

FCC RADIO TEST REPORT

FCC ID:2AJGILHX31

Product :Remote Control DroneTrade Name :CRAIG, Lead honorModel Name :LH-X31Serial Model :CRD746C,LH-X35,LH-X39,LH-X40,LH-X41,
LH-X43,LH-X46,LH-X48,LH-X49,LH-X52Report No. :UNIA20060105ER-01

Prepared for

Shantou Chenghai Lihuang Plastic Toys Co.,Ltd No.1,1 Road,Huaihe Industrial Park,Lianxia,Chenghai, Shantou,China.

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULTCERTIFICATION

Applicant's name	Shantou Chenghai Lihuang Plastic Toys Co.,Ltd
Address	No.1,1 Road,Huaihe Industrial Park,Lianxia,Chenghai, Shantou,China.
Manufacture's Name:	Shantou Chenghai Lihuang Plastic Toys Co.,Ltd
Address	No.1,1 Road,Huaihe Industrial Park,Lianxia,Chenghai, Shantou,China.
Product description	
Product name:	Remote Control Drone
Trade Mark:	CRAIG, Lead honor
Model and/or type reference .:	LH-X31,CRD746C,LH-X35,LH-X39,LH-X40,LH-X41, LH-X43,LH-X46,LH-X48,LH-X49,LH-X52
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.249, ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	May. 27, 2020 - Jun. 05, 2020
Date of Issue	Jun. 05, 2020
Test Result	Pass

Prepared by:

Reviewer:

Approved & Authorized Signer:

Bob (im Bob ao/Editor Kahn yang/Supervisor Outle

Liuze/Manager

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 Carrier Frequency of Channels	6
2.3 Operation of EUT during testing	6
2.4DESCRIPTION OF TEST SETUP	6
2.5MEASUREMENT INSTRUMENTS LIST	7
3 . CONDUCTED EMISSIONS TEST	8
3.1 Conducted Power Line Emission Limit	8
3.2 Test Setup	8
3.3 Test Procedure	8
3.4 Test Result	8
4 RADIATED EMISSION TEST	10
4.1 Radiation Limit	10
4.2 Test Setup	10
4.3 Test Procedure	11
4.4 Test Result	12
5 BAND EDGE	17
5.1 Limits	17
5.2 Test Procedure	17
5.3 Test Result	17
6 OCCUPIED BANDWIDTH MEASUREMENT	20
6.1 Test Setup	20
6.2 Test Procedure	20
6.3 Measurement Equipment Used	20
6.4 Test Result	20
7 ANTENNA REQUIREMENT	22
8 PHOTOGRAPH OF TEST	23
8.1 Radiated Emission	23
8.2Conducted Emission	24

11. TEST SUMMARY

1.1TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE OCCUPIED BANDWIDTH MEASUREMENT ANTENNA REQUIREMENT RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT STANGARD FCC Part 15.207 FCC Part15.209/15.249 FCC Part15.249(d) FCC Part15.215 FCC Part15.203

1.2 TEST FACILITY

Test Firm: Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

22. GENERAL INFORMATION

2.12.1GENERAL DESCRIPTION OF EUT

Equipment	Remote Control Drone			
Trade Mark	CRAIG, Lead honor			
Model Name	LH-X31			
Serial No.	CRD746C,LH-X35,LH-X39,LH-X40,LH-X41, LH-X43,LH-X46,LH-X48,LH-X49,LH-X52			
Model Difference	The model name and product function are different but the rest are the same			
Antenna Type	Extension line antenna			
Antenna Gain	0 dBi			
Frequency Range	2458~2473MHz			
Number of Channels	16CH			
Modulation Type	GFSK			
Battery	N/A			
PowerSource	DC 4.5V by 3*1.5V AAA Battery			

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.22.2 Carrier Frequency of Channels

. 1	Channe	l List	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2458	09	2466
02	2459	10	2467
03	2460	11	2468
04	2461	12	2469
05	2462	13	2470
06	2463	14	2471
07	2464	15	2472
08	2465	16	2473

2.32.3 Operation of EUT during testing

Operating Mode The mode is used: Transmitting mode Low Channel: 2458MHz Middle Channel: 2465MHz

High Channel: 2465MHz

2.4 2.4DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

EUT

Operation of EUT duringRadiation testing:

EUT

Table forauxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
N/A	N/A	N/A	N/A

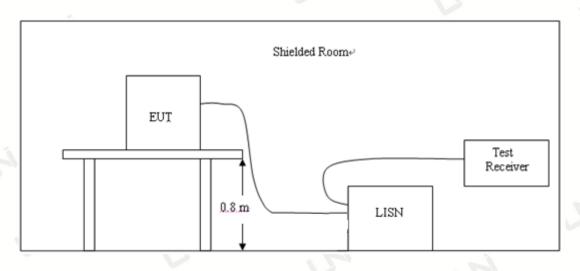
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.5 2.5MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated ur
		CONDUCTED	EMISSIONS TEST	V	1
1	AMN	Schwarzbeck	NNLK8121	8121370	2020.09.06
2	AMN	ETS	3810/2	00020199	2020.09.06
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2020.09.06
4	AAN	TESEQ	LH-X31-Cat6	38888	2020.09.06
		RADIATED E	EMISSION TEST	5	1.
1	💧 Horn Antenna	Sunol	DRH-118	A101415	2020.09.06
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2020.09.06
3	PREAMP	HP	8449B	3008A00160	2020.09.06
4	PREAMP	HP	8447D	2944A07999	2020.09.06
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2020.09.06
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2020.09.0
7	Signal Generator	Agilent	E4421B	MY4335105	2020.09.0
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2020.09.0
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2020.09.0
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2020.09.0
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2020.09.0
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2020.09.0
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2021.3.14
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2021.3.14
15	RF power divider	Anritsu	K241B	992289	2020.09.0
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2020.09.0
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2020.09.0
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2020.09.0
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2020.09.0
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2021.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2020.11.0
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2021.03.1
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2020.09.0
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2021.05.1
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2021.05.1
26	Frequency Meter	VICTOR	VC2000	997406086	2021.05.1
过是到	DC Power Source	HYELEC	HY5020E	055161818	2021.05.10

33. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

		Maximum RF Li	ne Voltage(dBµV)	
Frequency	CLA	SS A	CLA	SS B
(MHz)	Q.P.	Ave.	Q.P.	Ave.
0.15~0.50	79	66	66~56*	56~46*
0.50~5.00	73	60	56	46
5.00~30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

N/A

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LNi

Page 9 of 30

Report No.: UNIA20060105ER-01

Temperature:	24°C	Relative Humidity:	45%
Test Date:	N/A	Pressure:	N/A
Test Voltage:	N/A	Phase:	N/A
Test Mode:	N/A	5	, N

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4 RADIATED EMISSION TEST

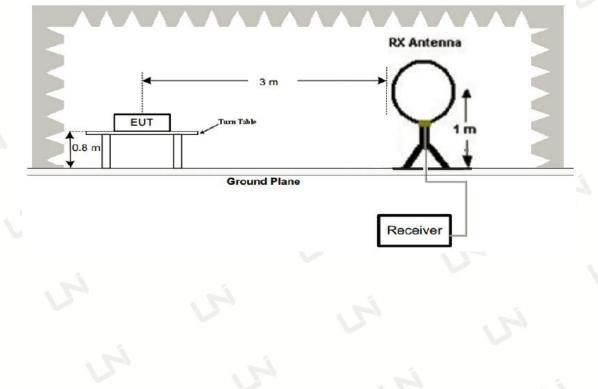
4.1 Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength ofradiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the followingvalues :

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

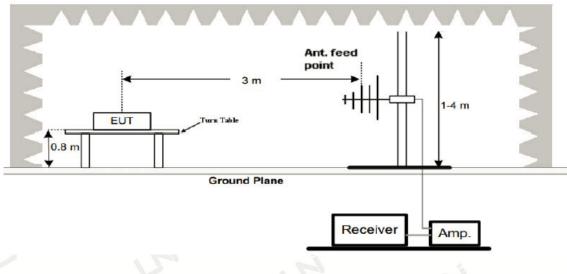
For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

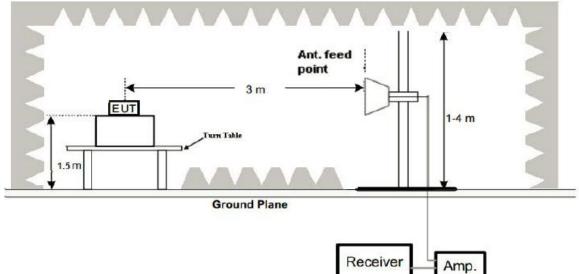

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

For intentionally used equipment, the general requirements for the magnetic field strength limits of the fundamental and harmonic radiation from the intentional radiator at a distance of 3 meters shall not exceed the above table, as specified in § 15.249(a).

