

# **FCC Test Report**

# Report No.: AGC03652190703FE04

| FCC ID :                     | 2AJFWXOSSG                                              |
|------------------------------|---------------------------------------------------------|
| APPLICATION PURPOSE :        | Original Equipment                                      |
| <b>PRODUCT DESIGNATION</b> : | Smart GPS Cycling Computer                              |
| BRAND NAME :                 | XOSS                                                    |
| MODEL NAME :                 | XOSS G+                                                 |
| APPLICANT :                  | Shanghai Dabuziduo Information and Technology Co., Ltd. |
| DATE OF ISSUE :              | Oct. 23, 2019                                           |
| STANDARD(S) :                | FCC Part 15.247                                         |
| REPORT VERSION :             | V1.0                                                    |

# Attestation of Global Compliance (Shenzhen) Co., Ltd

# **CAUTION:**

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.







#### Report No.: AGC03652190703FE04 Page 2 of 44

# **REPORT REVISE RECORD**

| Report Version | Revise Time | Issued Date   | Valid Version | Notes           |
|----------------|-------------|---------------|---------------|-----------------|
| V1.0           |             | Oct. 23, 2019 | Valid         | Initial Release |





# TABLE OF CONTENTS

| 1. VERIFICATION OF COMPLIANCE                       |    |
|-----------------------------------------------------|----|
| 2.GENERAL INFORMATION                               |    |
| 2.1PRODUCT DESCRIPTION                              | 6  |
| 2.2. TABLE OF CARRIER FREQUENCYS                    | 6  |
| 2.3 RELATED SUBMITTAL(S)/GRANT(S)                   | 7  |
| 2.4TEST METHODOLOGY                                 | 7  |
| 2.5 SPECIAL ACCESSORIES                             |    |
| 2.6 EQUIPMENT MODIFICATIONS                         | 7  |
| 3. MEASUREMENT UNCERTAINTY                          |    |
| 4. DESCRIPTION OF TEST MODES                        | 9  |
| 5. SYSTEM TEST CONFIGURATION                        | 10 |
| 5.1 CONFIGURATION OF TESTED SYSTEM                  | 10 |
| 5.2 EQUIPMENT USED IN TESTED SYSTEM                 |    |
| 5.3. SUMMARY OF TEST RESULTS                        | 10 |
| 6. TEST FACILITY                                    |    |
| 7. PEAK OUTPUT POWER                                | 12 |
| 7.1. MEASUREMENT PROCEDURE                          |    |
| 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)   | 12 |
| 7.3. LIMITS AND MEASUREMENT RESULT                  |    |
| 8. 6 DB BANDWIDTH                                   |    |
| 8.1. MEASUREMENT PROCEDURE                          | 14 |
| 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)   |    |
| 8.3. LIMITS AND MEASUREMENT RESULTS                 |    |
| 9. CONDUCTED SPURIOUS EMISSION                      | 15 |
| 9.1. MEASUREMENT PROCEDURE                          | 15 |
| 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)   | 15 |
| 9.3. MEASUREMENT EQUIPMENT USED                     | 15 |
| 9.4. LIMITS AND MEASUREMENT RESULT                  |    |
| 10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY |    |





# Report No.: AGC03652190703FE04 Page 4 of 44

| 10.1 MEASUREMENT PROCEDURE                                  |    |
|-------------------------------------------------------------|----|
| 10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)           | 18 |
| 10.3 MEASUREMENT EQUIPMENT USED                             | 18 |
| 10.4 LIMITS AND MEASUREMENT RESULT                          | 18 |
| 11. RADIATED EMISSION                                       | 19 |
| 11.1. MEASUREMENT PROCEDURE                                 |    |
| 11.2. TEST SETUP                                            |    |
| 11.3. LIMITS AND MEASUREMENT RESULT                         | 21 |
| 11.4. TEST RESULT                                           | 21 |
| 12. FCC LINE CONDUCTED EMISSION TEST                        | 29 |
| 12.1. LIMITS OF LINE CONDUCTED EMISSION TEST                |    |
| 12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST         |    |
| 12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST |    |
| 12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST       |    |
| 12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST           |    |
| APPENDIX A: PHOTOGRAPHS OF TEST SETUP                       |    |
| APPENDIX B: PHOTOGRAPHS OF EUT                              |    |



# **1. VERIFICATION OF COMPLIANCE**

| Applicant                | Shanghai Dabuziduo Information and Technology Co., Ltd.            |  |  |
|--------------------------|--------------------------------------------------------------------|--|--|
| Address                  | B1, No.270, ronghu Road, yangpu District Shanghai, China.          |  |  |
| Manufacturer             | Shanghai Dabuziduo Information and Technology Co., Ltd.            |  |  |
| Address                  | B1, No.270, ronghu Road, yangpu District Shanghai, China.          |  |  |
| Factory                  | Shenzhen Wildfires Outdoor Products Co., Ltd                       |  |  |
| Address                  | Henglin Building Baoyuan Rd Xixiang Baoan District, Shenzhen China |  |  |
| Product Designation      | Smart GPS Cycling Computer                                         |  |  |
| Brand Name               | KOSS                                                               |  |  |
| Test Model               | XOSS G+                                                            |  |  |
| Date of test             | Sep, 18, 2019 to Oct. 23, 2019                                     |  |  |
| Deviation                | None                                                               |  |  |
| Condition of Test Sample | Normal                                                             |  |  |
| Test Result              | Pass                                                               |  |  |
| Report Template          | AGCRT-US-BLE/RF                                                    |  |  |
|                          |                                                                    |  |  |

