

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 9

CERTIFICATION TEST REPORT

FOR

URBAN ACTIVE VEHICLE MODULE

MODEL NUMBER: 561108

FCC ID: 2AJFG561108 IC: 21819-561108

REPORT NUMBER: 12707015-E2V4

ISSUE DATE: MAY 06, 2019

Prepared for VAST PRODUCTION SERVICES 307 ROBBINS DRIVE TROY, MI 48083, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	04/09/2019	Initial Issue	Chin Pang
V2	04/24/2019	Address TCB's Questions	Chin Pang
V3	05/01/2019	Address TCB's Questions	Chin Pang
V4	05/06/2019	Address TCB's Questions on page 14-19	Chin Pang

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 FAX: (510) 661-0888

Page 2 of 25

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS 4
2.	TEST	۲ METHODOLOGY
3.	FACI	ILITIES AND ACCREDITATION5
4.	CALI	IBRATION AND UNCERTAINTY
4	.1. I	MEASURING INSTRUMENT CALIBRATION 5
4	.2. 3	SAMPLE CALCULATION
4	.3. I	MEASUREMENT UNCERTAINTY 6
5.	EQU	IPMENT UNDER TEST
5	.1. L	DESCRIPTION OF EUT
5	.2. I	MAXIMUM OUTPUT E-FIELD STRENGTH7
5	.3. L	DESCRIPTION OF AVAILABLE ANTENNA7
5	.4. 1	WORST-CASE CONFIGURATION AND MODE7
5	.5. I	DESCRIPTION OF TEST SETUP 8
6.	TEST	Γ AND MEASUREMENT EQUIPMENT10
7.	ANTE	ENNA PORT TEST RESULTS11
7	.1. 2	20 dB AND 99% BW11
7	.2. L	DUTY CYCLE14
7	.3.	TRANSMISSION TIME
8.	RAD	IATED EMISSION TEST RESULTS18
8	. <i>1.</i> 8.1.1 8.1.2	 TX RADIATED SPURIOUS EMISSION
	8.1.3	. HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz23
9.	SETU	JP PHOTOS

Page 3 of 25

1. ATTESTATION OF TEST RESULTS

		_
ST	TEST RESULTS	
	APPLICABLE STANDARDS	
DATE TESTED:	MARCH 11-17 AND MAY 01, 2019	
SERIAL NUMBER:	2066572	
MODEL:	561108	
EUT DESCRIPTION:	Urban Active Vehicle Module	
COMPANY NAME:	Vast Production Services 307 Robbins Drive Troy, MI 48083, U.S.A.	

INDUSTRY CANADA R55-210 Issue 9, Annex A Complies
INDUSTRY CANADA R55-210 Issue 9, Annex A Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Chin Pang Senior Engineer CONSUMER TECHNOLOGY DIVISION UL Verification Services Inc.

Prepared By:

WU Guangliang Test Engineer CONSUMER TECHNOLOGY DIVISION UL Verification Services Inc.

Page 4 of 25

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 5, and RSS-210 Issue 9.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
Chamber A (IC:2324B-1)	Chamber D (IC:22541-1)	□ Chamber I (IC: 2324A-5)
Chamber B (IC:2324B-2)	Chamber E (IC:22541-2)	🛛 Chamber J (IC: 2324A-6)
Chamber C (IC:2324B-3)	Chamber F (IC:22541-3)	☑ Chamber K (IC: 2324A-1)
	Chamber G (IC:22541-4)	□ Chamber L (IC: 2324A-3)
	Chamber H (IC:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 26.5 dBuV/ + 18.7 dB/m + 0.6 dB - 26.0 dB - 28.0 dBuV/m

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 26.5 dBuV(+0.0dB+10.1 dB+0.0dB) = 46.6 dBuV(-0.0dB)

36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

Page 5 of 25

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Radiated Disturbance,1000 to 18000 MHz	4.24 dB
Radiated Disturbance,18000 to 26000 MHz	4.37 dB
Radiated Disturbance,26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 25

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Each Variant has a built in Bluetooth module and may contain a key fob radio that transmits in the ASK modulation mode, see table below. It is powered by a DC vehicle battery. The transmitters are used for electronic access and as an authorization system of the vehicle. The device is manufactured by Vast Production Services

EUT	Mode	Frequency (MHz)	
Variant 2	ASK + BLE	433.92	

5.2. MAXIMUM OUTPUT E-FIELD STRENGTH

The tramsmitter has a maximum output peak E-field as follow:

Frequency Range (MHz)	Mode	Output AV E-Field Strength (dBuV/m)
433.92	ASK	68.67

5.3. DESCRIPTION OF AVAILABLE ANTENNA

The fey fob radio use trace antennas.

