

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 Fax: +86-755-26636041

| SAR                                                                                                                                                                                                                                                                          | TEST REPOR                                                                                                                                                                                                                                                                                                                              | RT                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Report Reference No                                                                                                                                                                                                                                                          | CTL1607122624-SAR                                                                                                                                                                                                                                                                                                                       |                                                                                                                      |
| Compiled by:<br>( position+printed name+signature)                                                                                                                                                                                                                           | Jacky Chen<br>(File administrators)                                                                                                                                                                                                                                                                                                     | Jackychen<br>Allen Wang<br>Lung Ch:                                                                                  |
| Tested by:<br>( position+printed name+signature)                                                                                                                                                                                                                             | Allen Wang<br>(Test Engineer)                                                                                                                                                                                                                                                                                                           | Allen Wang                                                                                                           |
| Approved by:<br>( position+printed name+signature)                                                                                                                                                                                                                           | Tracy Qi<br>(Manager)                                                                                                                                                                                                                                                                                                                   | hung Chi                                                                                                             |
| Product Name:                                                                                                                                                                                                                                                                | Walkie talkie for kids                                                                                                                                                                                                                                                                                                                  |                                                                                                                      |
| Model/Type reference                                                                                                                                                                                                                                                         | HY737                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |
| List Model(s)                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |
| FCC ID                                                                                                                                                                                                                                                                       | 2AJEM-HY737                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |
| Trade Mark                                                                                                                                                                                                                                                                   | Theipar                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      |
|                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      |
| Applicant's name                                                                                                                                                                                                                                                             | Shenzhen Macross Industrial Co                                                                                                                                                                                                                                                                                                          | o., Ltd.                                                                                                             |
| Applicant's name                                                                                                                                                                                                                                                             | Shenzhen Macross Industrial Co<br>Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzher                                                                                                                                                                                                                                 | 6, Min Zhi Block, Mei Long                                                                                           |
|                                                                                                                                                                                                                                                                              | Huang Jia Mei Long buliding B110                                                                                                                                                                                                                                                                                                        | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China                                                                    |
| Address of applicant                                                                                                                                                                                                                                                         | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhei                                                                                                                                                                                                                                                                   | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>ırk, No.3011, Shahexi Road,             |
| Address of applicant:                                                                                                                                                                                                                                                        | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzher<br>Shenzhen CTL Testing Technolo<br>Floor 1-A, Baisha Technology Pa                                                                                                                                                                                               | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>ırk, No.3011, Shahexi Road,             |
| Address of applicant:<br>Authorized Lab:<br>Address                                                                                                                                                                                                                          | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzher<br>Shenzhen CTL Testing Technolo<br>Floor 1-A, Baisha Technology Pa                                                                                                                                                                                               | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>ırk, No.3011, Shahexi Road,             |
| Address of applicant:<br>Authorized Lab:<br>Address:<br>Test specification                                                                                                                                                                                                   | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhen<br>Shenzhen CTL Testing Technolog<br>Floor 1-A, Baisha Technology Pa<br>Nanshan District, Shenzhen, China<br>IEEE 1528:2013<br>47CFR §2.1093                                                                                                                      | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>Irk, No.3011, Shahexi Road,<br>a 518055 |
| Address of applicant       :         Authorized Lab.       :         Address       :         Test specification       :         Standard       :                                                                                                                             | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhen<br>Shenzhen CTL Testing Technolog<br>Floor 1-A, Baisha Technology Pa<br>Nanshan District, Shenzhen, China<br>IEEE 1528:2013<br>47CFR §2.1093<br>Shenzhen CTL Testing Technolog                                                                                    | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>Irk, No.3011, Shahexi Road,<br>a 518055 |
| Address of applicant       :         Authorized Lab.       :         Address       :         Test specification       :         Standard       :         TRF Originator       :                                                                                              | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhen<br>Shenzhen CTL Testing Technolog<br>Floor 1-A, Baisha Technology Pa<br>Nanshan District, Shenzhen, China<br>IEEE 1528:2013<br>47CFR §2.1093<br>Shenzhen CTL Testing Technology<br>Dated 2014-01                                                                  | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>Irk, No.3011, Shahexi Road,<br>a 518055 |
| Address of applicant       :         Authorized Lab.       :         Address       :         Test specification       :         Standard       :         TRF Originator       :         Master TRF       :                                                                   | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhen<br>Shenzhen CTL Testing Technolog<br>Floor 1-A, Baisha Technology Pa<br>Nanshan District, Shenzhen, China<br>IEEE 1528:2013<br>47CFR §2.1093<br>Shenzhen CTL Testing Technology<br>Dated 2014-01<br>Aug. 03, 2016                                                 | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>Irk, No.3011, Shahexi Road,<br>a 518055 |
| Address of applicant       :         Authorized Lab.       :         Address       :         Address       :         Test specification       :         Standard       :         TRF Originator       :         Master TRF       :         Date of Receipt       :           | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhen<br>Shenzhen CTL Testing Technolog<br>Floor 1-A, Baisha Technology Pa<br>Nanshan District, Shenzhen, China<br>IEEE 1528:2013<br>47CFR §2.1093<br>Shenzhen CTL Testing Technology<br>Dated 2014-01<br>Aug. 03, 2016<br>Aug. 08, 2016 –Aug. 08, 2016                 | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>Irk, No.3011, Shahexi Road,<br>a 518055 |
| Address of applicant       :         Authorized Lab.       :         Address       :         Test specification       :         Standard       :         TRF Originator       :         Master TRF       :         Date of Receipt       :         Date of Test Date       : | Huang Jia Mei Long buliding B110<br>Road, Long Hua District, Shenzhen<br>Shenzhen CTL Testing Technolog<br>Floor 1-A, Baisha Technology Pa<br>Nanshan District, Shenzhen, China<br>IEEE 1528:2013<br>47CFR §2.1093<br>Shenzhen CTL Testing Technolog<br>Dated 2014-01<br>Aug. 03, 2016<br>Aug. 08, 2016 –Aug. 08, 2016<br>Aug. 09, 2016 | 6, Min Zhi Block, Mei Long<br>n, Guangdong, China<br><b>ogy Co., Ltd.</b><br>Irk, No.3011, Shahexi Road,<br>a 518055 |

Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

# **TEST REPORT**

| Test Report No. :    | CTL1607122624-WF                                                   | Aug. 09, 2016                                      |
|----------------------|--------------------------------------------------------------------|----------------------------------------------------|
|                      |                                                                    | Date of issue                                      |
| Equipment under Test | : Walkie talkie for kids                                           |                                                    |
| Model /Type          | : HY737                                                            |                                                    |
| Listed Models        | : N/A                                                              |                                                    |
| Applicant            | Shenzhen Macross Industrial C                                      | co., Ltd.                                          |
| Address              | Huang Jia Mei Long buliding B11<br>Long Hua District, Shenzhen, Gu | 06, Min Zhi Block, Mei Long Roac<br>angdong, China |
| Manufacturer         | Shenzhen Macross Industrial C                                      | co., Ltd.                                          |
| Address              | Huang Jia Mei Long buliding B11<br>Long Hua District, Shenzhen, Gu | 06, Min Zhi Block, Mei Long Roac<br>angdong, China |
| Test resul           |                                                                    | Pass *                                             |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# \*\* Modified History \*\*

| Revision    | Description                 | Issued Data | Report No.        | Remark   |
|-------------|-----------------------------|-------------|-------------------|----------|
| Version 1.0 | Initial Test Report Release | 2016-8-9    | CTL1607122624-SAR | Tracy Qi |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |
|             |                             |             |                   |          |



# Contents

| <u>1.</u>    | TEST STANDARDS                                                                                                                                             | 5        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|              |                                                                                                                                                            |          |
| <u>2.</u>    | SUMMARY                                                                                                                                                    | 6        |
| 2.1.         | Product Description                                                                                                                                        | 6        |
| 2.2.         | Summary SAR Results                                                                                                                                        | 6        |
| 2.3.         | EUT operation mode                                                                                                                                         | 6        |
| 2.4.         | TEST Configuration                                                                                                                                         | 6        |
| <u>3.</u>    | TEST ENVIRONMENT                                                                                                                                           | 7        |
| 3.1.         | Address of the test laboratory                                                                                                                             | 7        |
| 3.2.         | Test Facility                                                                                                                                              | 7        |
| 3.3.         | Environmental conditions                                                                                                                                   | 7        |
| 3.3.<br>3.4. | SAR Limits                                                                                                                                                 | 7        |
| 3.4.<br>3.5. | Equipments Used during the Test                                                                                                                            | 8        |
| 5.5.         | Equipments used during the rest                                                                                                                            | 0        |
| <u>4.</u>    | SAR MEASUREMENTS SYSTEM CONFIGURATION                                                                                                                      | 9        |
|              |                                                                                                                                                            | •        |
| 4.1.         | SAR Measurement Set-up                                                                                                                                     | 9        |
| 4.2.         | DASY5 E-field Probe System                                                                                                                                 | 10       |
| 4.3.         | Phantoms<br>Device Helder                                                                                                                                  | 10       |
| 4.4.         | Device Holder                                                                                                                                              | 11       |
| 4.5.         | Scanning Procedure                                                                                                                                         | 11       |
| 4.6.         | Data Storage and Evaluation                                                                                                                                | 12       |
| 4.7.         | SAR Measurement System                                                                                                                                     | 13       |
| 4.8.         | Dielectric Performance                                                                                                                                     | 14       |
| 4.9.         | System Check                                                                                                                                               | 15       |
| 4.10.        | Measurement Procedures                                                                                                                                     | 16       |
| <u>5.</u>    | TEST CONDITIONS AND RESULTS                                                                                                                                | 20       |
| 5.1.         | Conducted Power Results                                                                                                                                    | 20       |
| 5.2.         | Transmit Antennas                                                                                                                                          | 20       |
| 5.3.         | Standalone SAR Test Exclusion Considerations                                                                                                               | 20       |
| 5.4.         | Standalone SAR Test Exclusion Considerations and Estimated SAR                                                                                             | 21       |
| 5.5.         | Test reduction procedure                                                                                                                                   | 21       |
| 5.6.         |                                                                                                                                                            | 21       |
| 5.7.         | SAR Measurement Results<br>Simultaneous TX SAR Considerations<br>SAR Measurement Variability<br>Measurement Uncertainty (300-3GHz)<br>System Check Results | 22       |
| 5.8.         | SAR Measurement Variability                                                                                                                                | 22       |
| 5.9.         | Measurement Uncertainty (300-3GHz)                                                                                                                         | 23       |
| 5.10.        | System Check Results                                                                                                                                       | 27       |
| 5.11.        | SAR Test Graph Results                                                                                                                                     | 29       |
| <u>6.</u>    | CALIBRATION CERTIFICATE                                                                                                                                    | 31       |
| 6.4          | Braha Calibration Cariticata                                                                                                                               |          |
| 6.1.         | Probe Calibration Ceriticate                                                                                                                               | 31       |
| 6.2.<br>6.3. | D450V3 Dipole Calibration Certificate<br>DAE4 Calibration Certificate                                                                                      | 42<br>50 |
| 0.01         |                                                                                                                                                            |          |
| <u>7.</u>    | TEST SETUP PHOTOS                                                                                                                                          | 53       |
|              |                                                                                                                                                            |          |

# 1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>IEEE 1528-2013 (2014-06):</u> Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

<u>IEEE Std. C95-3 (2002)</u>: IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave

<u>IEEE Std. C95-1 (1992)</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

<u>IEC 62209-2 (2010)</u>: Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices. Human models, instrumentation, and procedures. Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

<u>KDB 865664D01v01r04 (August 7, 2015)</u>: SAR Measurement Requirements for 100 MHz to 6 GHz <u>KDB 865664D02v01r02 (October 23, 2015)</u>: RF Exposure Compliance Reporting and Documentation Considerations

447498 D01 General RF Exposure Guidance v06 (October 23, 2015): Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies

2015 October TCB Workshop: SAR may be scaled if radio is tested at lower power without overheating as invalid SAR results cannot be scaled to compensate for power droop