4.2 Test Setup


1. Radiated Emission Test-Up Frequency Below 30MHz


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to25GHz per FCC PART 15.33(a).

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

深圳市优耐检测技术有限公司
Shenzhen United Testing Technology Co.,Ltd.
United Testing Technology(Hong Kong) Limited
2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编: 518102 Tel: +86-755-86180996 Fax: +86-755-86180196

Page 12 of 30

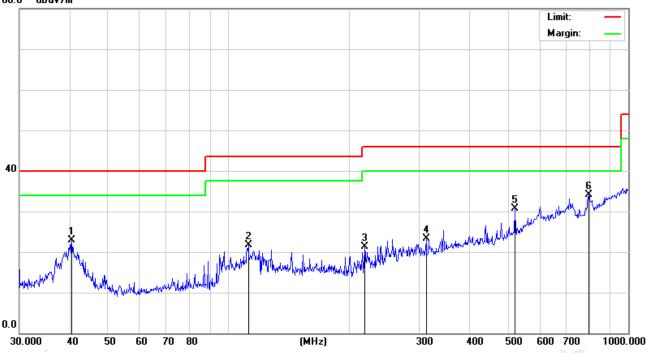
4.4 Test Result

PASS

Remark:

1. All the test modes completed for test. The worst case of Radiated Emissionis High channel, the test data of this mode was reported.

Report No.: UNIA20060105ER-01

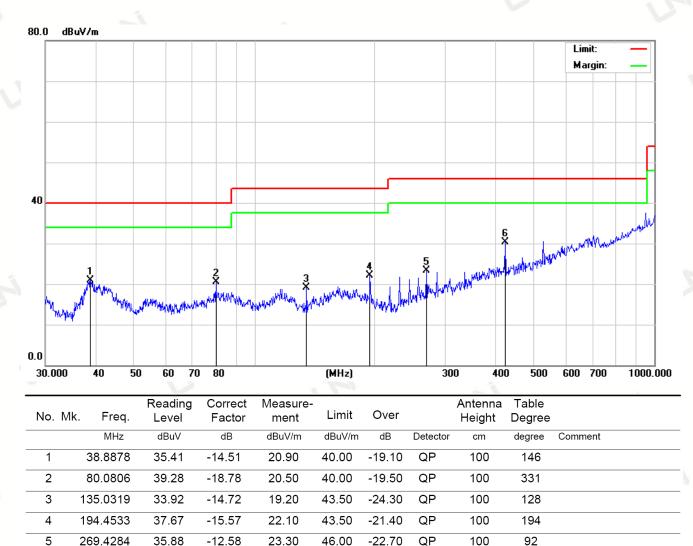

2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	45%				
Test Date:	Jun.04,2020	Pressure:	1010hPa				
Test Voltage:	DC 4.5V	Polarization:	Horizontal				
Test Mode:	ode: Transmitting mode of GFSK2473MHz						

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		40.5591	39.71	-16.74	22.97	40.00	-17.03	QP	100	245		
2		112.1304	35.42	-13.72	21.70	43.50	-21.80	QP	100	124		
3		219.0752	37.39	-16.09	21.30	46.00	-24.70	QP	100	318		
4		312.1792	32.43	-9.11	23.32	46.00	-22.68	QP	100	96		
5		520.8881	35.61	-4.97	30.64	46.00	-15.36	QP	100	239		
6	*	796.1829	31.12	3.01	34.13	46.00	-11.87	QP	100	147		


深圳市优耐检测及和确认为bsolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Shenzhen United Testing Techactor=Antd.Factor: 4n Cable laossyna Pre-amplificerotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China United Testing Technology(Hong Kong) Limited 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉星源科技园的楼2楼 邮编: 518102 Tel: +86-755-86180996 Fax: +86-755-86180156

LNi

Page 13 of 30

Report No.: UNIA20060105ER-01

Temperature:	24°C	Relative Humidity:	45%
Test Date:	Jun.04,2020	Pressure:	1010hPa
Test Voltage:	DC 4.5V	Polarization:	Vertical
Test Mode:	Transmitting mode of GFSK2473	MHz	, N

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

30.40

Remark:

6 *

(1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.