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT was set in the worst axis as found in the baseline testing at Z axis.

Page 7 of 25

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description	FCC ID						
CAN/LIN Interface	Vector	VN1630A	-	NA			
Laptop	DELL	E6410	82563381124	-			
Power Supply	Sorensen	XT15-4	1319A02779	NA			
Tablet	Samsung	SM-T560NU	R52H61DFSFT	-			

I/O CABLES

	I/O Cable List								
Cable No	Port	# of identical	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	DC	1	Wire	DC	>3m	EUT to power supply and CAN.			
2	USB	1	Wire	I/O	<3m	Service port only. Not accessible to the end user.			

TEST SETUP

The EUT is programmed for continuous TX mode for Radiated and Bandwidth measurements. For timing tests, the EUT is programmed for manual TX operation. The EUT was programmed through the USB port. The USB port was left unpopulated during testing since it is only used for factory programming and the USB port will remain inaccessible by the user after it is installed into the vehicle.

Page 8 of 25

SETUP DIAGRAM FOR TESTS

Page 9 of 25

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
Amplifier, 9KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	PRE0180174	05/31/2019	05/31/2018			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T344	4/30/2019	4/30/2018			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	05/04/2019	05/04/2018			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179375	05/08/2019	05/08/2018			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1450	01/23/2020	01/23/2019			
Hybrid Antenna, 30MHz to 3GHz	SunAR rf motion	JB3	PRE0181575	08/01/2019	08/01/2018			
Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G1835	T1569	06/03/2019	06/03/2018			
Antenna, Passive Loop 30Hz to 1MHz	ELETRO METRICS	EM-6871	PRE0179465	05/22/2019	05/22/2018			
Antenna, Passive Loop 100kHz to 30MHz	ELETRO METRICS	EM-6872	PRE0179467	05/22/2019	05/22/2018			
Radiated Software	UL	UL EMC	Ver	9.5, June 22, 2	2018			

Page 10 of 25

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

<u>LIMITS</u>

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.10

The transmitter output is connected to the spectrum analyzer.

20dB and 99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Note: Because the measured signal is CW or CW-like adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW

Page 11 of 25

RESULTS

No non-compliance noted:

20dB Bandwidth

Frequency 20dB Bandwidth		Limit	Margin	
(MHz)	(kHz)	(kHz)	(kHz)	
433.92	48.75	1084.8	-1036.05	

99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
433.92	203.68	1084.8	-881.12

Page 12 of 25

99% AND 20dB BANDWIDTH

Page 13 of 25

7.2. DUTY CYCLE

<u>LIMITS</u>

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 3MHz and the VBW is set to 50MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

RESULTS

No non-compliance noted:

One	Long Pulse	# of	Short	# of	Duty	20*Log	
Period	Period Width		Width	Short	Cycle	Duty Cycle	
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)	
400					a 1 - 1	45.05	

Page 14 of 25

ONE PERIOD

SHORT AND LONG PULSE WIDTH

Page 15 of 25

Number of PULSES

Page 16 of 25

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)

IC A1.1

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 3MHz and the VBW is set to 50MHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

Keysight Spectrum Analyzer -	APv9.4.1(021919),KW12981,	Temp A		07:19:27 AM Mar 17, 2019	- 6 2
larker 2 Δ 743.33	3 ms NFE PNO: Fas	Trig Delay-100.0 ms t →→ Trig: Video W Atten: 10 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P NNNN	Marker
dB/div Ref 0.00	dBm		۵	Mkr2 743.3 ms -42.15 dB	2
0.0					Norma
D.0					Deit
				TROIM	Fixed
0.0					o
	nalia ing pang ng mang ng mga ng m Ng mga ng mga	ala faritan ang sa karatan karka	n, persentan <mark>na arteratura</mark> Belada arteratura	in the second state of the	Properties
enter 433.920000 I	MHz			Span 0 Hz	Moi 1 of

Page 17 of 25

8. RADIATED EMISSION TEST RESULTS

8.1. TX RADIATED SPURIOUS EMISSION

<u>LIMITS</u>

FCC §15.231 (b)

IC A1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

2,250 1,250 1,250 to 3,750 ¹ 3,750 3,750 to 12,500 ¹ 12,500	225 125 125 to 375 ¹ 375 375 to 1,250 ¹ 1,250
1	2,250 ,250 ,250 to 3,750 ¹ 3,750 3,750 to 12,500 ¹ 2,500

¹ Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(2)
13.36 – 13.41	322 - 335.4		

Page 18 of 25

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)	
30- 88	100 **	3	
88-216	150 **	3	
216-960	200 **	3	
Above 960	500	3	

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Fundamental Frequency Limits and Non-restricted band Harmonic Limits											
Limit (dBuV/m @ 3m distance All harmonic except thoFrequency (MHz)restricted bands must be attenuated by 20dB or mo											
	Average Fundamental	Peak Fundamental									
433.92	80.83 100.83										
Supplementary Information: See	e section 7.2 for duty cycle inorma	ation									

Page 19 of 25

RESULTS

8.1.1. TX SPURIOUS EMISSION BELOW 30 MHz

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Cables w/ PRE0186650	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
1	.01616	24.12	Pk	59.5	-31.9	-80	-28.28	63.42	-91.7	43.42	-71.7	0-360
2	.06518	2.97	Pk	56.1	-32.2	-80	-53.13	51.3	-104.43	31.3	-84.43	0-360
5	.01819	15.01	Pk	59.2	-32	-80	-37.79	62.39	-100.18	42.39	-80.18	0-360
6	.31398	11.69	Pk	56.3	-32.1	-80	-44.11	37.67	-81.78	17.67	-61.78	0-360

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Cables w/ PRE0186650	Dist Corr 30m (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
3	.85979	23.25	Pk	56.3	-32.1	-40	7.45	28.93	-21.48	0-360
7	.85978	23.46	Pk	56.3	-32.1	-40	7.66	28.93	-21.27	0-360
4	25.45478	16.72	Pk	34.1	-31.6	-40	-20.78	29.5	-50.28	0-360
8	26.20567	18.17	Pk	33.8	-31.6	-40	-19.63	29.5	-49.13	0-360

Pk - Peak detector

Radiated Emissions

FCC 15.209 Below 30MHz.TST Rev 9.5 11 Jan 2019

Page 20 of 25

8.1.2. FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 – 1000 MHz)

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 25

REPORT NO: 12707015-E2V4 FCC ID: 2AJFG561108

RESULT:

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 114.1718	45.8	Pk	19.2	-30.9	34.1	43.52	-9.42	77	120	Н
2	138.7431	43.7	Pk	19	-30.7	32	43.52	-11.52	136	154	Н
8	42.6683	42.06	Pk	17.4	-31.4	28.06	40	-11.94	67	287	V
9	103.289	47.46	Pk	17.3	-30.9	33.86	43.52	-9.66	332	157	V
3	* 407.727	43.47	Pk	21.8	-29.7	35.57	46.02	-10.45	285	193	Н
4	420.8287	45.38	Pk	22.2	-29.7	37.88	46.02	-8.14	187	278	Н
6	446.9321	41.89	Pk	22.7	-29.6	34.99	46.02	-11.03	150	268	н
10	* 407.727	43.12	Pk	21.8	-29.7	35.22	46.02	-10.8	95	176	V
11	420.8287	43.87	Pk	22.2	-29.7	36.37	46.02	-9.65	284	197	V
13	446.9321	41.9	Pk	22.7	-29.6	35	46.02	-11.02	303	278	V

Radiated Emissions

Frequen cy (MHz)	Meter Reading (dBuV)	Det	AF PRE018 1575 (dB/m)	Amp Cbl (dB)	Peak Reading (dBuV/m)	Peak Limit (dBuV/ m)	Peak Margin (dB)	Av Limit	DC Factor (dB	Av Margin (dB)	Azimu th (Degs)	Height (cm)	Polarit y
433.9	91.84	Pk	22.5	-29.6	84.74	100.83	-16.09	80.83	-15.35	-11.44	86	297	Н
868.36	44.53	Pk	27.8	-27.6	44.73	80.83	-36.10	60.83	-15.35	-31.45	95	190	Н
433.9	91.12	Pk	22.5	-29.6	84.02	100.83	-16.81	80.83	-15.35	-12.16	176	136	V
867.9	43.15	Pk	27.8	-27.6	43.35	80.83	-37.48	60.83	-15.35	-32.83	61	127	V

Pk - Peak detector

Av – Average detector

* Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is -15.35dB

(# of long pulses * long pulse width) + (# of ,medium pulses * medium pulse width) + (# of short pulses * short pulse width) / 100 or T

Refer to section 7.2 for duty cycle factor calculation (-15.35dB)

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

** Harmonics of fundamental 433.92MHz

Page 22 of 25

8.1.3. HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

Page 23 of 25

RESULTS:

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Gain/Los s (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	PK Margin (dB)	Avg Limit (dBuv/m)	Duty Cycle (dB)	Average Margin (dB)	Azimuth (Degs)	Height (cm)	Polarit y
1	1.301	59.75	Pk	29.2	-33.9	55.05	74	-18.95	54	-15.35	-14.3	263	143	Н
2	1.736	48.86	Pk	29.8	-33.1	45.56	74	-28.44	54	-15.35	-23.79	57	192	Н
3	2.169	67.02	Pk	31.2	-32.4	65.82	74	-8.18	54	-15.35	-3.53	137	151	Н
4	2.604	54.56	Pk	32.4	-31.4	55.56	74	-18.44	54	-15.35	-13.79	286	264	Н
5	3.037	54.87	Pk	32.6	-31.2	56.27	74	-17.73	54	-15.35	-13.08	341	112	Н
6	3.472	51.8	Pk	32.7	-30.7	53.8	74	-20.2	54	-15.35	-15.55	145	144	Н
7	3.905	50.31	Pk	33.2	-29.7	53.81	74	-20.19	54	-15.35	-15.54	177	156	Н
8	4.773	43.86	Pk	34.1	-29.2	48.76	74	-25.24	54	-15.35	-20.59	276	172	Н
9	1.301	44.66	Pk	29.2	-33.9	39.96	74	-34.04	54	-15.35	-29.39	83	133	V
10	1.736	38.92	Pk	29.8	-33.1	35.62	74	-38.38	54	-15.35	-33.73	137	154	V
11	2.17	56.67	Pk	31.2	-32.4	55.47	74	-18.53	54	-15.35	-13.88	129	105	V
12	2.604	53.96	Pk	32.4	-31.4	54.96	74	-19.04	54	-15.35	-14.39	179	123	V
13	3.037	48.83	Pk	32.6	-31.2	50.23	74	-23.77	54	-15.35	-19.12	157	154	V
14	3.471	49.88	Pk	32.7	-30.7	51.88	74	-22.12	54	-15.35	-17.47	322	187	V
15	3.905	42.77	Pk	33.2	-29.7	46.27	74	-27.73	54	-15.35	-23.08	129	136	V
16	4.773	35.82	Pk	34.1	-29.2	40.72	74	-33.28	54	-15.35	-28.63	63	132	V

Radiated Emissions

Pk - Peak detector

Av – Average detector

* Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is -15.35dB

(# of long pulses * long pulse width) + (# of ,medium pulses * medium pulse width) + (# of short pulses * short pulse width) / 100 or T

Refer to section 7.2 for duty cycle factor calculation (-15.35dB)

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

** Harmonics of fundamental 433.92MHz

END OF TEST REPORT

Page 24 of 25

9. SETUP PHOTOS

Please refer to 12707015-EP2V1

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 25