# 2. <u>SUMMARY</u>

## 2.1. Product Description

| EUT Name                  | : | Walkie talkie for kids                      |  |  |
|---------------------------|---|---------------------------------------------|--|--|
| Model Number              | : | HY737                                       |  |  |
| Trade Mark                | : | Theipar                                     |  |  |
| EUT function description  | : | Please reference user manual of this device |  |  |
| Power supply              | : | DC 4.5V from battery                        |  |  |
| Operation frequency range | : | 462.6125MHz (FRS )                          |  |  |
| Modulation type           | : | FM (FRS)                                    |  |  |
| RF Rated Output power     | : | 0.5W (FRS)                                  |  |  |
| Emission type             | : | F3E (FRS)                                   |  |  |
| Antenna Type              | : | External and Integrated                     |  |  |
| Antenna Gain              | : | 2dBi (FRS)                                  |  |  |
| Device Type               | : | Portable                                    |  |  |
| Sample Type               | : | Prototype Unit                              |  |  |
| Exposure category:        | : | General exposure / Uncontrolled environment |  |  |
| Test Frequency:           | : | 462.6125 MHz                                |  |  |

#### Frequency list

| Channel | Frequency(MHz) | Туре |
|---------|----------------|------|
| 1 12    | 462.6125       | FRS  |

# 2.2. Summary SAR Results

The maximum of results of SAR found during testing are follows:

| <highest re<="" th=""><th>ported standalone S</th><th>SAR Summary&gt;</th><th>C</th><th></th><th></th></highest> | ported standalone S | SAR Summary> | C         |                   |                  |
|------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-----------|-------------------|------------------|
| Mode                                                                                                             | Channel             | Frequency    | Position  | Maximum Report SA | R Results (W/kg) |
| woue                                                                                                             | Separation          | (MHz)        | FUSICION  | 100% duty cycle   | 50% duty cycle   |
| FRS                                                                                                              | 12.5KHz             | 462.6125     | Face-held | 0.887             | 0.443            |
| FRS                                                                                                              | 12.5KHz             | 462.6125     | Body-Worn | 1.098             | 0.549            |

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

# 2.3. EUT operation mode

The spatial peak SAR values were assessed for UHF systems. Battery and accessories shell be specified by

the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain

uniform power output.

# 2.4. TEST Configuration

#### **Face-Held Configuration**

Face-held Configuration- per FCC KDB447498 page 22: "A test separation distance of 25 mm must be applied for in-front-of the face SAR test exclusion and SAR measurements."

#### **Body-worn Configuration**

Body-worn measurements-per FCC KDB447498 page 22 "When body-worn accessory SAR testing is required, the body-worn accessory requirements in section 4.2.2 should be applied. PTT two-way radios that support held-to-ear operating mode must also be tested according to the exposure configurations required for handsets. This generally does not apply to cellphones with PTT options that have already been tested in more conservative configurations in applicable wireless modes for SAR compliance at 100% duty factor."

#### V1.0

# 3. TEST ENVIRONMENT

# 3.1. Address of the test laboratory

# Shenzhen Yidajietong Test Technology Co., Ltd.

3/F., Building 12, Shangsha Innovation & Technology Park, Futian District, Shenzhen, Guangdong, China

# 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

# CNAS-Lab Code: L7547

The Testing and Technology Center for SHENZHEN YIDA JIETONG INFORMATION TECHNOLOGY CO., LTD has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: March, 2015. Valid time is until March, 2018.

# 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:          | 18-25 ° C    |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 40-65 %      |
| 7                     |              |
| Atmospheric pressure: | 950-1050mbar |
|                       |              |

# 3.4. SAR Limits

|                                                             | SAR (                                                          | W/kg)                                                  |
|-------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| Exposure Limits                                             | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |
| Spatial Average<br>(averaged over the whole body)           | 0.08                                                           | 0.4                                                    |
| Spatial Peak<br>(averaged over any 1 g of tissue)           | 1.60                                                           | 8.0                                                    |
| Spatial Peak<br>ands/wrists/feet/ankles averaged over 10 g) | 4.0                                                            | 20.0                                                   |

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

## 3.5. Equipments Used during the Test

|                      |              |            |               | Calib       | ration      |
|----------------------|--------------|------------|---------------|-------------|-------------|
| Test Equipment       | Manufacturer | Type/Model | Serial Number | Last        | Calibration |
|                      |              |            |               | Calibration | Interval    |
| Data Acquisition     | SPEAG        | DAE4       | 905           | 2016/07/16  | 1           |
| Electronics DAEx     | 5FLAG        |            | 905           | 2010/07/10  | I           |
| E-field Probe        | SPEAG        | EX3DV4     | 3842          | 2015/08/26  | 1           |
| System Validation    | SPEAG        | D450V3     | 1072          | 2015/11/25  | 3           |
| Dipole D450V3        | SF LAG       | D430V3     | 1072          | 2013/11/23  | 5           |
| Network analyzer     | Agilent      | 8753E      | US37390562    | 2016/03/05  | 1           |
| Dielectric Probe Kit | Agilent      | 85070E     | US44020288    | /           | /           |
| Power meter          | Agilent      | E4417A     | GB41292254    | 2015/12/15  | 1           |
|                      |              |            |               |             | -           |
| Power sensor         | Agilent      | 8481H      | MY41095360    | 2015/12/15  | 1           |
| Power sensor         | Agilent      | 8481H      | MY41095361    | 2015/12/15  | 1           |
| Signal generator     | IFR          | 2032       | 203002/100    | 2015/10/12  | 1           |
| Amplifier            | AR           | 75A250     | 302205        | 2015/10/12  | 1           |

Note:

 Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50  $\Omega$  from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.



# 4. SAR Measurements System configuration

# 4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

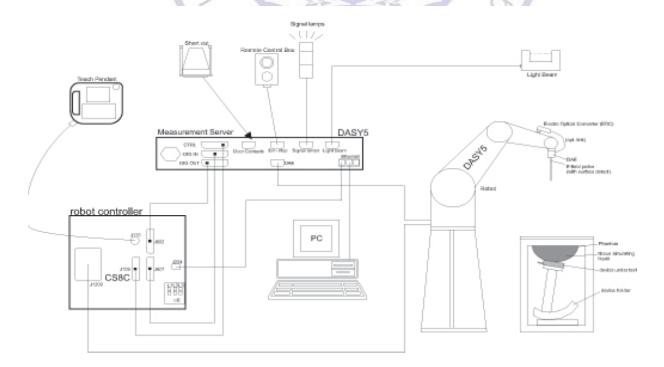
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

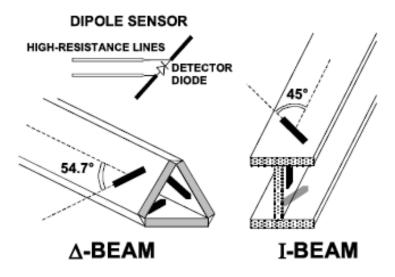
The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

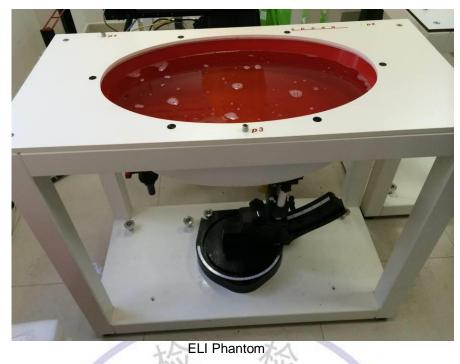


# 4.2. DASY5 E-field Probe System


The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

| Construction            | Symmetrical design with triangular core<br>Interleaved sensors<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration             | ISO/IEC 17025 calibration service available.                                                                                                                                       |
| Frequency               | 10 MHz to 4 GHz;<br>Linearity: ± 0.2 dB (30 MHz to 4 GHz)                                                                                                                          |
| Directivity             | <ul> <li>± 0.2 dB in HSL (rotation around probe axis)</li> <li>± 0.3 dB in tissue material (rotation normal to probe axis)</li> </ul>                                              |
| Dynamic Range           | 5 μW/g to > 100 mW/g;<br>Linearity: ± 0.2 dB                                                                                                                                       |
| Dimensions              | Overall length: 337 mm (Tip: 20 mm)<br>Tip diameter: 3.9 mm (Body: 12 mm)<br>Distance from probe tip to dipole centers: 2.0 mm                                                     |
| Application             | General dosimetry up to 4 GHz<br>Dosimetry in strong gradient fields<br>Compliance tests of Mobile Phones                                                                          |
| Compatibility           | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI                                                                                                                                     |
| Isotropic E-Field Probe |                                                                                                                                                                                    |


The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



# 4.3. Phantoms

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.



# 4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.



Device holder supplied by SPEAG

# 4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max.  $\pm$  5 %.

#### Page 12 of 54

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above  $\pm 0.1$ mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within  $\pm 30^{\circ}$ .)

#### Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

#### Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

#### **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

#### 4.6. Data Storage and Evaluation

#### Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm<sup>2</sup>], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

#### **Data Evaluation**

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity

- Conversion factor

- Diode compression point

Normi, ai0, ai1, ai2 ConvFi Dcpi

| Device parameters: - Frequency   | f  |
|----------------------------------|----|
| - Crest factor                   | cf |
| Media parameters: - Conductivity | σ  |
| - Density                        | ρ  |

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i(i = x, y, z)Ui = input signal of channel i(i = x, y, z)cf = crest factor of exciting field(DASY parameter)dcpi = diode compression point(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

|      |       | E – fieldprobes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$                   |
|------|-------|-----------------------------------------------------------------------------------|
|      |       | H – fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ |
| With | Vi    | = compensated signal of channel i $(i = x, y, z)$                                 |
|      | Normi | = sensor sensitivity of channel i (i = x, y, z)                                   |
|      |       | [mV/(V/m)2] for E-field Probes                                                    |
|      | ConvF | = sensitivity enhancement in solution                                             |
|      | aij   | = sensor sensitivity factors for H-field probes                                   |
|      | f     | = carrier frequency [GHz]                                                         |
|      | Ei    | = electric field strength of channel i in V/m                                     |
|      | Hi    | = magnetic field strength of channel i in A/m                                     |
|      |       |                                                                                   |

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_y^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{c}{1}$$

$$\rho \cdot 1'000$$

- with SAR = local specific absorption rate in mW/g
  - Etot = total field strength in V/m
    - $\sigma$  = conductivity in [mho/m] or [Siemens/m]
  - $\rho$  = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

# 4.7. SAR Measurement System

The SAR measurement system being used is the DASY5 system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

#### 4.7.1 Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

| Target Frequency | He   | ad     | B    | ody    |
|------------------|------|--------|------|--------|
| (MHz)            | ٤r   | σ(S/m) | ٤r   | σ(S/m) |
| 150              | 52.3 | 0.76   | 61.9 | 0.80   |
| 300              | 45.3 | 0.87   | 58.2 | 0.92   |
| 450              | 43.5 | 0.87   | 56.7 | 0.94   |
| 835              | 41.5 | 0.90   | 55.2 | 0.97   |
| 900              | 41.5 | 0.97   | 55.0 | 1.05   |
| 915              | 41.5 | 0.98   | 55.0 | 1.06   |
| 1450             | 40.5 | 1.20   | 54.0 | 1.30   |
| 1610             | 40.3 | 1.29   | 53.8 | 1.40   |
| 1800-2000        | 40.0 | 1.40   | 53.3 | 1.52   |
| 2450             | 39.2 | 1.80   | 52.7 | 1.95   |
| 3000             | 38.5 | 2.40   | 52.0 | 2.73   |
| 5800             | 35.3 | 5.27   | 48.2 | 6.00   |

