

4.3.2 Test Procedure

1. Connected the EUT as the below block diagram;

- 2. Apply a signal to the EUT antenna port at lowest, middle, highest channel frequencies of the operating band;
- 3. Adjust the audio output level of the EUT to it's rated value with the distortion less than 10%;
- 4. Adjust the 8920 output power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB; These output level of the 8920 at each channel frequency is the sensitivity of the EUT;
- 5. Select the lowest or worst case sensitivity level for all of the bands as the reference sensitivity;
- 6. Adjust the Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step 5 and its frequency to the frequency point in the Cellular Band;
- 7. Set the EUT squelch to threshold, the signal required to open the squelch must be lower than the reference sensitivity level;
- 8. Set the EUT in a scanning mode and allow it to scan through it's complete receiving range;
- 9. If the EUT un-squelched or stopped on any frequency, receiving at this frequency, then adjust the signal generator output level until 12 dB SINAD is produced, this level is the spurious value and the difference between the reference sensitivity and the spurious value is the rejection ratio and must be at least 38 dB;
- 10. Repeat above procedure at the frequencies 824, 836, 849 MHz for the mobile band, and 869, 881.5 and 894 MHz for the Cellular Base Band.

4.3.3 Test Data and Result

Serial Number:	2O8S-2	Test Date:	2024/7/19
Test Site:	RF	Test Mode:	Scanning
Tester:	Stu Song	Test Result:	Pass

Report No.: 2402V26469E-RF-00A

Environmental Co	onditions:				
Temperature: (°C)	25.2	Relative Humidity: (%)	68	ATM Pressure: (kPa)	100.8

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Micro-Coax	Coaxial Cable	UFB205A	323308-024	2024/1/2	2025/1/1
Micro-Coax	Coaxial Cable	UFB205A	323308-015	2024/1/2	2025/1/1
Micro-Coax	Coaxial Cable	UFB205A	323308-018	2024/1/2	2025/1/1
Huaxiang	Coaxial Attenuator	DTS250-30	11022109	2024/6/7	2025/6/6
HP	RF Communications Test Set	8920A	3438A05201	2023/10/18	2024/10/17
Agilent	MXG Vector Signal Generator	N5182B	MY51350142	2023/9/1	2024/8/31
Minl-Clrcuits	Coaxial Power Splitters & Combiner	ZFRSC-183-S+	SF448201614	2024/2/25	2025/2/24

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Scanning Frequency Range	Test Frequency	Measurement Result	Limit
MHz	MHz	dB	dB
108-600	824, 836, 849, 869, 881.5, 894	45	>38

Report Template Version: FCC-Part 15B-V1.2

	Report No.: 2402V26469E-RF-00A
XHIBIT A - EUT PHOTOGRAPHS	
lease refer to the attachment 2402V26469E-RF-EXP EUT EXT	FRNAL PHOTOGRAPHS and
402V26469E-RF-INP EUT INTERNAL PHOTOGRAPHS	ERIVIE I ITO I OGRAFI IIS MIN

IOTOGRAPHS.
IOTOGRAPHS.
TOTOGRAFIES.