46.00

-15.60

QP

100

317

- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

423.5403

37.01

-6.61

Above 1 GHz Test Results: CH Low (2458MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2458	104.28	-5.84	98.44	114	-15.56	PK
2458	84.15	-5.84	78.31	94	-15.69	AV
4916	53.68	-3.64	50.04	74	-23.96	PK
4916	44.17	-3.64	40.53	54	-13.47	AV
7374	53.06	-0.95	52.11	74	-21.89	PK
7374	43.62	-0.95	42.67	54	-11.33	AV
Remark: Fact	or = Antenna	Factor + Cable	e Loss – Pre-ampli	ifier. Margin=	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin 🔨	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2458	103.92	-5.84	98.08	114	-15.92	PK
2458	83.67	-5.84	77.83	94	-16.17	AV
4916	52.74	-3.64	49.1	74	-24.9	PK
4916	49.27	-3.64	45.63	54	-8.37	AV
7374	52.19	-0.95	51.24	74	-22.76	PK
7374	44.62	-0.95	43.67	54	-10.33	AV
Remark: Fact	or = Antenna I	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin=	Absolute Lev	vel – Limit

Note:For fundamental frequency, RBW and VBW set to be 1.5MHz , PK detector for PK value , RMS detector for AV value

CH Middle (2465MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2465	103.48	-5.71	97.77	114	-16.23	PK
2465	82.64	-5.71	76.93	94	-17.07	AV
4930	54.29	-3.51	50.78	74	-23.22	PK
4930	46.36	-3.51	42.85	54	-11.15	AV
7395	55.18	-0.82	54.36	74	-19.64	PK
7395	46.37	-0.82	45.55	54	-8.45	AV
emark: Fact	or = Antenna I	actor + Cab	le Loss – Pre-ampli	ifier. Margin =	Absolute Le	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2465	102.94	-5.71	97.23	114	-16.77	PK
2465	81.75	-5.71	76.04	94	-17.96	AV
4930	55.39	-3.51	51.88	74	-22.12	PK
4930	45.73	-3.51	42.22	54	-11.78	AV
7395	54.71	-0.82	53.89	74	-20.11	PK
7395	45.29	-0.82	44.47	54	-9.53	AV
Remark: Fact	or = Antenna I	Factor + Cab	le Loss – Pre-ampli	ifier. Margin=	Absolute Le	vel – Limit

Note:For fundamental frequency, RBW and VBW set to be 1.5MHz , PK detector for PK value , RMS detector for AV value

Page 16 of 30

CH High (2473MHz) Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2473	102.38	-5.65	96.73	114	-17.27	PK
2473	83.29	-5.65	77.64	94	-16.36	AV
4946	54.32	-3.43	50.89	74	-23.11	PK
4946	45.63	-3.43	42.2	54	-11.8	AV
7419	55.17	-0.75	54.42	74	-19.58	PK
7419	45.23	-0.75	44.48	54	-9.52	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

Vertical:

lioui.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2473	102.06	-5.65	96.41	114	-17.59	PK
2473	85.94	-5.65	80.29	94	-13.71	AV
4946	55.13	-3.43	51.7	74	-22.3	PK
4946	46.28	-3.43	42.85	54	-11.15	AV
7419	54.19	-0.75	53.44	74	-20.56	PK
7419	44.28	-0.75	43.53	54	-10.47	AV
emark: Fact	or = Antenna I	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin=	Absolute Le	vel – Limit

Note:For fundamental frequency, RBW and VBW set to be 1.5MHz, PK detector for PK value, RMS detector for AV value

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range ,that the value more than 20dB below limit is not record in the form.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7) All modes of operation were investigated and the worst-case emissions are reported.

深圳市优耐检测技术有限公司	
Shenzhen United Testing Technology Co., Ltd.	2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
United Testing Technology(Hong Kong) Limited	深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

5 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emissionlimits in §15.209, whichever is the lesser attenuation.