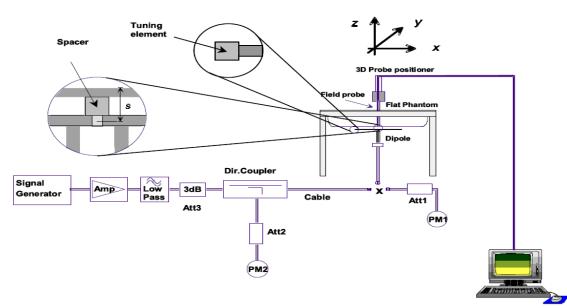
( $\varepsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho$  = 1000 kg/m<sup>3</sup>)

## 4.8. Dielectric Performance

Dielectric performance of Head and Body tissue simulating liquid.

| Mixture %                         | Frequency (Brain) 450MHz             |  |  |
|-----------------------------------|--------------------------------------|--|--|
| Water                             | 38.56                                |  |  |
| Sugar                             | 56.32                                |  |  |
| Salt                              | 3.95                                 |  |  |
| Preventol                         | 0.10                                 |  |  |
| Cellulose                         | 1.07                                 |  |  |
| ielectric Parameters Target Value | f=450MHz ε <sub>r</sub> =43.5 σ=0.87 |  |  |

| Composition of the Body T          | Fissue Equivalent Matter             |
|------------------------------------|--------------------------------------|
| Mixture %                          | Frequency (Brain) 450MHz             |
| Water                              | 56.16                                |
| Sugar                              | 46.78                                |
| Salt                               | 1.49                                 |
| Preventol                          | 0.10                                 |
| Cellulose                          | 0.47                                 |
| Dielectric Parameters Target Value | f=450MHz ε <sub>r</sub> =56.7 σ=0.94 |


| Tissue | Measured           | Target Tissue |      | Measured Tissue |      | Dev. % |       | Liquid         |            |
|--------|--------------------|---------------|------|-----------------|------|--------|-------|----------------|------------|
| Туре   | Frequency<br>(MHz) | ٤r            | σ    | ٤r              | σ    | ٤r     | σ     | Temp.          | Test Data  |
| 450H   | 450                | 43.5          | 0.87 | 44.2            | 0.90 | 1.61%  | 3.45% | 22.2<br>degree | 2016-08-08 |
| 450B   | 450                | 56.7          | 0.94 | 57.8            | 0.97 | 1.94%  | 3.19% | 22.2<br>degree | 2016-08-08 |

# 4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.



The output power on dipole port must be calibrated to 30 dBm (1000mW) before dipole is connected.

#### Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

#### System Check in Head Tissue Simulating Liquid

| Freq   | Test Date  | Temp | 250mW<br>Measured |                    | 1W Normalized     |                    | 1W Target         |                    | Limit (±10%<br>Deviation) |                    |
|--------|------------|------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|---------------------------|--------------------|
|        |            |      | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub>         | SAR <sub>10g</sub> |
| 450MHz | 2016/08/08 | 22.2 | 1.196             | 0.784              | 4.785             | 3.137              | 4.800             | 3.190              | -0.31%                    | -1.69%             |
|        |            |      |                   | GST                | Ind               | 10-                |                   |                    |                           |                    |

| Freq   | Test Date  | Temp | 250mW             |                    | 1W Normalized     |                    | 1W Target         |                    | Limit (±10%<br>Deviation) |                    |
|--------|------------|------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|---------------------------|--------------------|
|        |            |      | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub>         | SAR <sub>10g</sub> |
| 450MHz | 2016/08/08 | 22.2 | 1.157             | 0.760              | 4.628             | 3.041              | 4.690             | 3.080              | -1.34%                    | -1.28%             |

#### System Check in Body Tissue Simulating Liquid

Note:

1. The graph results see system check.

2. Target Values used derive from the calibration certificate

# 4.10. Measurement Procedures

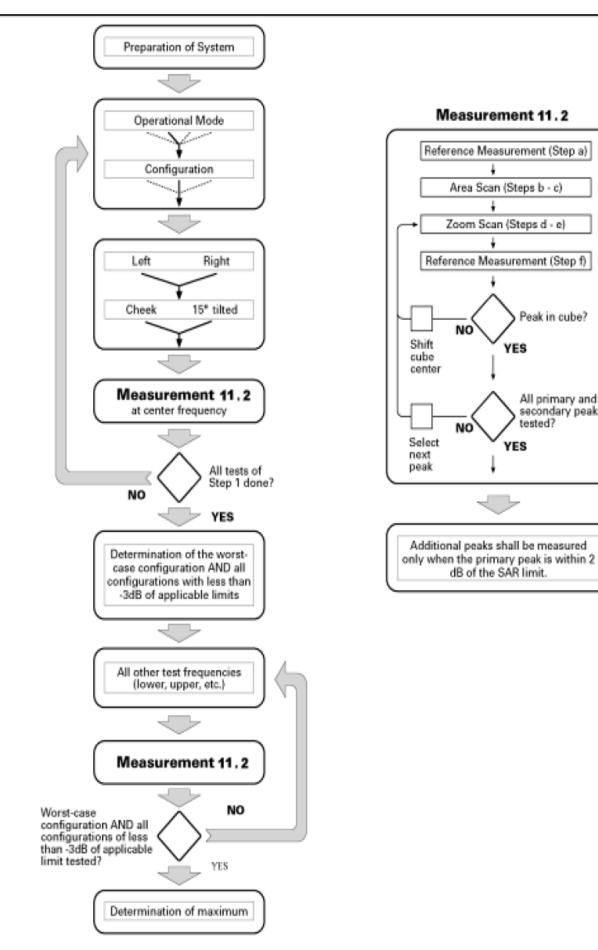
#### Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11

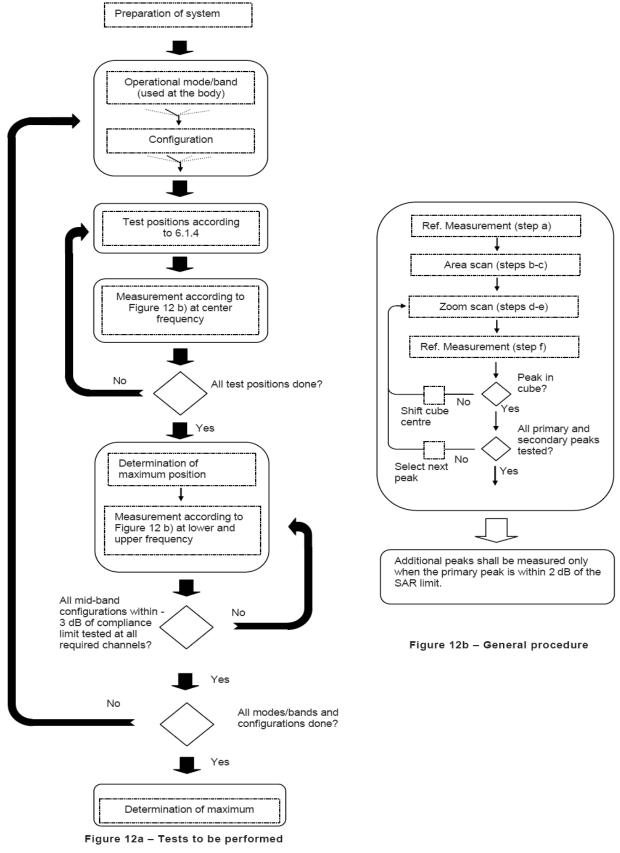
Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f<sub>c</sub>) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.
- d) If more than three frequencies need to be tested according to 11.1 (i.e., N<sub>c</sub> > 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.


Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.




Peak in cube?

All primary and

secondary peaks tested?



Picture 11 Block diagram of the tests to be performed



Picture 12 Block diagram of the tests to be performed

#### Measurement procedure

- The following procedure shall be performed for each of the test conditions (see Picture 11) described in 11.1:
- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and SHz and SHz and SHz and SHz and SHz and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and SHz and In(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ±1 mm for frequencies below 3 GHz and ±0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional measurement distance to the phantom inner surface shorter than the probe diameter, additional
- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
- d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step
- The horizontal grid step shall be (24 / f[GHz]) mm or less but not more than 8 mm. The minimum zoom e) size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and  $\delta \ln(2)/2$  mm for frequencies of 3 GHz and greater, where  $\delta is$  the plane wave skin depth and  $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5. If this cannot be achieved an additional uncertainty evaluation is needed.
- f) Use post processing( e.g. interpolation and extrapolation ) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

#### **Power Drift**

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 2 to Table 6 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

# 5. TEST CONDITIONS AND RESULTS

# 5.1. Conducted Power Results

#### <FRS ERP Power>

According KDB 447498 D01 General RF Exposure Guidance v06ection 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

SAR may be scaled if radio is tested at lower power without overheating as invalid SAR results cannot be scaled to compensate for power droop according to October 2015 TCB Workshop.

| Modulation Type | Channel    | Test      | Measured Average ERP Power |         |  |  |
|-----------------|------------|-----------|----------------------------|---------|--|--|
| woodlation Type | Separation | Frequency | (dBm)                      | (Watts) |  |  |
| FM              | 12.5KHz    | 462.6125  | 26.24                      | 0.421   |  |  |

#### Manufacturing tolerance

|                          | FRS      |  |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|--|
| FRS ( Average ERP Power) |          |  |  |  |  |  |  |
| Frequency (MHz)          | 462.6125 |  |  |  |  |  |  |
| Target (dBm)             | 26.0     |  |  |  |  |  |  |
| Tolerance ±(dB)          | 1.0      |  |  |  |  |  |  |

1 .

# 5.2. Transmit Antennas



- D.

# 5.3. Standalone SAR Test Exclusion Considerations

Per KDB447498 for standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by::

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] ·[√f(GHz)] ≤ 3.0 for 1-g SAR and  $\leq$  7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

|                         | Standalone SAR test exclusion considerations |               |                                      |                                |                       |                                |                                |  |  |  |  |
|-------------------------|----------------------------------------------|---------------|--------------------------------------|--------------------------------|-----------------------|--------------------------------|--------------------------------|--|--|--|--|
| Communication<br>system | Frequency<br>(MHz)                           | Configuration | Maximum<br>Average<br>Power<br>(dBm) | Separation<br>Distance<br>(mm) | Calculation<br>Result | SAR<br>Exclusion<br>Thresholds | Standalone<br>SAR<br>Exclusion |  |  |  |  |
| FRS                     | 462.6125                                     | Head Face     | 27.0                                 | 25                             | 13.6                  | 3.0                            | no                             |  |  |  |  |
| FKO                     | 402.0125                                     | Body worn     | 27.0                                 | 5                              | 68.2                  | 3.0                            | no                             |  |  |  |  |

Remark:

1. When the minimum test separation distance is < 5 mm, a distance of 5 mm applied to determine SAR test exclusion

2. PTT devices standalone SAR test exclusion considerations should at 50% duty cycle.

# 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

$$Ratio = \frac{(SAR_1 + SAR_2)^{1.5}}{(SAR_1 + SAR_2)^{1.5}} < 0.0$$

(peak location separation,mm)

| Estimated stand alone SAR |                    |               |                                              |                  |                                        |                   |  |  |  |
|---------------------------|--------------------|---------------|----------------------------------------------|------------------|----------------------------------------|-------------------|--|--|--|
|                           |                    |               | Maximum<br>Power                             | Separation       | Estimated SAR <sub>1-g</sub><br>(W/kg) |                   |  |  |  |
| Communication<br>system   | Frequency<br>(MHz) | Configuration | (including<br>tune-up<br>tolerance)<br>(dBm) | Distance<br>(mm) | 100% Duty<br>Cyele                     | 50% Duty<br>Cyele |  |  |  |
| N/A                       | N/A                | Head Face     | N/A                                          | N/A              | N/A                                    | N/A               |  |  |  |
| N/A                       | N/A                | Body Worn     | N/A                                          | N/A              | N/A                                    | N/A               |  |  |  |

Remark:

 When the minimum test separation distance is < 5 mm, a distance of 5 mm applied to determine SAR test exclusion

# 5.5. Test reduction procedure

The maximum power level,  $P_{max,m}$ , that can be transmitted by a device before the SAR averaged over a mass, m, exceeds a given limit, SAR<sub>lim</sub>, can be defined. Any device transmitting at power levels below  $P_{max,m}$  can then be excluded from SAR testing. The lowest possible value for  $P_{max,m}$  is:  $P_{max,m} = SAR_{lim}^* \square m$ .