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

east Zhan **Prepared By** Jeast Zhan Oct. 23, 2019 (Project Engineer) Max Zhang **Reviewed By** Max Zhang Oct. 23, 2019 (Reviewer) Lorrost 12 Approved By Forrest Lei Oct. 23, 2019 (Authorized Officer)





# 2.GENERAL INFORMATION

# 2.1PRODUCT DESCRIPTION

The EUT is designed as a "Smart GPS Cycling Computer". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

| Operation Frequency | 2457MHz                                                      |
|---------------------|--------------------------------------------------------------|
| RF Output Power     | 2.122dBm(Max)                                                |
| Modulation          | GFSK                                                         |
| Number of channels  | 1 Channel                                                    |
| Antenna Designation | PCB Antenna(Comply with requirements of the FCC part 15.203) |
| Antenna Gain        | -3.56dBi                                                     |
| Hardware Version    | 0.3                                                          |
| Software Version    | 0.9                                                          |
| Power Supply        | DC3.7V by battery or DC 5V by adapter                        |

# 2.2. TABLE OF CARRIER FREQUENCYS

| Frequency Band | Channel Number | Frequency |
|----------------|----------------|-----------|
| 2457MHZ        |                | 2457MHZ   |





#### 2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2AJFWXOSSG filing to comply with the FCC Part 15.247 requirements.

# 2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

# 2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

# 2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.





# **3. MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement y  $\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission,  $Uc = \pm 3.2 dB$
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted,  $Uc = \pm 0.8$ dB
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth:  $Uc = \pm 2\%$





# 4. DESCRIPTION OF TEST MODES

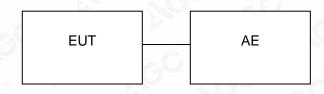
| NO. | TEST MODE DESCRIPTION |  |  |
|-----|-----------------------|--|--|
| 1   | 2457MHz TX            |  |  |

Note:

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.


4. The test software is the SecureCRTPortable which can set the EUT into the individual test modes.





# 5. SYSTEM TEST CONFIGURATION

# **5.1 CONFIGURATION OF TESTED SYSTEM**



# **5.2 EQUIPMENT USED IN TESTED SYSTEM**

| Item | Equipment                     | Model No. | ID or Specification | Remark |
|------|-------------------------------|-----------|---------------------|--------|
| 1    | Smart GPS Cycling<br>Computer | XOSS G+   | 2AJFWXOSSG          | EUT    |
| 2    | Adapter                       | N/A       | DC 5V               | AE     |

# **5.3. SUMMARY OF TEST RESULTS**

| FCC RULES     | DESCRIPTION OF TEST                    | RESULT    |
|---------------|----------------------------------------|-----------|
| 15.247 (b)(3) | Peak Output Power                      | Compliant |
| 15.247 (a)(2) | 6 dB Bandwidth                         | Compliant |
| 15.247 (d)    | Conducted Spurious Emission            | Compliant |
| 15.247 (e)    | Maximum Conducted Output Power Density | Compliant |
| 15.209        | Radiated Emission                      | Compliant |
| 15.207        | Conducted Emission                     | Compliant |





# 6. TEST FACILITY

| Attestation of Global Compliance (Shenzhen) Co., Ltd                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------|
| 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China |
| CN1259                                                                                                                                   |
| 975832                                                                                                                                   |
| 5054.02                                                                                                                                  |
| Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA                                                                |
|                                                                                                                                          |

# TEST EQUIPMENT OF CONDUCTED EMISSION TEST

| Equipment     | Manufacturer | Model   | S/N    | Cal. Date     | Cal. Due      |
|---------------|--------------|---------|--------|---------------|---------------|
| TEST RECEIVER | R&S          | ESPI    | 101206 | Jun. 11, 2019 | Jun. 12, 2020 |
| LISN          | R&S          | ESH2-Z5 | 100086 | Aug. 26, 2019 | Aug. 25, 2020 |

# **TEST EQUIPMENT OF RADIATED EMISSION TEST**

| Equipment                            | Manufacturer   | Model        | S/N        | Cal. Date     | Cal. Due      |
|--------------------------------------|----------------|--------------|------------|---------------|---------------|
| TEST RECEIVER                        | R&S            | ESCI         | 10096      | Jun. 12, 2019 | Jun. 11, 2020 |
| EXA Signal<br>Analyzer               | Aglient        | N9010A       | MY53470504 | Dec. 20, 2018 | Dec. 19, 2019 |
| 2.4GHz Fliter                        | EM Electronics | 2400-2500MHz | N/A        | Feb. 27, 2019 | Feb. 26, 2020 |
| Attenuator                           | ZHINAN         | E-002        | N/A        | Aug. 26, 2019 | Aug. 25, 2020 |
| Horn antenna                         | SCHWARZBECK    | BBHA 9170    | #768       | Sep. 21, 2017 | Sep. 20, 2020 |
| Active loop<br>antenna<br>(9K-30MHz) | ZHINAN         | ZN30900C     | 18051      | Jun. 14, 2018 | Jun. 13, 2020 |
| Double-Ridged<br>Waveguide Horn      | ETS LINDGREN   | 3117         | 00034609   | May. 26, 2018 | May. 25, 2020 |
| Broadband<br>Preamplifier            | ETS LINDGREN   | 3117PA       | 00225134   | Oct. 25, 2018 | Oct. 24, 2019 |
| ANTENNA                              | SCHWARZBECK    | VULB9168     | D69250     | Jan. 09, 2019 | Jan. 08, 2021 |

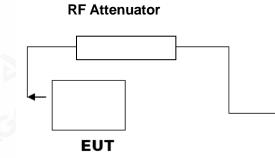


Attestation of Global Compliance(Shenzhen)Co.,Ltd.