Report No.: UNIA20060105ER-01

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT issituated in three orthogonal planes (if appropriate), adjusting the measurement antenna height andpolarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and setRBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2458MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	39.47	-5.81	33.66	74	-40.34	PK
2310	31.64	-5.81	25.83	54	-28.17	AV
2390	40.08	-5.84	34.24	74	-39.76	PK
2390	31.27	-5.84	25.43	54	-28.57	AV
2400	40.94	-5.84	35.1	74	-38.9	PK
2400	32.76	-5.84	26.92	54	-27.08	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:	in the		1			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	39.65	-5.81	33.84	74	-40.16	PK
2310	30.48	-5.81	24.67	54	-29.33	AV
2390	40.57	-5.84	34.73	74	-39.27	PK
2390	32.69	-5.84	26.85	54	-27.15	AV
2400	41.06	-5.84	35.22	74	-38.78	PK
2400	33.52	-5.84	27.68	54	-26.32	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

2500

Operation Mode: TX CH High (2473MHz) Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	58.36	-5.65	52.71	74	-21.29	PK
2483.5	47.39	-5.65	41.74	54	-12.26	AV
2500	59.41	-5.72	53.69	74	-20.31	PK
2500	48.52	-5.72	42.8	54	-11.2	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical: Frequency **Reading Result** Factor **Emission Level** Limits Margin (dBµV) (dB)(dBµV/m) (dBµV/m) (dB) (MHz) 2483.5 59.13 -5.65 53.48 74 -20.52 2483.5 47.39 -5.65 41.74 54 -12.26

52.92

74

 2500
 47.86
 -5.72
 42.14
 54

-5.72

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

58.64

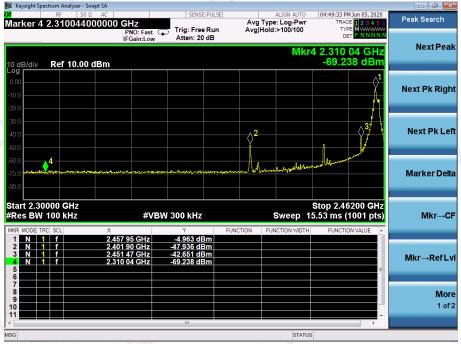
2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

Detector Type

ΡK

AV

ΡK


AV

-21.08

-11.86

2473

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 20 of 30

Report No.: UNIA20060105ER-01

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

Same asRadiated Emission Measurement

- 6.2 Test Procedure
 - 1. The EUT was placed on a turn table which is 0.8m above ground plane.
 - 2. Set EUT as normal operation.
 - 3. Based on ANSI C63.10 section 6.9.2: RBW=100KHz. VBW=100KHz, Span=10MHz.
 - 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

6.4 Test Result

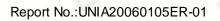
PASS

Frequency (MHz)	20dB Bandwidth (MHz)	Result
2458	1.221	PASS
2465	1.189	PASS
2473	1.214	PASS

CH:2458MHz

🎉 Keysight Spectrum Analyzer	- Occupied BW						
	50 Ω AC	Center Trig: F	r Freq: 2.458000000 GI Free Run Avg I 1: 10 dB	ALIGN AUTO Hz Hold:>10/10	11:30:32 AM Radio Std: I Radio Devic	None	Span
	#IFGa	In:Low #Atter			Radio Devic		Spa 3.0000 M⊦
IO dB/div Ref 2	0.00 dBm						
10.0							
0.0							
0.0							
0.0							Full Sp
0.0							
0.0							
0.0							
0.0							
enter 2.458 GHz					Spa	n 3 MHz	
Res BW 100 kHz		#	VBW 100 kHz		Swee	ep 1 ms	Last Sp
Occupied Ba	ndwidth		Total Power	4.4	5 dBm		
	1.080	7 MHz					
Transmit Freq	Error -2	2.806 kHz	OBW Power	99	.00 %		
x dB Bandwidt	h	1.221 MHz	x dB	-20.	00 dB		