# 5.6. SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR  $\times 10^{(PTarget-PMeasured)/10}$ Where P<sub>Target</sub> is the power of manufacturing upper limit; P<sub>Measured</sub> is the measured power

| Test             | Mode | Maximum<br>Allowed | Measured<br>ERP | Test<br>Configuration | SA                    | rement<br>R <sub>1-g</sub><br>′Kg) | Power      | Scaling | Reported<br>SAR <sub>1-g</sub><br>(W/kg) |                      | SAR<br>limit | Ref. |
|------------------|------|--------------------|-----------------|-----------------------|-----------------------|------------------------------------|------------|---------|------------------------------------------|----------------------|--------------|------|
| Frequency<br>MHz | wode | Power<br>(dBm)     | (dBm)           | Configuration         | 100%<br>Duty<br>Cvcle | 50%<br>Duty<br>Cvcle               | drift      | Factor  | 100%<br>Duty<br>Cycle                    | 50%<br>Duty<br>Cycle | 1g<br>(W/kg) | Plot |
|                  |      |                    | The EUT dis     | play towards ground   | d for 12.5 k          | Hz (Analo                          | g, face he | ld)     |                                          |                      |              |      |
| 462.6125         | PTT  | 27.00              | 26.24           | Face Held             | 0.745                 | 0.372                              | -0.02      | 1.19    | 0.887                                    | 0.443                | 1.60         | 1    |
|                  |      |                    | The EUT disp    | lay towards ground    | for 12.5 Ki           | Iz (Analog                         | , Body-W   | orn)    |                                          |                      |              |      |
| 462.6125         | PTT  | 27.00              | 26.24           | Body Worn             | 0.923                 | 0.461                              | -0.04      | 1.19    | 1.098                                    | 0.549                | 1.60         | 2    |

Note:

1. When devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, must be tested for SAR compliance using a conservative minimum test separation distance ≤ 5 mm to support compliance refer to KDB447498.

2. Except when area scan based 1-g SAR estimation applies, a zoom scan measurement is required at the highest peak SAR location determined in the area scan to determine the 1-g SAR. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR refer to KDB865664D01v01r04.

3. PTT devices standalone SAR test exclusion considerations should at 50% duty cycle.

# 5.7. Simultaneous TX SAR Considerations

# 5.7.1 Introduction

For the DUT, only with FRS modular, share only one antenna, not need consider simultaneous transmission;

# 5.7.2 Evaluation of Simultaneous SAR

N/A

# 5.8. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is  $\geq$  0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

| ſ |                    |      |               | Perceted                    | Highest                                  | First Re                                 | peated                              |
|---|--------------------|------|---------------|-----------------------------|------------------------------------------|------------------------------------------|-------------------------------------|
|   | Frequency<br>(MHz) | Mode | Test Position | Repeated<br>SAR<br>(yes/no) | Measured<br>SAR <sub>1-g</sub><br>(W/kg) | Measured<br>SAR <sub>1-g</sub><br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio |
|   | 462.6125           | PTT  | Body-worn     | yes                         | 0.923                                    | 0.905                                    | 0.98                                |

|            |                                                             | A    | ccording to I        | EC62209-1/IE             | EE 15      | 28:201     | 3           |                      |                       |                         |
|------------|-------------------------------------------------------------|------|----------------------|--------------------------|------------|------------|-------------|----------------------|-----------------------|-------------------------|
| No.        | Error<br>Description                                        | Туре | Uncertainty<br>Value | Probably<br>Distribution | Div.       | (Ci)<br>1g | (Ci)<br>10g | Std.<br>Unc.<br>(1g) | Std.<br>Unc.<br>(10g) | Degree<br>of<br>freedom |
| Measureme  |                                                             | r    | I                    | I                        | 1          | r          | 1           |                      | r                     |                         |
| 1          | Probe calibration                                           | В    | 5.50%                | N                        | 1          | 1          | 1           | 5.50%                | 5.50%                 | 8                       |
| 2          | Axial<br>isotropy                                           | В    | 4.70%                | R                        | $\sqrt{3}$ | 0.7        | 0.7         | 1.90%                | 1.90%                 | $\infty$                |
| 3          | Hemispherical<br>isotropy                                   | В    | 9.60%                | R                        | $\sqrt{3}$ | 0.7        | 0.7         | 3.90%                | 3.90%                 | 8                       |
| 4          | Boundary<br>Effects                                         | В    | 1.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.60%                | 0.60%                 | 8                       |
| 5          | Probe<br>Linearity                                          | В    | 4.70%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.70%                | 2.70%                 | 8                       |
| 6          | Detection limit                                             | В    | 1.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.60%                | 0.60%                 | ~                       |
| 7          | RF ambient<br>conditions-<br>noise                          | В    | 0.00%                | R                        | √3         | 1          | 1           | 0.00%                | 0.00%                 | 8                       |
| 8          | RF ambient<br>conditions-<br>reflection                     | B    | 0.00%                | R                        | √3         | E F        | -11         | 0.00%                | 0.00%                 | 8                       |
| 9          | Response<br>time                                            | В    | 0.80%                | R                        | $\sqrt{3}$ | 1          | 1.          | 0.50%                | 0.50%                 | 8                       |
| 10         | Integration<br>time                                         | В    | 5.00%                | R                        | $\sqrt{3}$ | 1          | Ť(          | 2.90%                | 2.90%                 | 8                       |
| 11         | RF D<br>ambient                                             | в    | 3.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 1.70%                | 1.70%                 | 8                       |
| 12         | Probe<br>positioned<br>mech.<br>restrictions                | в    | 0.40%                | R                        | √3         | 1          | 1-0°        | 0.20%                | 0.20%                 | 8                       |
| 13         | Probe<br>positioning<br>with respect<br>to phantom<br>shell | B    | 2.90%                | R                        | √3         | 10         | 51          | 1.70%                | 1.70%                 | 8                       |
| 14         | Max.SAR<br>evalation                                        | В    | 3.90%                | mg r                     | √3         | 1          | 1           | 2.30%                | 2.30%                 | 8                       |
| Test Sampl | e Related                                                   |      |                      |                          |            |            |             |                      |                       |                         |
| 15         | Test sample<br>positioning                                  | Α    | 1.86%                | N                        | 1          | 1          | 1           | 1.86%                | 1.86%                 | $\infty$                |
| 16         | Device holder<br>uncertainty                                | А    | 1.70%                | N                        | 1          | 1          | 1           | 1.70%                | 1.70%                 | $\infty$                |
| 17         | Drift of output<br>power                                    | В    | 5.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.90%                | 2.90%                 | 8                       |
| Phantom ar |                                                             |      |                      |                          |            |            |             |                      |                       |                         |
| 18         | Phantom<br>uncertainty                                      | В    | 4.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.30%                | 2.30%                 | 8                       |
| 19         | Liquid<br>conductivity<br>(target)                          | В    | 5.00%                | R                        | $\sqrt{3}$ | 0.64       | 0.43        | 1.80%                | 1.20%                 | 8                       |
| 20         | Liquid<br>conductivity<br>(meas.)                           | A    | 0.50%                | Ν                        | 1          | 0.64       | 0.43        | 0.32%                | 0.26%                 | 8                       |
| 21         | Liquid<br>permittivity<br>(target)                          | В    | 5.00%                | R                        | $\sqrt{3}$ | 0.64       | 0.43        | 1.80%                | 1.20%                 | 8                       |

# 5.9. Measurement Uncertainty (300-3GHz)

| 22                                                             | Liquid<br>cpermittivity<br>(meas.)               | A             | 0.16% | Ν | 1   | 0.64 | 0.43 | 0.10%  | 0.07%  | 8 |
|----------------------------------------------------------------|--------------------------------------------------|---------------|-------|---|-----|------|------|--------|--------|---|
| Combined<br>standard<br>uncertainty                            | $u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}}$ | $\frac{2}{i}$ | /     | / | /   | /    | /    | 10.20% | 10.00% | 8 |
| Expanded<br>uncertainty<br>(confidence<br>interval of<br>95 %) | $u_e = 2u_c$                                     |               | /     | R | K=2 | /    | /    | 20.40% | 20.00% | 8 |

|             |                                                             |      | Accordin             | g to IEC6220             | 9-2/20     | 10         |             |                      |                       |                         |
|-------------|-------------------------------------------------------------|------|----------------------|--------------------------|------------|------------|-------------|----------------------|-----------------------|-------------------------|
| No.         | Error<br>Description                                        | Туре | Uncertainty<br>Value | Probably<br>Distribution | Div.       | (Ci)<br>1g | (Ci)<br>10g | Std.<br>Unc.<br>(1g) | Std.<br>Unc.<br>(10g) | Degree<br>of<br>freedom |
| Measureme   |                                                             |      |                      |                          |            |            |             | ( 0)                 |                       |                         |
| 1           | Probe calibration                                           | В    | 6.20%                | N                        | 1          | 1          | 1           | 6.20%                | 6.20%                 | ∞                       |
| 2           | Axial<br>isotropy                                           | В    | 4.70%                | R 🥂                      | √3         | 0.7        | 0.7         | 1.90%                | 1.90%                 | œ                       |
| 3           | Hemispherical<br>isotropy                                   | В    | 9.60%                | R                        | $\sqrt{3}$ | 0.7        | 0.7         | 3.90%                | 3.90%                 | œ                       |
| 4           | Boundary<br>Effects                                         | в    | 2.00%                | R                        | √3         | L'I'       |             | 1.20%                | 1.20%                 | 8                       |
| 5           | Probe<br>Linearity                                          | В    | 4.70%                | 74R                      | $\sqrt{3}$ | 1          | 1.          | 2.70%                | 2.70%                 | 8                       |
| 6           | Detection limit                                             | В    | 1.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.60%                | 0.60%                 | ∞                       |
| 7           | RF ambient<br>conditions-<br>noise                          | в    | 0.00%                | GT R-                    | √3         | 1          | 1           | 0.00%                | 0.00%                 | œ                       |
| 8           | RF ambient<br>conditions-<br>reflection                     | В    | 0.00%                | R                        | √3         | 1          | Q.          | 0.00%                | 0.00%                 | œ                       |
| 9           | Response<br>time                                            | в    | 0.80%                | R                        | $\sqrt{3}$ | 1          | 3           | 0.50%                | 0.50%                 | 8                       |
| 10          | Integration<br>time                                         | в    | 5.00%                | R                        | $\sqrt{3}$ | 0          | 1           | 2.90%                | 2.90%                 | 8                       |
| 11          | RF<br>Ambient                                               | В    | 3.00%                | ind Te                   | $\sqrt{3}$ | 1          | 1           | 1.70%                | 1.70%                 | 8                       |
| 12          | Probe<br>positioned<br>mech.<br>restrictions                | В    | 0.80%                | R                        | √3         | 1          | 1           | 0.50%                | 0.50%                 | œ                       |
| 13          | Probe<br>positioning<br>with respect<br>to phantom<br>shell | В    | 6.70%                | R                        | $\sqrt{3}$ | 1          | 1           | 3.90%                | 3.90%                 | œ                       |
| 14          | Max.SAR<br>Evalation                                        | В    | 3.90%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.30%                | 2.30%                 | œ                       |
| 15          | Modulation<br>Response                                      | В    | 2.40%                | R                        | $\sqrt{3}$ | 1          | 1           | 1.40%                | 1.40%                 | œ                       |
| Test Sample |                                                             |      |                      |                          |            |            |             |                      |                       |                         |
| 16          | Test sample<br>positioning                                  | А    | 1.86%                | N                        | 1          | 1          | 1           | 1.86%                | 1.86%                 | ∞                       |
| 17          | Device holder<br>uncertainty                                | А    | 1.70%                | Ν                        | 1          | 1          | 1           | 1.70%                | 1.70%                 | ∞                       |
| 18          | Drift of output<br>power                                    | В    | 5.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.90%                | 2.90%                 | 8                       |