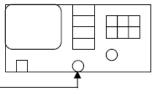
Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,



# 7. PEAK OUTPUT POWER


# 7.1. MEASUREMENT PROCEDURE

For peak power test:


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3\*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

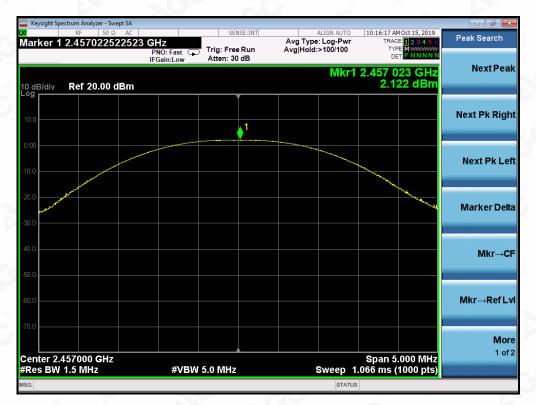
Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

# 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP



# Spectrum Analyzer




RF Cable





# 7.3. LIMITS AND MEASUREMENT RESULT

| PEAK OUTPUT POWER MEASUREMENT RESULT |                      |                            |              |  |  |  |  |  |
|--------------------------------------|----------------------|----------------------------|--------------|--|--|--|--|--|
|                                      | FOR GFSK MOUDULATION |                            |              |  |  |  |  |  |
| Frequency<br>(GHz)                   | Peak Power<br>(dBm)  | Applicable Limits<br>(dBm) | Pass or Fail |  |  |  |  |  |
| 2457                                 | 2.122                | 30                         | Pass         |  |  |  |  |  |







# 8.6 DB BANDWIDTH

# **8.1. MEASUREMENT PROCEDURE**

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW $\ge$ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

# 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

# 8.3. LIMITS AND MEASUREMENT RESULTS

| LIMITS AND MEASUREMENT RESULT |                   |          |      |  |  |
|-------------------------------|-------------------|----------|------|--|--|
| Annii achta thinite           | Applicable Limits |          |      |  |  |
| Applicable Limits             | Test Da           | Criteria |      |  |  |
| >500KHZ                       | 2457              | 751      | PASS |  |  |



# TEST PLOT OF BANDWIDTH FOR 2457MHz



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China



# 9. CONDUCTED SPURIOUS EMISSION

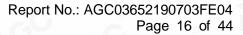
# 9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

# 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.


# 9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.


# 9.4. LIMITS AND MEASUREMENT RESULT

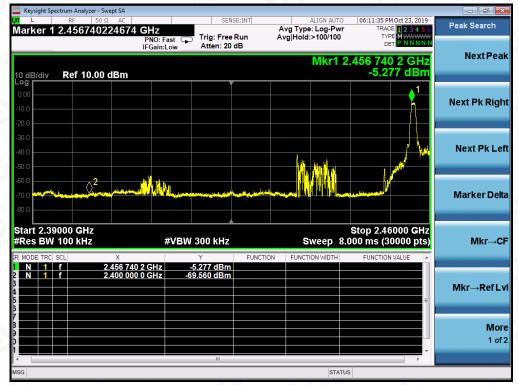
| LIMITS AND MEA                                                                                                                                                                                                                                                                                                                           | SUREMENT RESULT                          |              |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|--|--|
|                                                                                                                                                                                                                                                                                                                                          | Measurement Result                       |              |  |  |
| Applicable Limits                                                                                                                                                                                                                                                                                                                        | Test Data                                | Criteria     |  |  |
| In any 100 KHz Bandwidth Outside the<br>frequency band in which the spread spectrum<br>intentional radiator is operating, the radio frequency<br>power that is produce by the intentional radiator shall<br>be at least 20 dB below that in 100KHz bandwidth<br>within the band that contains the highest level of the<br>desired power. | At least -20dBc than the reference level | PASS<br>PASS |  |  |










# TEST RESULT FOR ENTIRE FREQUENCY RANGE GFSK MODULATION IN 2457MHZ

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.



Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Ho





# TEST RESULT FOR BAND EDGE GFSK MODULATION





Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

 Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088

 E-mail:
 agc@agc-cert.com

 Service Hotline:400 089 2118



# **10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY**

# **10.1 MEASUREMENT PROCEDURE**

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

# **10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)**

Refer To Section 7.2.

# **10.3 MEASUREMENT EQUIPMENT USED**

Refer To Section 6.