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

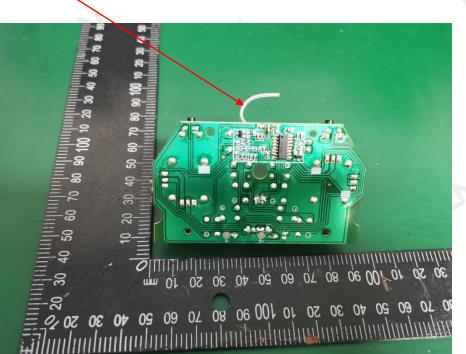

CH:2465MHz

RF 50 Q. AC SENSE-PULSE ALIGN AUTO 11:31:24 AM Jun 12,2020 Center Freq 2.465000000 GHz Center Freq: 2.465000000 GHz Radio Std: None #FGain:Low #FGain:Low #Atten: 10 dB	B-,					
Center Freq 2.465000000 GHz Center Freq: 2.465000000 GHz Radio Std: None Trace/Detector 0 dB/div Ref 20.00 dBm Average 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dD/div Ref 20.00 dBm Ref 20.00	Keysight Spectrum Analyzer - Occupied BV			ALTON AUTO 11-21-2	4 AM Jun 12, 2020	
Image: Product of the second secon		GHz Center	r Freq: 2.465000000 GH	Iz Radio S		Trace/Detector
0 dB/div Ref 20.00 dBm 0 dB/div Ref 20.00 kHz Span 3 MHz Sweep 1 ms 0 dB/div Transmit Freq Error -18.114 kHz OBW Power 99.00 %		Trig: F				
Clear Write Clear Write Clear Write Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Average Max Hold Average Min Hold Average Max Hold Average Min Hold Average Max Hol		#IFGain:Low #Atten	10 dB	Radio D	evice: BTS	
Clear Write Clear Write Clear Write Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Clear Write Average Max Hold Average Max Hold Average Min Hold Average Max Hold Average Max Hold Average Max Hold Average Min Hold Average Min Hold Average Min Hold Average Max Hold Average Min Hold Average Max Hold Average Min Hold Average Max Hold Average Min Hold Average Max Hold Average Min Hold Average Max Hold Average Min Hold Average Max Hold Average Max Hold Average Min Hold Average Max Hol						
Clear Write Clear Write Clear Write Clear Write Clear Write Average Max Hold Clear Write Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Min Hold Min H		n				
Clear Write Clear Write Clear Write Clear Write Clear Write Average Max Hold Clear Write Average Max Hold Average Max H						
Average Average Average Average Average Max Hole Center 2.465 GHz Free BW 100 kHz Sweep 1 ms Occupied Bandwidth 1.0585 MHz Transmit Freq Error -18.114 kHz OBW Power 99.00 %						Clear Write
Average Average Average Average Max Hold Average Max Hold Max Hold M						
Average Average Average Average Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Average Max Hold Average Average Max Hold Average Average Max Hold Average Max Hold Average	-10.0					
100 1000 100 100	-20.0			M.		
Sono Sono Max Hold Sono Sono Max Hold Sono Sono Max Hold Sono Sono Max Hold Senter 2.465 GHz Span 3 MHz Rees BW 100 kHz #VBW 100 kHz Sweep 1 ms Occupied Bandwidth Total Power 4.19 dBm 1.0585 MHz Detecto Transmit Freq Error -18.114 kHz OBW Power 99.00 %	-30.0					Average
Sono Sono Max Hold Sono Sono Max Hold Sono Sono Max Hold Sono Sono Max Hold Senter 2.465 GHz Span 3 MHz Rees BW 100 kHz #VBW 100 kHz Sweep 1 ms Occupied Bandwidth Total Power 4.19 dBm 1.0585 MHz Detecto Transmit Freq Error -18.114 kHz OBW Power 99.00 %	-40.0			- month and the	n man and an and an	
And and a second sec	-50.0					
Center 2.465 GHz Res BW 100 kHz Coccupied Bandwidth 1.0585 MHz Transmit Freq Error -18.114 kHz OBW Power 99.00 %						
Center 2.465 GHz Res BW 100 kHz Occupied Bandwidth 1.0585 MHz Transmit Freq Error -18.114 kHz OBW Power 99.00 % Span 3 MHz Sweep 1 ms Min Hold Auto Maximum Min Hold Auto Min Hold Min Hold Auto Min Hold Auto						Max Hold
Res BW 100 kHz Sweep 1 ms Occupied Bandwidth Total Power 4.19 dBm 1.0585 MHz Detector Transmit Freq Error -18.114 kHz OBW Power 99.00 %	-70.0					
Res BW 100 kHz Sweep 1 ms Occupied Bandwidth Total Power 4.19 dBm 1.0585 MHz Detector Transmit Freq Error -18.114 kHz OBW Power 99.00 %	Center 2465 CHz				nan 3 MHz	
Occupied Bandwidth Total Power 4.19 dBm 1.0585 MHz Detecto Average 1 Transmit Freq Error -18.114 kHz OBW Power 99.00 %						
1.0585 MHz Detector Transmit Freq Error -18.114 kHz OBW Power 99.00 % Auto Mar					roop mio	Min Hold
1.0585 MHz Detecton Transmit Freq Error -18.114 kHz OBW Power 99.00 %	Occupied Bandwidt					
Transmit Freq Error -18.114 kHz OBW Power 99.00 %		Detecto				
Transmit Freq Error -18.114 kHz OBW Power 99.00 %	1.					
	Transmit Freg Error	-18,114 kHz	OBW Power	99.00 %		
x dB Bandwidth 1.189 MHz x dB -20.00 dB						
	x dB Bandwidth	1.189 MHz	x dB	-20.00 dB		