| 19                                                             | Phantom<br>uncertainty                 | В       | 6.10%                                 | R   | $\sqrt{3}$ | 1     | 1    | 3.50%  | 3.50%  | 8 |
|----------------------------------------------------------------|----------------------------------------|---------|---------------------------------------|-----|------------|-------|------|--------|--------|---|
| 20                                                             | SAR<br>correction                      | В       | 1.90%                                 | R   | $\sqrt{3}$ | 1     | 0.84 | 1.11%  | 0.90%  | 8 |
| 21                                                             | Liquid<br>conductivity<br>(target)     | В       | 5.00%                                 | R   | √3         | 0.64  | 0.43 | 1.80%  | 1.20%  | 8 |
| 22                                                             | Liquid<br>conductivity<br>(meas.)      | A       | 0.50%                                 | Ν   | 1          | 0.64  | 0.43 | 0.32%  | 0.26%  | 8 |
| 23                                                             | Liquid<br>permittivity<br>(target)     | В       | 5.00%                                 | R   | √3         | 0.64  | 0.43 | 1.80%  | 1.20%  | 8 |
| 24                                                             | Liquid<br>cpermittivity<br>(meas.)     | A       | 0.16%                                 | Ν   | 1          | 0.64  | 0.43 | 0.10%  | 0.07%  | 8 |
| 25                                                             | Temp.Unc<br>Conductivity               | В       | 3.40%                                 | R   | $\sqrt{3}$ | 0.78  | 0.71 | 1.50%  | 1.40%  | 8 |
| 26                                                             | Temp.Unc<br>Permittivity               | В       | 0.40%                                 | R   | $\sqrt{3}$ | 0.23  | 0.26 | 0.10%  | 0.10%  | 8 |
| Combined<br>standard<br>uncertainty                            | $u_c = \sqrt{\sum_{i=1}^{22} C_i^2 U}$ | $u_i^2$ | 检                                     | / 杰 | 1          |       | /    | 12.90% | 12.70% | 8 |
| Expanded<br>uncertainty<br>(confidence<br>interval of<br>95 %) | $u_e = 2u_c$                           |         | D D D D D D D D D D D D D D D D D D D | R   | K=2        | -11-2 | -//  | 25.80% | 25.40% | 8 |

|          | Uncert                                       | aintv o | f a System P         | erformance C             | heck       | with D     | ASY5 S      | Svstem               |                       |                         |
|----------|----------------------------------------------|---------|----------------------|--------------------------|------------|------------|-------------|----------------------|-----------------------|-------------------------|
|          |                                              | unity c |                      | g to IEC6220             |            |            |             | <i>y</i> etc         |                       |                         |
| No.      | Error<br>Description                         | Туре    | Uncertainty<br>Value | Probably<br>Distribution | Div.       | (Ci)<br>1g | (Ci)<br>10g | Std.<br>Unc.<br>(1g) | Std.<br>Unc.<br>(10g) | Degree<br>of<br>freedom |
| Measurem | ent System                                   |         | 71116                |                          | 1/2        | 1          | 0           |                      |                       |                         |
| 1        | Probe calibration                            | В       | 6.00%                | N                        | N.         | 1          | T/          | 6.00%                | 6.00%                 | 8                       |
| 2        | Axial<br>isotropy                            | В       | 4.70%                | R                        | $\sqrt{3}$ | 0.7        | 0.7         | 1.90%                | 1.90%                 | 8                       |
| 3        | Hemispherical isotropy                       | В       | 0.00%                | R                        | $\sqrt{3}$ | 0.7        | 0.7         | 0.00%                | 0.00%                 | 8                       |
| 4        | Boundary<br>Effects                          | В       | 1.00%                | ing Te                   | $\sqrt{3}$ | 1          | 1           | 0.60%                | 0.60%                 | 8                       |
| 5        | Probe<br>Linearity                           | В       | 4.70%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.70%                | 2.70%                 | 8                       |
| 6        | Detection limit                              | В       | 1.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.60%                | 0.60%                 | 8                       |
| 7        | RF ambient<br>conditions-<br>noise           | В       | 0.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.00%                | 0.00%                 | ∞                       |
| 8        | RF ambient<br>conditions-<br>reflection      | В       | 0.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.00%                | 0.00%                 | 8                       |
| 9        | Response<br>time                             | В       | 0.80%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.50%                | 0.50%                 | 8                       |
| 10       | Integration<br>time                          | В       | 5.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 2.90%                | 2.90%                 | 8                       |
| 11       | RF<br>Ambient                                | В       | 3.00%                | R                        | $\sqrt{3}$ | 1          | 1           | 1.70%                | 1.70%                 | 8                       |
| 12       | Probe<br>positioned<br>mech.<br>restrictions | В       | 0.80%                | R                        | $\sqrt{3}$ | 1          | 1           | 0.50%                | 0.50%                 | 8                       |

| 13                                                             | Probe<br>positioning<br>with respect<br>to phantom<br>shell | В                      | 6.70%  | R      | $\sqrt{3}$ | 1    | 1    | 3.90%  | 3.90%  | 8        |
|----------------------------------------------------------------|-------------------------------------------------------------|------------------------|--------|--------|------------|------|------|--------|--------|----------|
| 14                                                             | Max.SAR<br>Evalation                                        | В                      | 3.90%  | R      | $\sqrt{3}$ | 1    | 1    | 2.30%  | 2.30%  | 8        |
| 15                                                             | Modulation<br>Response                                      | В                      | 2.40%  | R      | $\sqrt{3}$ | 1    | 1    | 1.40%  | 1.40%  | 8        |
| Test Sample                                                    | Related                                                     |                        |        |        |            |      |      |        |        |          |
| 16                                                             | Test sample<br>positioning                                  | А                      | 0.00%  | Ν      | 1          | 1    | 1    | 0.00%  | 0.00%  | 8        |
| 17                                                             | Device holder<br>uncertainty                                | А                      | 2.00%  | Ν      | 1          | 1    | 1    | 2.00%  | 2.00%  | $\infty$ |
| 18                                                             | Drift of output<br>power                                    | В                      | 3.40%  | R      | $\sqrt{3}$ | 1    | 1    | 2.00%  | 2.00%  | 8        |
| Phantom and                                                    | d Set-up                                                    |                        |        |        |            |      |      |        |        |          |
| 19                                                             | Phantom<br>uncertainty                                      | В                      | 4.00%  | R      | $\sqrt{3}$ | 1    | 1    | 2.30%  | 2.30%  | 8        |
| 20                                                             | SAR<br>correction                                           | В                      | 1.90%  | R      | $\sqrt{3}$ | 1    | 0.84 | 1.11%  | 0.90%  | 8        |
| 21                                                             | Liquid<br>conductivity<br>(meas.)                           | A                      | 0.50%  | N A    | 21         | 0.64 | 0.43 | 0.32%  | 0.26%  | 8        |
| 22                                                             | Liquid<br>cpermittivity<br>(meas.)                          | 1A                     | 0.16%  | Z      | 1          | 0.64 | 0.43 | 0.10%  | 0.07%  | 8        |
| 23                                                             | Temp.Unc<br>Conductivity                                    | в                      | 1.70%  | R      | $\sqrt{3}$ | 0.78 | 0.71 | 0.80%  | 0.80%  | 8        |
| 24                                                             | Temp.Unc<br>Permittivity                                    | в                      | 0.40%  | R      | $\sqrt{3}$ | 0.23 | 0.26 | 0.10%  | 0.10%  | 8        |
| Combined<br>standard<br>uncertainty                            | $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i}$                    | $\overline{\iota_i^2}$ |        | ST J   |            | 1    | 1,0  | 12.90% | 12.70% | 8        |
| Expanded<br>uncertainty<br>(confidence<br>interval of<br>95 %) | $u_e = 2u_c$                                                | ~                      |        | R      | K=2        |      | Sr C | 18.80% | 18.40% | 8        |
|                                                                |                                                             |                        | 7 Test | ing Te | sch        | not  |      |        |        |          |

# 5.10. System Check Results

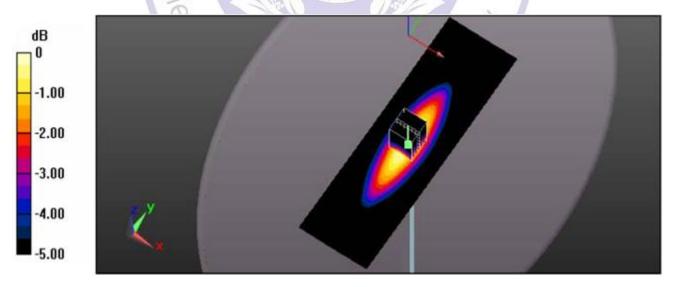
# System Performance Check at 450 MHz Head TSL

DUT: Dipole450 MHz; Type: D450V2; Serial: 1021

Date/Time: 08/08/2016

Communication System: DuiJiangJi; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 450 MHz;  $\sigma$  = 0.90 S/m;  $\epsilon_r$  = 44.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3842; ConvF(10.24, 10.24, 10.24); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 07/16/2016
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x201x1): Interpolated grid: dx=1.500 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 1.47 mW/g

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 40.85 V/m; Power Drift = 0.05dB Peak SAR (extrapolated) = 1.54 mW/g

# SAR(1 g) =1.196 mW/g; SAR(10 g) = 0.784 mW/g

Maximum value of SAR (measured) = 1.55 mW/g



0 dB = 1.55 mW/g = 1.90 dB mW/g

System Performance Check 450MHz Body 250mW

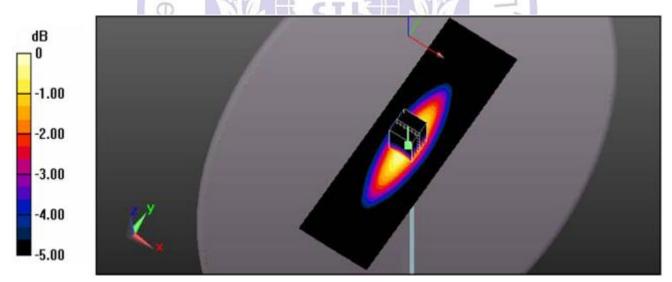
#### System Performance Check at 450 MHz Body TSL

DUT: Dipole450 MHz; Type: D450V2; Serial: 1021

Date/Time: 08/08/2016

Communication System: DuiJiangJi; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 450 MHz;  $\sigma$  = 0.97 S/m;  $\epsilon_r$  = 57.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3842; ConvF(10.28, 10.28, 10.28); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 07/16/2016
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x201x1): Interpolated grid: dx=1.500 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 1.35 mW/g

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 45.2 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.41 mW/g

# SAR(1 g) = 1.157 mW/g; SAR(10 g) = 0.760 mW/g

Maximum value of SAR (measured) = 1.45 mW/g



0 dB = 1.45 mW/g = 1.61 dB mW/g

System Performance Check 450MHz Body 250mW

# 5.11. SAR Test Graph Results

SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

# Face Held for FM Modulation at 12.5KHz Channel Separation, Front towards Phantom 462.6125MHz

## Date: 08/08/2016

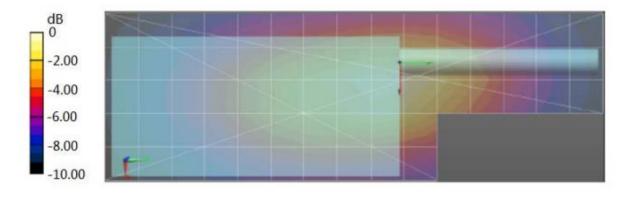
Communication System: PTT 450; Frequency: 462.6125 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 450.0 MHz;  $\sigma$  = 0.89 S/m;  $\epsilon_r$  = 45.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3842; ConvF(10.24, 10.24, 10.24); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 07/16/2016
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (67x134x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.92 mW/g


#### Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=8mm, dz=5mm

Reference Value = 29.35 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.95 mW/g

# SAR(1 g) = 0.745 mW/g; SAR(10 g) = 0.414 mW/g

Maximum value of SAR (measured) = 0.89 mW/g



 $<sup>0 \</sup>text{ dB} = 0.89 \text{ mW/g} = -0.506 \text{ dB mW/g}$ 

Figure 1: Face held for FM Modulation at 12.5KHz Channel Separation Front towards Phantom 462.6125 MHz

#### V1.0

#### Page 30 of 54

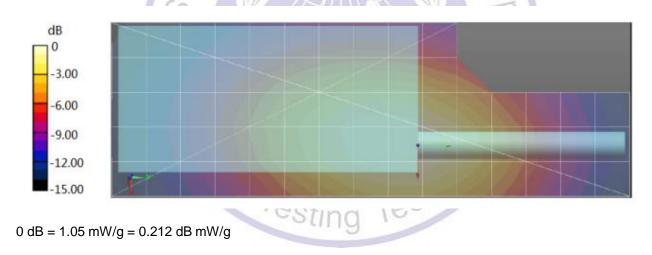
# Body- Worn FM Modulation at 12.5KHz Channel Separation, Front towards Ground 462.6125MHz

Date: 08/08/2016

Communication System: PTT 450; Frequency: 462.6125 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f = 450.0 MHz;  $\sigma$  = 0.97 S/m;  $\epsilon_r$  = 58.85;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section : Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3842; ConvF(10.28, 10.28, 10.28); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 07/16/2016
- Phantom: ELI 4.0; Type: QDOVA001BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)


**Area Scan (67x134x1):** Interpolated grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 1.11 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=8mm, dz=5mm

Reference Value = 32.14 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.56 mW/g

```
SAR(1 g) = 0.923 mW/g; SAR(10 g) = 0.518 mW/g
```

```
Maximum value of SAR (measured) = 1.05 mW/g
```



Plot 2: Body-worn for FM Modulation at 12.5KHz Channel Separation; Front towards Ground 462.6125 MHz

# 6. Calibration Certificate

# 6.1. Probe Calibration Ceriticate

| Accredited by the Swiss Accre<br>The Swiss Accreditation Ser<br>Multilateral Agreement for th                                                                                                                                              | vice is one of the signatorie                                                                                                       | s to the EA                                                                                                                                                                                                                                                                    | Schweizerischer Kalibrierdienst<br>Service suisse d'étalonnage<br>Servizio svizzero di taratura<br>Swiss Calibration Service<br>creditation No.: SCS 0108 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client CIQ (Shenzh                                                                                                                                                                                                                         |                                                                                                                                     |                                                                                                                                                                                                                                                                                | EX3-3842_Aug15                                                                                                                                            |
| CALIBRATION                                                                                                                                                                                                                                | CERTIFICATI                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                           |
| Object                                                                                                                                                                                                                                     | EX3DV4 - SN:38                                                                                                                      | 42                                                                                                                                                                                                                                                                             |                                                                                                                                                           |
| Calibration procedure(s)                                                                                                                                                                                                                   | QA CAL-01.v9, C<br>Calibration proce                                                                                                | 0A CAL-12.v9, QA CAL-23.v5, QA<br>dure for dosimetric E-field probes                                                                                                                                                                                                           | CAL-25.v6                                                                                                                                                 |
| Calibration date:                                                                                                                                                                                                                          | August 26, 2015                                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                                                                                                           |
|                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                | and humidity < 70%.                                                                                                                                       |
| Calibration Equipment used (f                                                                                                                                                                                                              | M&TE critical for calibration)                                                                                                      |                                                                                                                                                                                                                                                                                | and numbery < 7076.                                                                                                                                       |
| Calibration Equipment used (f<br>Primary Standards                                                                                                                                                                                         | VBTE critical for calibration)                                                                                                      | Cal Date (Certificate No.)                                                                                                                                                                                                                                                     | Scheduled Calibration                                                                                                                                     |
| Primary Standards<br>Power meter E4419B                                                                                                                                                                                                    | ID<br>GB41293874                                                                                                                    | 01-Apr-15 (No. 217-02128)                                                                                                                                                                                                                                                      | Scheduled Calibration<br>Mar-16                                                                                                                           |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A                                                                                                                                                                             | ID<br>GB41293874<br>MY41498087                                                                                                      | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)                                                                                                                                                                                                                         | Scheduled Calibration<br>Mar-16<br>Mar-16                                                                                                                 |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator                                                                                                                                                | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)                                                                                    | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02129)                                                                                                                                                                                            | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16                                                                                                       |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                  | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (202)                                                                 | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02129)<br>01-Apr-15 (No. 217-02132)                                                                                                                                  | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16                                                                                             |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator                                                                                    | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)                                              | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02129)<br>01-Apr-15 (No. 217-02132)<br>01-Apr-15 (No. 217-02133)                                                                                                     | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16                                                                         |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                  | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (202)                                                                 | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02129)<br>01-Apr-15 (No. 217-02132)                                                                                                                                  | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16                                                                                             |
| Primary Standards<br>Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4                                                  | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660    | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02132)<br>01-Apr-15 (No. 217-02133)<br>30-Dec-14 (No. ES3-3013_Dec14)<br>14-Jan-15 (No. DAE4-660_Jan15)                                                              | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jan-16                                                               |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe E S3DV2<br>DAE4<br>Secondary Standards                          | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660<br>ID                 | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02132)<br>01-Apr-15 (No. 217-02133)<br>30-Dec-14 (No. ES3-3013_Dec14)<br>14-Jan-15 (No. DAE4-660_Jan15)<br>Check Date (in house)                                     | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jan-16<br>Scheduled Check                                            |
| Primary Standards<br>Power motor E44198<br>Power sensor E4419A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe E S3DV2<br>DAE4<br>Secondary Standards<br>RE generator HP 8648C | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660<br>ID<br>US3642U01700 | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02132)<br>01-Apr-15 (No. 217-02133)<br>30-Dec-14 (No. ES3-3013_Dec14)<br>14-Jan-15 (No. DAE4-660_Jan15)<br>Check Date (in house)<br>4-Aug-99 (in house check Apr-13) | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jan-16<br>Scheduled Check<br>In house check: Apr-16                  |
| Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe E S3DV2<br>DAE4<br>Secondary Standards                          | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660<br>ID                 | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02132)<br>01-Apr-15 (No. 217-02133)<br>30-Dec-14 (No. ES3-3013_Dec14)<br>14-Jan-15 (No. DAE4-660_Jan15)<br>Check Date (in house)                                     | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jan-16<br>Scheduled Check                                            |
| Primary Standards<br>Power motor E44198<br>Power sensor E4419A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe E S3DV2<br>DAE4<br>Secondary Standards<br>RE generator HP 8648C | ID<br>GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5277 (20x)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660<br>ID<br>US3642U01700 | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02132)<br>01-Apr-15 (No. 217-02133)<br>30-Dec-14 (No. ES3-3013_Dec14)<br>14-Jan-15 (No. DAE4-660_Jan15)<br>Check Date (in house)<br>4-Aug-99 (in house check Apr-13) | Scheduled Calibration<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jan-16<br>Scheduled Check<br>In house check: Apr-16                  |

Certificate No: EX3-3842\_Aug15

Page 1 of 11

## Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

#### Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx.y.z DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization op o rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013. "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- IEC 62209-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, y.z: Assessed for E-field polarization () = 0 (f 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the  $E^2$ -field uncertainty inside TSL (see below *ConvF*)
- NORM(f)x,y,z = NORMx,y,z \* frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y.z; Bx,y.z; Cx,y.z; Dx,y.z; VRx,y.z; A. B. C. D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3842\_Aug15

Page 2 of 11

EX3DV4 - SN:3842

August 26, 2015

# Probe EX3DV4

# SN:3842

Manufactured: Calibrated: October 25, 2011 August 26, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3842\_Aug15

Page 3 of 11

EX3DV4-SN:3842

August 26, 2015

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

#### **Basic Calibration Parameters**

|                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|----------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^{A}$ | 0.34     | 0.53     | 0.42     | ± 10.1 %  |
| DCP (mV) <sup>h</sup>      | 101.6    | 99.9     | 99.5     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dBõV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|-----------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0       | 1.0 | 0.00    | 152.0    | ±3.0 %                    |
|     |                           | Y | 0.0     | 0.0       | 1.0 |         | 143.5    |                           |
|     |                           | Z | 0.0     | 0.0       | 1.0 |         | 147.4    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 <sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).
 <sup>B</sup> Numerical linearization parameter, uncertainty not required.
 <sup>E</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the first-statement of the square of field value.

Page 4 of 11

EX3DV4- SN:3842

August 26, 2015

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 450                  | 43.5                                  | 0.94                               | 10.24   | 10.24   | 10.24   | 0.18               | 1.20                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 9.45    | 9.45    | 9.45    | 0.34               | 0.93                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 9.04    | 9.04    | 9.04    | 0.18               | 1.60                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 8.92    | 8.92    | 8.92    | 0.22               | 1.45                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 7.80    | 7.80    | 7.80    | 0.35               | 0.80                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 7.54    | 7.54    | 7.54    | 0.29               | 0.80                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 6.82    | 6.82    | 6.82    | 0.35               | 0.86                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 6.74    | 6.74    | 6.74    | 0.37               | 0.92                       | ± 12.0 %     |

# Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity is durancies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ( $\epsilon$  and  $\sigma$ ) are relaxed to to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3842\_Aug15

Page 5 of 11

Page 36 of 54

EX3DV4- SN:3842

August 26, 2015

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 450                  | 56.7                                  | 0.94                               | 10.28   | 10.28   | 10.28   | 0.10               | 1.20                       | ± 13.3 %     |
| 750                  | 55.5                                  | 0.96                               | 9.38    | 9.38    | 9.38    | 0.35               | 1.02                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                               | 9.18    | 9.18    | 9.18    | 0.27               | 1.22                       | ± 12.0 %     |
| 900                  | 55.0                                  | 1.05                               | 9.11    | 9.11    | 9.11    | 0.26               | 1.17                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                               | 7.46    | 7.46    | 7.46    | 0.35               | 0.80                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                               | 7.29    | 7.29    | 7.29    | 0.40               | 0.86                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                               | 6.87    | 6.87    | 6.87    | 0.34               | 0.80                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                               | 6.76    | 6.76    | 6.76    | 0.32               | 0.80                       | ± 12.0 %     |

# Calibration Parameter Determined in Body Tissue Simulating Media

<sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity calibration frequencies below 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>C</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

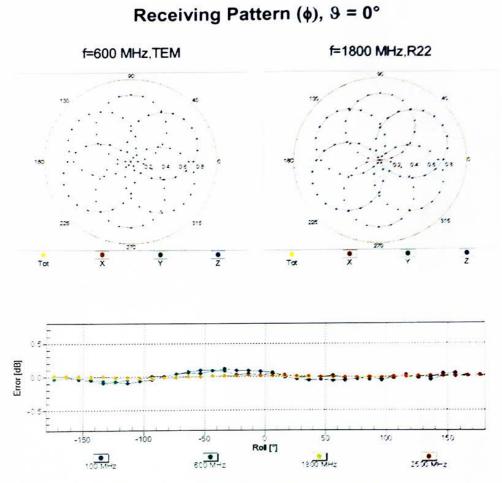
Certificate No: EX3-3842\_Aug15

Page 6 of 11

EX3DV4- SN:3842

August 26, 2015

## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5 1.4 1.3 Frequency response (normalized) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 ò 1500 f [MHz] 500 1000 2000 2500 3000 . TEM • R22


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

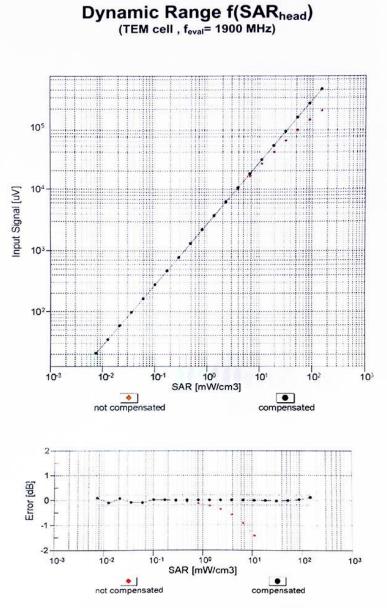
Certificate No: EX3-3842\_Aug15

Page 7 of 11

EX3DV4- SN 3842

A. 1910 28 2015

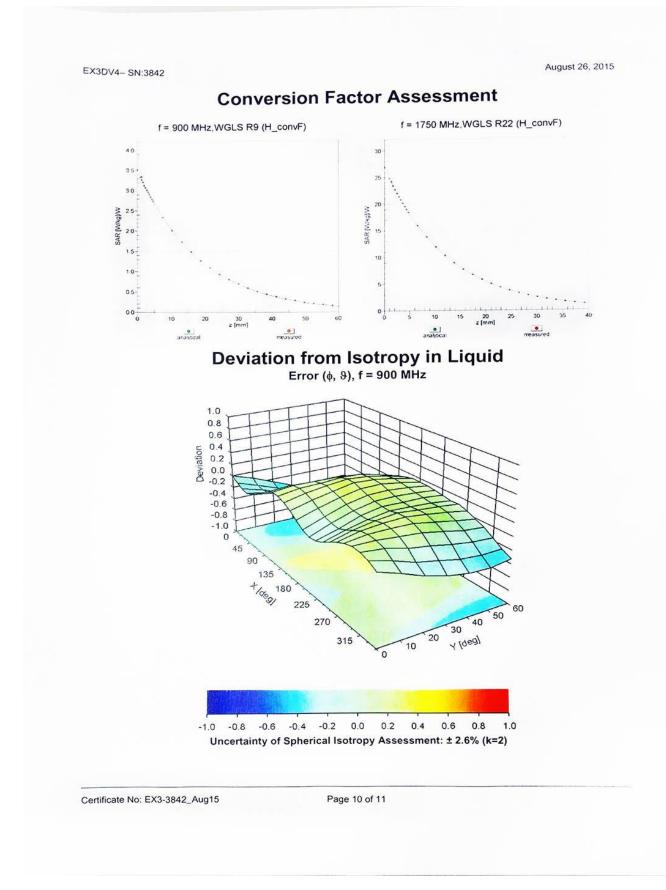





Certificate No: EX3-3842\_Aug15

Page 8 of 11

EX3DV4- SN:3842


August 26, 2015



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3842\_Aug15

Page 9 of 11



EX3DV4- SN:3842

August 26, 2015

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

## Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 66.3       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Certificate No: EX3-3842\_Aug15

Page 11 of 11

## 6.2. D450V3 Dipole Calibration Certificate

| ichmid & Partrer<br>Engineering AG<br>aughaseetrasee 40, 9904 Zarist                                                                                                                                                                                      | y of<br>6, Switzerland                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S Schweizerscher Kalibrierdienet<br>C Service suisse d'étalensage<br>Servizie svitzere di taratura<br>S Ewiss Calibration Service |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| consisted by the Swiss According<br>the Swiss Accorditation Service<br>Authinteer Agreement for the re                                                                                                                                                    | is one of the signatories                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Accreditation No.: SCS 0108                                                                                                       |
| lient Auden                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                              | Cartificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No: D450V3-1072_Nov15                                                                                                             |
| CALIBRATION C                                                                                                                                                                                                                                             | ERTIFICATE                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
| Dianci                                                                                                                                                                                                                                                    | D450V3 - SN: 10                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| Caltrator providunțe)                                                                                                                                                                                                                                     | QA CAL-15.v8<br>Calibration proces                                                                                                                                                                                                                           | dure for dipole validation kits b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oelow 700 MHz                                                                                                                     |
| Califration data                                                                                                                                                                                                                                          | Novombor 25, 20                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| Calibration Equipment used (M47                                                                                                                                                                                                                           | TE willow be authoritati                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                              | California Plantina in 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extendence Collination                                                                                                            |
|                                                                                                                                                                                                                                                           | 10 #                                                                                                                                                                                                                                                         | Cal Date (Cartificate Ne.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Scheduled Calibration                                                                                                             |
| Luvor meter E+4100                                                                                                                                                                                                                                        | 10 e<br>020412936074                                                                                                                                                                                                                                         | 01-Apr-15 (No. 217-02120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scheduled Calibration<br>Mar-16<br>Mar-17                                                                                         |
| luwor meter E44100<br>Itwar setstr E44123                                                                                                                                                                                                                 | 10 #                                                                                                                                                                                                                                                         | and the period of the book of the second s | Mar-16                                                                                                                            |
| 'Levor meter E44130<br>towar seiscr E4412A<br>Referance 3 dB Attenuator                                                                                                                                                                                   | 10 e<br>0041293074<br>MY41498087                                                                                                                                                                                                                             | 01 Apr 15 (No. 217-02128)<br>01 Apr 15 (No. 217-02128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar-16<br>Mar-10                                                                                                                  |
| fuwor meter E+4100<br>Hower sensor E44125<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                                                      | 10 e<br>020412930074<br>9/141498067<br>SNI: SS054 (3e)                                                                                                                                                                                                       | 01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)<br>01-Apr-15 (No. 217-02128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-16<br>Mar-10<br>Mar-16                                                                                                        |
| fuwor meter EH4130<br>Hower sensor EH412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>You-N mismatch combination                                                                                                                        | 10 #<br>0041293074<br>MY41498087<br>SNESS564 (3e)<br>SNESS564 (3e)<br>SNESS564 (3e)                                                                                                                                                                          | 01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02121)<br>01-Apr 15 (No. 217-02124)<br>30-Dao 14 (No. ET3-1507, De14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar-16<br>Mar-10<br>Mar-16<br>Mar-16<br>Mar-10<br>Dec-15                                                                          |
| fuwor meter E44130<br>Hower sensor E44125<br>Reference 2 dB Attenuator<br>Reference 20 dB Attenuator<br>lype-N mianatch continuation<br>Reference Probe E1107/€                                                                                           | 10 #<br>0041299074<br>MY4149007<br>SH \$5054 (3e)<br>SH 50305 (20)<br>SH 5047.27(0532)                                                                                                                                                                       | 01-Apr-15 (No. 217-02120)<br>01-Apr-15 (No. 217-02120)<br>01-Apr-15 (No. 217-02120)<br>01-Apr-15 (No. 217-02120)<br>01-Apr-15 (No. 217-02120)<br>01-Apr-15 (No. 217-02120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar-16<br>Mar-10<br>Mar-16<br>Mar-16<br>Mar-10                                                                                    |
| Powar meter E44180<br>Powar sanscr E4412A<br>Referance 3 dB Attenuator<br>Referance 20 dB Attenuator<br>Type-N manutch contrination<br>Referance Proto E110/YE<br>DAE4                                                                                    | 10 #<br>0041299074<br>Wh4149807<br>SM S5054 (3c)<br>SM S5054 (2c)<br>SM S5047 2/ 0632*<br>SM 5047 2/ 0632*                                                                                                                                                   | 01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02121)<br>01-Apr 15 (No. 217-02124)<br>30-Dao 14 (No. ET3-1507, De14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar-16<br>Mar-10<br>Mar-16<br>Mar-16<br>Mar-10<br>Dec-15                                                                          |
| *Lwor meter EH4180<br>*bwar salastr E4412A<br>Referance 3 dB Attenuator<br>*aferance 20 dB Attenuator<br>(ype-N mismatch continuition<br>Referance Probe ET3DVE<br>DAEA<br>Secondory Standards                                                            | 10 #<br>0041298074<br>MY41498087<br>SN SS054 (2e)<br>SN S061 (2e)<br>SN S041 (270587<br>SN 1607<br>0N 054                                                                                                                                                    | 01 Apr 15 (No. 217-02120)<br>01 Apr 15 (No. 217-02120)<br>00 Apr 14 (No. 213-1507, Dect 4)<br>00 Apr 16 (No. DAE 4 GM_A/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Disc-15<br>Jul-16                                                               |
| *Lwor meter EH4180<br>*bwar satistr E44124<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe E13DVE<br>DAEA<br>Secondorr Standards<br>Reference 19* 00400                                                                     | 10 #<br>0041298074<br>MY4149607<br>SN 55554 (5e)<br>3N 35036 (20)<br>SN 5047,27/0582*<br>SN 1607<br>0N 054                                                                                                                                                   | 01 Apr 15 (No. 217-02120)<br>01 Apr 15 (No. 217-02120)<br>00 Apr 16 (No. 217-02120)<br>00 Apr 16 (No. 217-02120)<br>00 Apr 16 (No. 247-010)<br>Chork Doco (in heads)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jai-16<br>Schectand Check                                             |
| Power meter EH4130<br>Power sallstir EH4130<br>Reference 21 dB Attenuator<br>Reference 20 dD Attenuator<br>Pateronee Photo ET3D/YE<br>DAEH<br>Secondorri Standards<br>RF paramator HP 60400                                                               | 10 #<br>0041299074<br>MY4149067<br>SN SS056 (3c)<br>SN S0058 (20)<br>SN 5047,2705327<br>SN 1507<br>0N 054<br>10 #<br>U33042061700                                                                                                                            | 01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>00-Dat 16 (No. 213-1607, Dat 14)<br>00-Dat 15 (No. DAE + GHA)(10)<br>Chock Doce in heatest)<br>04-Aug 35 is heatest Apr 13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jai-18<br>Schectated Check<br>Ischoose sheck: Apr-15                  |
| Pernary Bandards<br>Power meter E44130<br>Power seasor E4412A<br>Reference 3 d9 Attenuator<br>Reference 24 d5 Attenuator<br>Paterence Probe E130VE<br>DAE4<br>Seconders Standards<br>RF peression HP 60400<br>Network Analyzer HP 87538<br>Calibrated by: | 10 #<br>0041299074<br>Wh41498087<br>SM 55054 (3e)<br>SM 55054 (3e)<br>SM 55047 (20)<br>SM 55047 (20)<br>SM 5047 (20)<br>SM 5047<br>DN 054<br>10 #<br>US3042001700<br>US307390000 34200                                                                       | 01 Apr 15 (No. 217-02128)<br>01 Apr 15 (No. 217-02128)<br>01 Apr 15 (No. 217-02128)<br>01 Apr 15 (No. 217-02139)<br>01 Apr 15 (No. 217-02139)<br>01 Apr 15 (No. 217-02139)<br>00 Jul 15 (No. 217-02139)<br>04 Aug 46 do house choice Apr 13)<br>18 Oct 01 (in house choice Apr 13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jul-18<br>Schestated Check<br>Is house sheck Apr-15                   |
| Powor meter E44130<br>Powor seasor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Type-N menator combination<br>Reference Probe E15076<br>DAE4<br>Secondary Standards<br>PE paramator HP 60400<br>Network Analyzar HP 67535         | 10 #<br>0041239074<br>M141498067<br>SM SS054 (26)<br>SM SS054 (26)<br>SM SS054 (26)<br>SM SS054 (26)<br>SM SS47 27 (06)<br>SM SS47 27 (06)<br>SM SS47 27 (06)<br>SM SS47 27 (06)<br>SM SS47 28 (06)<br>D #<br>USS042061700<br>USS9 39 (06) D 42 (05)<br>Name | 01-Apr 15 (No. 217-02120)<br>01-Apr 15 (No. 217-02120)<br>00-Aug 10 (No. 513-1507_0ac14)<br>00-Aug 10 (No. 513-1507_0ac14)<br>04-Aug 10 (In house check Apr 13)<br>15 Oct 401 (In house check Apr 13)<br>15 Oct 401 (In house check Apr 13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Mar-16<br>Dec-15<br>Jul-18<br>Schestated Check<br>Is house sheck Apr-15                   |

Certilicate No. 0400V0-1072\_Nov15

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8094 Zurich, Switzerland



S Schweizerischer Kalibrierdienst C Service suisse d'étalonnege Servizio svizzero di taratura

S Swiss Calibration Service

Appreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration carificates
Glossary:
TSL tissue simulating Iquid

| sensitivity in TSL / NORM x,y,z |
|---------------------------------|
| not applicable or not measured  |
|                                 |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Fate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, 'Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)', March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the covarage factor k=2, which for a normal distribution corresponds to a covarage probability of approximately 95%.

Certilicate No: D450V3-1072\_Nov15

Testing Techn

#### **Measurement Conditions**

| DASY Version                 | DASY5                  | V52.8.8                     |
|------------------------------|------------------------|-----------------------------|
| Extrapolation                | Advanced Extrapolation |                             |
| Phantom                      | ELI4 Flat Phantom      | Shell thickness, 2 ± 0,2 mm |
| Distance Dipole Center - TSL | 16 mm                  | with Spacer                 |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |                             |
| Frequency                    | 450 MHz ± 1 MHz        |                             |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity    |
|-----------------------------------------|-----------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 °C         | 43.5         | 0.87 mhoim      |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 44.0 ± 6 %   | 0.89 mho/m ±6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                 |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 1.10 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1//               | 4.57 W/kg ± 18.1 % (k=2) |
|                                                                         |                                 |                          |
| SAR everaged over 10 cm <sup>2</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>2</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 0.778 W/kg               |

#### Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity      |
|-----------------------------------------|-----------------|--------------|-------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 56.7         | 0.94 mho/m        |
| Measured Body TSL parameters            | 3° (S.0 ± 0.55) | 56.3 ± 0 %   | % 8 ± m/or/m 28.0 |
| Body TSL temperature change during test | < 0.5 °C        |              |                   |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 1.13 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 4.48 W/kg ± 18.1 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 0.744 W/kg               |

Certificate No: D450V3-1072\_Nov15

Page 3 of 8



## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| impedance, transformed to feed point | 67.0 Ω - 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.2 cB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 53.6 Ω - 9.0 jΩ |  |
|--------------------------------------|-----------------|--|
| Betum Loss                           | - 20.6 dB       |  |

#### General Anterna Parameters and Design

| Electrical Delay (one direction) | 1.356 ng |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxis cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this shange. The overall dipole length is still according to the Sterlard.

according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be domaged.

#### Additional EUT Data

| Menufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 25, 2009 |

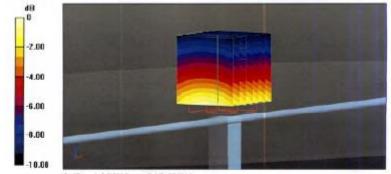
| Page 4 of 8 |                                 |
|-------------|---------------------------------|
| -m          |                                 |
| Sting Tech  |                                 |
| oung .      |                                 |
|             | Page 4 of 8<br>Sting Technology |

## DASY5 Validation Report for Head TSL

Date: 25.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

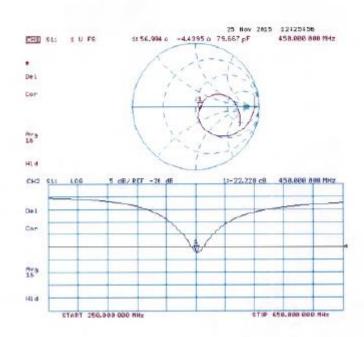
#### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1072


 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 450 MHz} \\ \mbox{Medium parameters used: } f = 450 \mbox{ MHz}; \sigma = 0.89 \mbox{S/m}; \epsilon_t = 44; \mbox{$\rho$} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$ 

DASY52 Configuration:

- Probe: E13DV6 SN1507; ConvF,6.58, 6.58, 6.58); Calibrated: 30.12.2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- · Phantom ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY5252.8.8(1222); SEMCAD X 14.6.10(7331)

#### Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.53 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.778 W/kg Maximum value of SAR (measured) = 1.25 W/kg



0 dB = 1.25 W/kg = 0.97 dBW/kg

| Certificate No: D450V3-1072_Nov15 | Page 5 of 8 |      |
|-----------------------------------|-------------|------|
| 14 7                              |             | chin |
| 16                                | Sting Te    | 30.  |
|                                   |             |      |

Impedance Measurement Plot for Head TSL



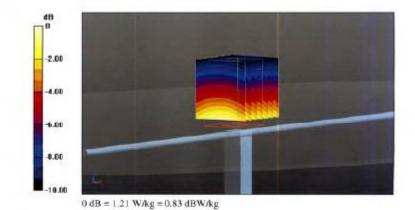


### DASY5 Validation Report for Body TSL

Date: 25.11.2015

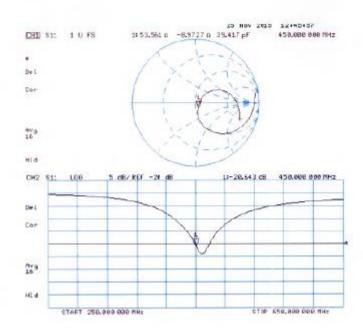
Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1072


Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz;  $\sigma$  = 0.95 S/m;  $\epsilon_r$  = 56.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ET3DV6 SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2014;
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- · Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY5252.8.8(1222); SEMCAD X 14.6.10(7331)


#### Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 36.53 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.744 W/kg Maximum value of SAR (measured) = 1.21 W/kg





Impedance Measurement Plot for Body TSL





## 6.3. DAE4 Calibration Certificate

|                                                                                                                                                                               | yuan Road, Haidian D                                                                                     | istrict, Beijing, 100191, China<br>+86-10-62304633-2209                                                                                                                                                 | " Internation                                            | CALIBRATION<br>No. L0570                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|
| Tel: +86-10-623<br>E-mail: ettlight                                                                                                                                           | inattLeom Http                                                                                           | //www.chinattl.en                                                                                                                                                                                       | icate No: Z15-9                                          |                                                                           |
| Client : Auc                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                         | ICale 140, 215-5                                         | 1035                                                                      |
| SALIBRATION                                                                                                                                                                   | CERTIFICA                                                                                                | IE.                                                                                                                                                                                                     |                                                          |                                                                           |
| Object                                                                                                                                                                        | DAE4                                                                                                     | I - SN: 905                                                                                                                                                                                             |                                                          |                                                                           |
| Calibration Procedure(s)                                                                                                                                                      | FD-Z                                                                                                     | 11-2-002-01                                                                                                                                                                                             |                                                          |                                                                           |
|                                                                                                                                                                               | Calibre (DAE                                                                                             | ration Procedure for the Data .<br>x)                                                                                                                                                                   | Acquisition Electro                                      | onics                                                                     |
| Calibration date:                                                                                                                                                             | July 1                                                                                                   | 6, 2016                                                                                                                                                                                                 |                                                          |                                                                           |
| measurements(SI). The r<br>pages and are part of the                                                                                                                          | measurements an<br>e certificate.                                                                        | a traceability to national standard<br>d the uncertainties with confidence                                                                                                                              | e probability are gi                                     | ven on the following                                                      |
| measurements(SI). The r<br>pages and are part of the<br>All calibrations have be<br>humidity<70%.                                                                             | measurements an<br>a certificate.<br>een conducted in                                                    | d the uncertainties with confidence<br>the closed laboratory facility:                                                                                                                                  | e probability are gi                                     | ven on the following                                                      |
| measurements(SI). The r<br>pages and are part of the                                                                                                                          | measurements an<br>e certificate.<br>een conducted in<br>sed (M&TE critical                              | d the uncertainties with confidence<br>the closed laboratory facility:                                                                                                                                  | e probability are gi<br>environment temp                 | ven on the following                                                      |
| measurements(SI). The r<br>pages and are part of the<br>All calibrations have be<br>humidity<70%.<br>Calibration Equipment us                                                 | measurements an<br>e certificate.<br>een conducted in<br>sed (M&TE critical                              | d the uncertainties with confidence<br>the closed laboratory facility:<br>i for calibration)                                                                                                            | e probability are gi<br>environment temp<br>No.) Schedul | ven on the following<br>perature(22±3)*C and                              |
| measurements(SI). The in<br>bages and are part of the<br>All calibrations have be<br>humidity<70%.<br>Calibration Equipment us<br>Primary Standards                           | measurements an<br>e certificate.<br>sen conducted in<br>sed (M&TE critical<br>ID # C                    | d the uncertainties with confidence<br>t the closed laboratory facility:<br>I for calibration)<br>cal Date(Calibrated by, Certificate                                                                   | environment temp<br>No.) Schedul<br>257)                 | ven on the following<br>perature(22±3)*C and<br>ed Calibration            |
| neasurements(SI). The in<br>pages and are part of the<br>All calibrations have be<br>numidity<70%.<br>Calibration Equipment us<br>Primary Standards<br>Process Calibrator 753 | measurements an<br>e certificate.<br>sed conducted in<br>sed (M&TE critical<br>ID # C<br>1971018         | d the uncertainties with confidence<br>in the closed laboratory facility:<br>I for calibration)<br>cal Date(Calibrated by, Certificate<br>06-July-16 (CTTL, No:J15X042<br>Function                      | environment temp<br>No.) Schedul<br>257)                 | ven on the following<br>perature(22±3)*C and<br>ed Calibration<br>July-16 |
| neasurements(SI). The r<br>bages and are part of the<br>All calibrations have be<br>humidity<70%.<br>Calibration Equipment us<br>Primary Standards                            | measurements an<br>e certificate.<br>een conducted in<br>sed (M&TE critical<br>ID # C<br>1971018<br>Name | d the uncertainties with confidence<br>in the closed laboratory facility:<br>I for calibration)<br>cal Date(Calibrated by, Certificate<br>06-July-16 (CTTL, No:J15X042<br>Function<br>SAR Test Engineer | environment temp<br>No.) Schedul<br>257)                 | ven on the following<br>perature(22±3)*C and<br>ed Calibration<br>July-16 |

Certificate No: Z15-97093

Page 1 of 3

X

| TT                                                                   | In Collaboration with                                 |
|----------------------------------------------------------------------|-------------------------------------------------------|
|                                                                      |                                                       |
| Add: No.51 Xueyuan<br>Tel: +86-10-6230463:<br>E-mail: cttl@chinattl. |                                                       |
| Glossary:                                                            |                                                       |
| DAE                                                                  | data acquisition electronics                          |
| Connector angle                                                      | information used in DASY system to align probe sensor |
|                                                                      | to the robot coordinate system.                       |

## Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement. Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z15-97093

Page 2 of 3



Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

## DC Voltage Measurement

| AVD - Convener Re | solution nome  | nai       |                   |                   |
|-------------------|----------------|-----------|-------------------|-------------------|
| High Range:       | 1LSB =         | 6.1µV.    | full range =      | -100+300 mV       |
| Low Range:        | 1LSB =         | 61nV .    | full range =      | -1+3mV            |
| DASY measuremen   | nt parameters: | Auto Zero | Time: 3 sec; Meas | uring time: 3 sec |

| Calibration Factors | x                     | Y                     | z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.672 ± 0.15% (k=2) | 405.235 ± 0.15% (k=2) | 404.825 ± 0.15% (k=2) |
| Low Range           | 3.98116 ± 0.7% (k=2)  | 4.00286 ± 0.7% (k=2)  | 3.99735 ± 0.7% (k=2)  |

### **Connector Angle**

| Connector Angle to be used in DASY system | 269° ± 1 ° |
|-------------------------------------------|------------|
| Connector Angle to be used in DASY system | 269°±1°    |

Certificate No: Z15-97093

Page 3 of 3

# 7. Test Setup Photos



Photograph of the depth in the Head Phantom (450MHz)



Photograph of the depth in the Body Phantom (450MHz)



Face-held, the front of the EUT towards phantom (The distance was 25mm between EUT and phantom)



Body-worn, the front of the EUT towards ground (The distance was 0mm between EUT and phantom)