#### **10.4 LIMITS AND MEASUREMENT RESULT**

| Channel No. | PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Result |  |
|-------------|-------------------|---------------------|--------|--|
| 2457MHz     | -12.807           | 8                   | Pass   |  |



#### TEST PLOT OF SPECTRAL DENSITY FOR 2457MHz



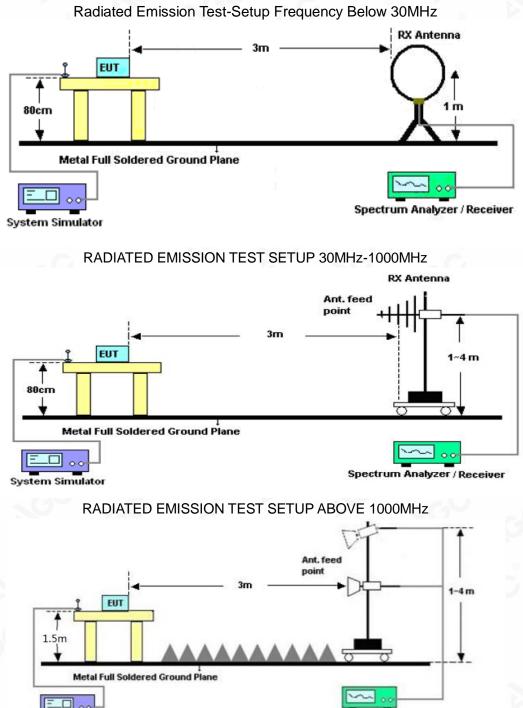
Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China



# **11. RADIATED EMISSION**

#### **11.1. MEASUREMENT PROCEDURE**


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.





Report No.: AGC03652190703FE04 Page 20 of 44

# 11.2. TEST SETUP



System Simulator



Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China +86-755 2523 4088 E-mail:agc@agc-cert.com Servic Tel: +86-755 2523 4088

Spectrum Analyzer / Receiver

Service Hotline:400 089 2118

# **11.3. LIMITS AND MEASUREMENT RESULT**

15.209 Limit in the below table has to be followed

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(KHz)                          | 300                              |
| 0.490~1.705          | 24000/F(KHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

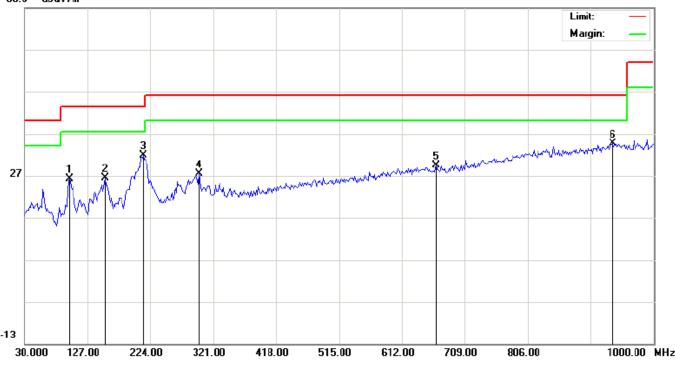
Note: All modes were tested For restricted band radiated emission, the test records reported below are the worst result compared to other modes.

# 11.4. TEST RESULT

# **RADIATED EMISSION BELOW 30MHZ**

No emission found between lowest internal used/generated frequencies to 30MHz.






# Report No.: AGC03652190703FE04 Page 22 of 44

# **RADIATED EMISSION BELOW 1GHZ**

| EUT         | Smart GPS Cycling Computer | Model Name        | XOSS G+        |
|-------------|----------------------------|-------------------|----------------|
| Temperature | 25° C                      | Relative Humidity | 55.4%          |
| Pressure    | 960hPa                     | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 1                     | Antenna           | Horizontal     |

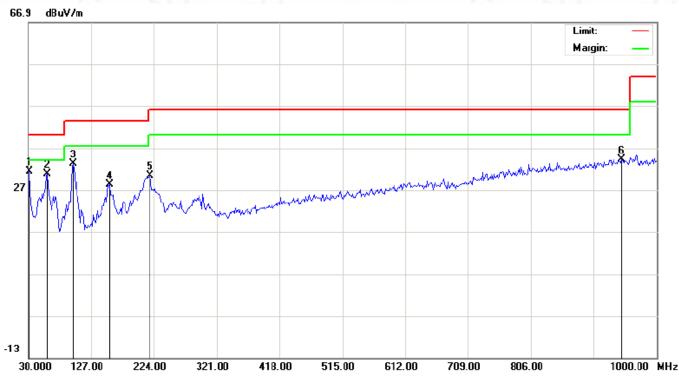




| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | ·  | MHz      | dBuV    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   |    | 99.5167  | 10.25   | 15.96  | 26.21       | 43.50  | -17.29 | peak     |                   |                 |         |
| 2   |    | 154.4832 | 7.12    | 19.20  | 26.32       | 43.50  | -17.18 | peak     |                   |                 |         |
| 3   |    | 212.6833 | 15.04   | 16.81  | 31.85       | 43.50  | -11.65 | peak     |                   |                 |         |
| 4   |    | 299.9833 | 8.03    | 19.47  | 27.50       | 46.00  | -18.50 | peak     |                   |                 |         |
| 5   |    | 663.7333 | 1.68    | 27.71  | 29.39       | 46.00  | -16.61 | peak     |                   |                 |         |
| 6   | *  | 936.9500 | 2.58    | 32.02  | 34.60       | 46.00  | -11.40 | peak     |                   |                 |         |

# **RESULT: PASS**




Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118



| EUT         | Smart GPS Cycling Computer | Model Name        | XOSS G+        |
|-------------|----------------------------|-------------------|----------------|
| Temperature | 25° C                      | Relative Humidity | 55.4%          |
| Pressure    | 960hPa                     | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 1                     | Antenna           | Vertical       |



| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 31.6167  | 13.27   | 18.22  | 31.49       | 40.00  | -8.51  | peak     |                   |                 |         |
| 2   |    | 59.1000  | 11.86   | 18.95  | 30.81       | 40.00  | -9.19  | peak     |                   |                 |         |
| 3   |    | 99.5167  | 17.25   | 15.96  | 33.21       | 43.50  | -10.29 | peak     |                   |                 |         |
| 4   |    | 156.1000 | 9.00    | 19.20  | 28.20       | 43.50  | -15.30 | peak     |                   |                 |         |
| 5   |    | 217.5333 | 13.33   | 17.09  | 30.42       | 46.00  | -15.58 | peak     |                   |                 |         |
| 6   |    | 946.6500 | 2.13    | 32.10  | 34.23       | 46.00  | -11.77 | peak     |                   |                 |         |

# RESULT: PASS Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,



# Report No.: AGC03652190703FE04 Page 24 of 44

| EUT         | Smart GPS Cycling Computer | Model Name        | XOSS G+        |  |  |  |  |  |
|-------------|----------------------------|-------------------|----------------|--|--|--|--|--|
| Temperature | 25° C                      | Relative Humidity | 55.4%          |  |  |  |  |  |
| Pressure    | 960hPa                     | Test Voltage      | Normal Voltage |  |  |  |  |  |
| Test Mode   | Mode 1                     | Antenna           | Horizontal     |  |  |  |  |  |

# **RADIATED EMISSION ABOVE 1GHZ**

| Frequency    | Meter Reading   | Factor Emission Level |                | Limits   | Margin | Value Type |
|--------------|-----------------|-----------------------|----------------|----------|--------|------------|
| (MHz)        | (dBµV)          | (dB)                  | (dBµV/m)       | (dBµV/m) | (dB)   | value Type |
| 4914.000     | 50.26           | 0.08                  | 50.18          | 74       | -23.82 | peak       |
| 4914.000     | 48.64           | 0.08                  | 48.56          | 54       | -5.44  | AVG        |
| 7371.000     | 46.04           | 2.21                  | 43.83          | 74       | -30.17 | peak       |
| 7371.000     | 44.19           | 2.21                  | 41.98          | 54       | -12.02 | AVG        |
|              | C.              | 3                     |                | 2        | 6      |            |
|              |                 |                       | 8              |          |        | - 0        |
| Remark:      |                 |                       |                |          |        | 0          |
| actor = Ante | enna Factor + C | able Loss -           | Pre-amplifier. | <u> </u> | 0      |            |

| EUT         | Smart GPS Cycling Computer | Model Name        | XOSS G+        |
|-------------|----------------------------|-------------------|----------------|
| Temperature | 25° C                      | Relative Humidity | 55.4%          |
| Pressure    | 960hPa                     | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 1                     | Antenna           | Vertical       |

| ncy Meter Rea |
|---------------|
| ) (dBµV)      |
| 00 46.77      |
| 00 45.14      |
| 00 43.74      |
| 00 41.09      |
| 0             |
| - G           |
| Antenna Facto |

# RESULT: PASS

# Note:

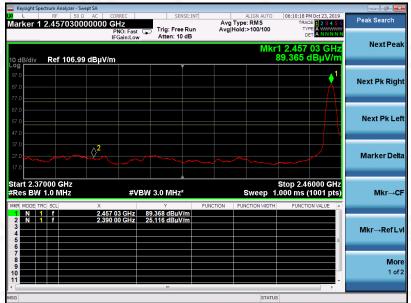
Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit. The "Factor" value can be calculated automatically by software of measurement system.



Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service H



# Report No.: AGC03652190703FE04 Page 25 of 44


| EUT         | UT         Smart GPS Cycling Computer         Model Name         XOSS G+ |                   |                |  |  |  |  |
|-------------|--------------------------------------------------------------------------|-------------------|----------------|--|--|--|--|
| Temperature | 25° C                                                                    | Relative Humidity | 55.4%          |  |  |  |  |
| Pressure    | 960hPa                                                                   | Test Voltage      | Normal Voltage |  |  |  |  |
| Test Mode   | Mode 1                                                                   | Antenna           | Horizontal     |  |  |  |  |

# TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

PK



AV





Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

# Report No.: AGC03652190703FE04 Page 26 of 44



|                                                       |                                                                                                                | P                              | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                     |                |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|----------------|
| Keysight Spectrum Analyzer - Swept SA                 | CORREC                                                                                                         | SENSE:INT                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGN AUTO                | 07:30:03 PM Oct                     | 17, 2019       |
| tart Freq 2.455000000                                 |                                                                                                                |                                | Avg Typ<br>Avg Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | be: Log-Pwr<br>d:>100/100 | TRACE 1<br>TYPE M<br>DET P          | Frequency      |
|                                                       | IFGain:Low                                                                                                     | Atten: 10 db                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1                      | 2.456 845                           | GHz Auto Tur   |
| IO dB/div Ref 106.00 dBµ                              | V/m                                                                                                            | <b>.</b>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 96.793 dBj                          | JV/m           |
| 96.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Center Fre     |
| 86.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | 2.477500000 GH |
| 76.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| 56.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | 2.455000000 GR |
| 46.0                                                  | Walter Care and an any Minister of a                                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| 26.0                                                  |                                                                                                                |                                | and the second s | *****                     | والمقاصية والمراجع المراجع المراجعة | Stop Fre       |
| 16.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | 2.50000000 GH  |
| Start 2.45500 GHz                                     |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Stop 2.5000                         | 0 GHz CF Ste   |
| Res BW 1.0 MHz                                        | #VBW                                                                                                           | / 3.0 MHz                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep 1                   | .000 ms (100                        |                |
| MKR MODE TRC SCL X                                    | 56 845 CHz 0                                                                                                   | Y FI<br>6.793 dBµV/m           | JNCTION FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JNCTION WIDTH             | FUNCTION VA                         |                |
| 1 N 1 f 2.4<br>2 N 1 f 2.4                            | 56 845 GHz 9<br>83 500 GHz 3                                                                                   | 6.462 dBµV/m                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | FreqOffs       |
| 4                                                     |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | 01             |
| 5                                                     |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| 7 8                                                   |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Scale Typ      |
| 9                                                     |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
|                                                       |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Log L          |
| SG                                                    |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                    | 5                                   | ,              |
|                                                       |                                                                                                                | A                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                         |                                     |                |
| Keysight Spectrum Analyzer - Swept SA                 |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| AC RF 50 Ω AC                                         | CORREC                                                                                                         | SENSE:INT                      | Avg Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALIGN AUTO                | 07:30:10 PM Oct<br>TRACE            | Peak Search    |
|                                                       | PNO: Fast G                                                                                                    | Trig: Free Run<br>Atten: 10 dB | Avg Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d:>100/100                | DET A                               |                |
|                                                       |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1                      | 2.456 935                           | GHz Next Pea   |
| 0 dB/div Ref 106.00 dBµ                               | V/m                                                                                                            | <b></b>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 93.307 dBj                          | JV/m           |
| 96.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Next Bk Big    |
| 86.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Next Pk Rig    |
| 76.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| 66.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Next Divis     |
| 56.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     | Next Pk Le     |
| 46.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| 36.0 Jan Yuly Jan |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| 26.0                                                  | APA MANA AND A | and and any agreement          | 2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                     | Marker Del     |
| 16.0                                                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                     |                |
| Start 2.45500 GHz                                     |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Stop 2.5000                         | 0 GHz          |

#VBW 3.0 MHz\*

2.456 935 GHz 93.264 dBµV/m 2.483 500 GHz 17.791 dBµV/m

**RESULT: PASS** 

Res BW 1.0 MHz



 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Stop 2.50000 GHz Sweep 1.000 ms (1001 pts)

Mkr→CF

More

Mkr→RefLv

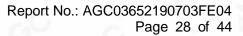
PK



# Report No.: AGC03652190703FE04 Page 27 of 44

| EUT         | Smart GPS Cycling Computer | Model Name        | XOSS G+        |
|-------------|----------------------------|-------------------|----------------|
| Temperature | 25° C                      | Relative Humidity | 55.4%          |
| Pressure    | 960hPa                     | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 1                     | Antenna           | Vertical       |
|             | PK                         |                   |                |




AV





Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,





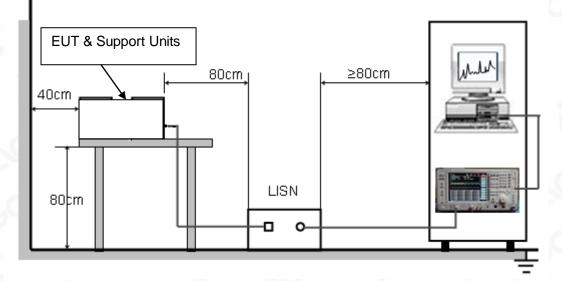


#### **RESULT: PASS**

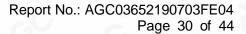
**Note**: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB( $\mu$ V) to represent the Amplitude. Use the F dB( $\mu$ V/m) to represent the Field Strength. So A=F.



# **12. FCC LINE CONDUCTED EMISSION TEST**


# **12.1. LIMITS OF LINE CONDUCTED EMISSION TEST**

| Frequency     | Maximum RF Line Voltage |                |  |  |  |  |
|---------------|-------------------------|----------------|--|--|--|--|
| Frequency     | Q.P.( dBuV)             | Average( dBuV) |  |  |  |  |
| 150kHz~500kHz | 66-56                   | 56-46          |  |  |  |  |
| 500kHz~5MHz   | 56                      | 46             |  |  |  |  |
| 5MHz~30MHz    | 60                      | 50             |  |  |  |  |


Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

# 12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST



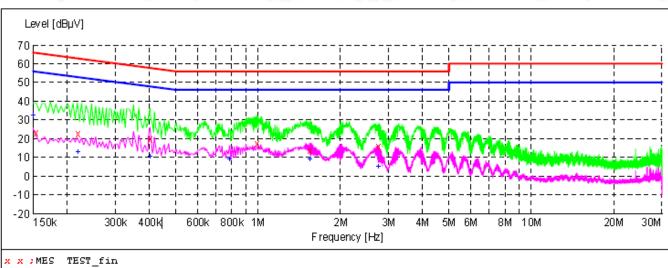




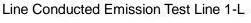


# 12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by PC which received AC120V/60Hz power by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.


Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

# 12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.







# 12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST



#### \_\_\_\_

#### MEASUREMENT RESULT: "TEST fin"

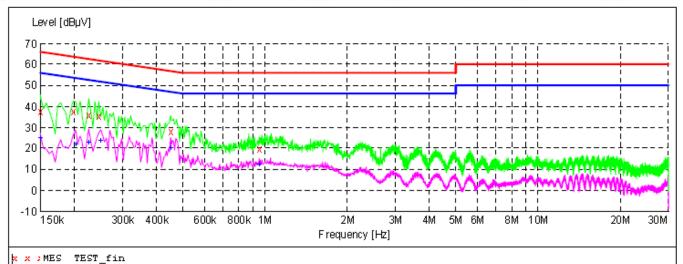
9/20/2019 9:55AM

| Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Detector | Line | PE  |
|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
| 0.154000         | 23.50         | 10.8         | 66            | 42.3         | QP       | L1   | FLO |
| 0.218000         | 22.70         | 10.9         | 63            | 40.2         | QP       | L1   | FLO |
| 0.402000         | 20.10         | 10.3         | 58            | 37.7         | QP       | L1   | FLO |
| 0.986000         | 17.50         | 11.4         | 56            | 38.5         | QP       | L1   | FLO |
| 1.542000         | 14.20         | 11.5         | 56            | 41.8         | QP       | L1   | FLO |
| 2.742000         | 16.00         | 11.5         | 56            | 40.0         | QP       | L1   | FLO |

#### MEASUREMENT RESULT: "TEST fin2"

| 9/20/2019 9:5<br>Frequency<br>MHz                                    | 55AM<br>Level<br>dBµV                           | Transd<br>dB                                 | Limit<br>dBµV              | Margin<br>dB                                 | Detector                         | Line                             | PE                                     |
|----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|
| 0.150000<br>0.218000<br>0.402000<br>0.786000<br>1.542000<br>2.742000 | 32,40<br>12,80<br>10,70<br>8,90<br>8,90<br>5,20 | 10.8<br>10.9<br>10.3<br>10.7<br>11.5<br>11.5 | 56<br>53<br>48<br>46<br>46 | 23.6<br>40.1<br>37.1<br>37.1<br>37.1<br>40.8 | AV<br>AV<br>AV<br>AV<br>AV<br>AV | L1<br>L1<br>L1<br>L1<br>L1<br>L1 | FLO<br>FLO<br>FLO<br>FLO<br>FLO<br>FLO |




Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,



#### Report No.: AGC03652190703FE04 Page 32 of 44

Line Conducted Emission Test Line 2-N



# MEASUREMENT RESULT: "TEST\_fin"

9/20/2019 2:20PM

| Frequency<br>MHz                                                     | Level<br>dBµV                                      | Transd<br>dB                                 | Limit<br>dBµV                    | Margin<br>dB                                 | Detector                         | Line                  | PE                                     |
|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------|-----------------------|----------------------------------------|
| 0.150000<br>0.198000<br>0.226000<br>0.246000<br>0.450000<br>0.950000 | 37.70<br>37.80<br>35.90<br>35.30<br>28.10<br>19.60 | 10.8<br>10.9<br>10.9<br>10.9<br>10.8<br>11.3 | 66<br>64<br>63<br>62<br>57<br>56 | 28.3<br>25.9<br>26.7<br>26.6<br>28.8<br>36.4 | QP<br>QP<br>QP<br>QP<br>QP<br>QP | N<br>N<br>N<br>N<br>N | FLO<br>FLO<br>FLO<br>FLO<br>FLO<br>FLO |

# MEASUREMENT RESULT: "TEST fin2"

| 9/20/2019 | 2:20PM   |        |       |        |          |      |     |
|-----------|----------|--------|-------|--------|----------|------|-----|
| Frequen   | cy Level | Transd | Limit | Margin | Detector | Line | PE  |
| M         | Hz dBµV  | dB     | dΒμV  | dB     |          |      |     |
|           |          |        |       |        |          |      |     |
| 0,1500    | 00 25,20 | 10.8   | 56    | 30,8   | AV       | N    | FLO |
| 0,2020    | 00 22.00 | 10,9   | 54    | 31,5   | AV       | N    | FLO |
| 0,2260    | 00 22,90 | 10,9   | 53    | 29.7   | AV       | N    | FLO |
| 0,2500    | 00 23,60 | 10,9   | 52    | 28,2   | AV       | N    | FLO |
| 0,4500    | 00 20,10 | 10.8   | 47    | 26,8   | AV       | N    | FLO |
| 0,9500    | 00 12,60 | 11.3   | 46    | 33,4   | AV       | N    | FLO |
|           |          |        |       |        |          |      |     |

# **RESULT: PASS**

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,



Report No.: AGC03652190703FE04 Page 33 of 44



APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP ABOVE 1GHZ







Report No.: AGC03652190703FE04 Page 34 of 44



CONDUCTED EMISSION TEST SETUP





Report No.: AGC03652190703FE04 Page 35 of 44

# **APPENDIX B: PHOTOGRAPHS OF EUT**

ALL VIEW OF EUT



# TOP VIEW OF EUT





Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline:400 089 2118



#### Report No.: AGC03652190703FE04 Page 36 of 44

# BOTTOM VIEW OF EUT



#### FRONT VIEW OF EUT





Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service



Report No.: AGC03652190703FE04 Page 37 of 44

# BACK VIEW OF EUT



LEFT VIEW OF EUT





Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86–755 2523 4088 E-mail:agc@agc-cert.com Service Hotli

Service Hotline:400 089 2118



# Report No.: AGC03652190703FE04 Page 38 of 44

# **RIGHT VIEW OF EUT**



**OPEN VIEW OF EUT-1** 





Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

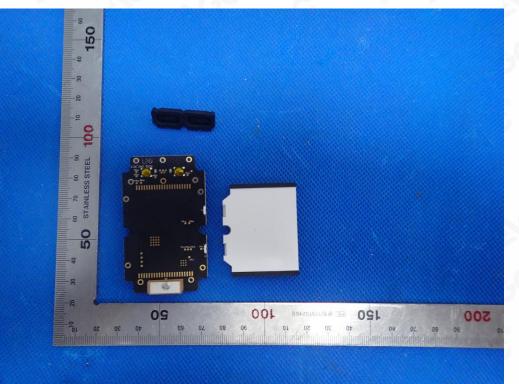


Report No.: AGC03652190703FE04 Page 39 of 44

# **OPEN VIEW OF EUT-2**



**OPEN VIEW OF EUT-3** 









Report No.: AGC03652190703FE04 Page 40 of 44

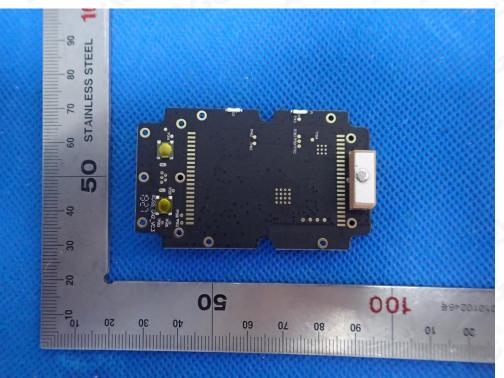
# **OPEN VIEW OF EUT- 4**



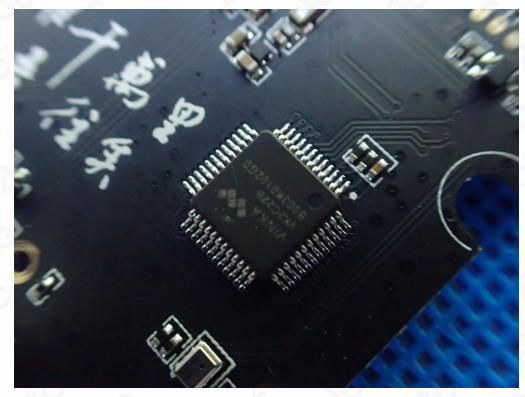
**INTERNAL VIEW OF EUT-1** 






Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118




Report No.: AGC03652190703FE04 Page 41 of 44

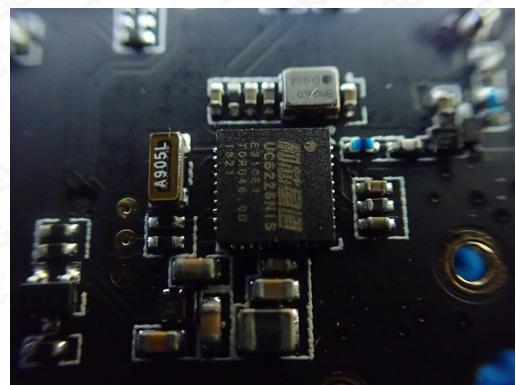
# **INTERNAL VIEW OF EUT-2**



**INTERNAL VIEW OF EUT-3** 








Report No.: AGC03652190703FE04 Page 42 of 44

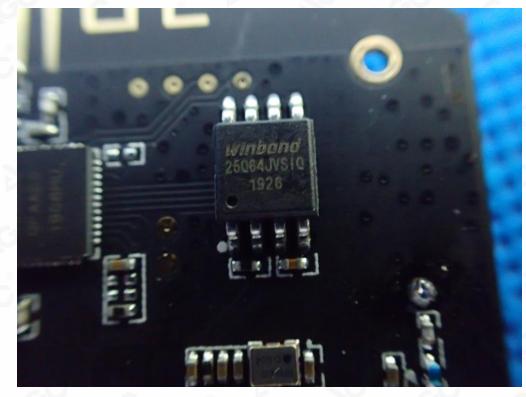
# 

**INTERNAL VIEW OF EUT-4** 

**INTERNAL VIEW OF EUT-5** 






Report No.: AGC03652190703FE04 Page 43 of 44

**INTERNAL VIEW OF EUT-6** 



**INTERNAL VIEW OF EUT-7** 







Report No.: AGC03652190703FE04 Page 44 of 44

# **INTERNAL VIEW OF EUT-8**



----END OF REPORT----