CH:2473MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7 ANTENNA REQUIREMENT


Standard Applicable:

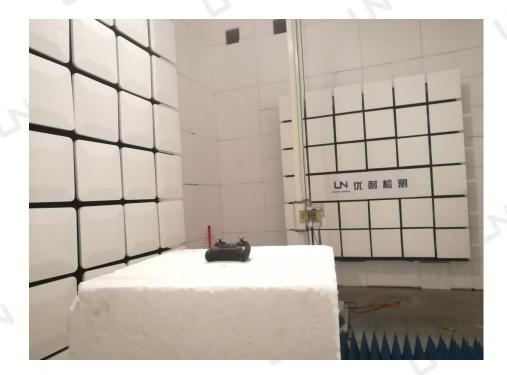
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Extension line antenna, The directional gains of antenna used for transmitting is 0 dBi.

ANTENNA:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


Page 23 of 30

Report No.: UNIA20060105ER-01

8 PHOTOGRAPH OF TEST

8.1 Radiated Emission

<image>

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

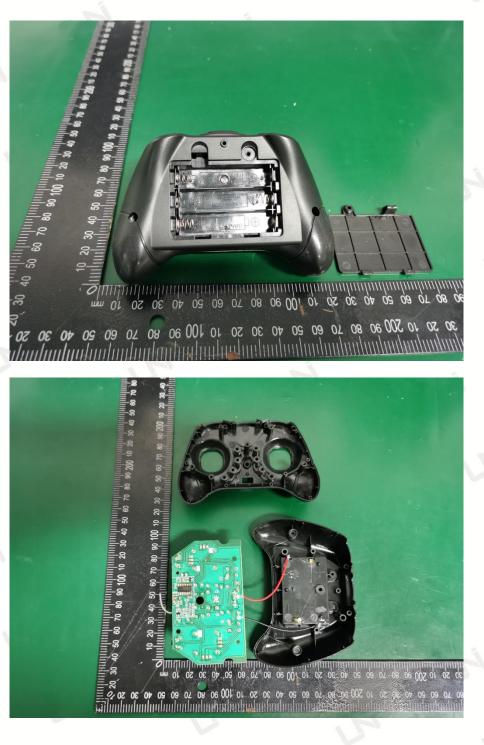
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Internation

99

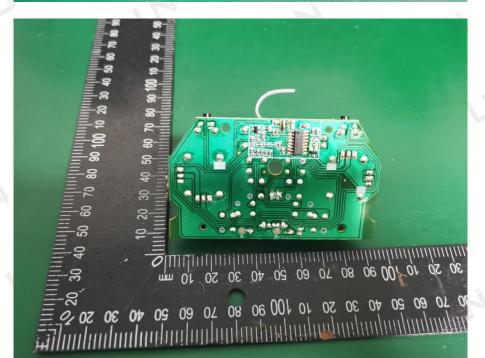
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 28 of 30

Report No.: UNIA20060105ER-01


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 29 of 30

Report No.: UNIA20060105ER-01

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 30 of 30

Report No.: UNIA20060105ER-01

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited