

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180400335301 Page: 1 of 52

TEST REPORT

Application No.:	SZEM1804003353CR
Applicant:	STYR Labs Inc.
Address of Applicant:	16416 N 92nd St Suite B105 Scottsdale, Arizona 85260, United States
Manufacturer:	STYR Labs Inc.
Address of Manufacturer:	16416 N 92nd St Suite B105 Scottsdale, Arizona 85260, United States
Factory:	STYR Labs Inc.
Address of Factory:	16416 N 92nd St Suite B105 Scottsdale, Arizona 85260, United States
Equipment Under Test (EUT	·):
EUT Name:	GYFT Activity Tracker
Model No.:	GFT1
FCC ID:	2AJDX-GFT1
Standard(s) :	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2018-05-08
Date of Test:	2018-05-11 to 2018-06-01
Date of Issue:	2018-06-04
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180400335301 Page: 2 of 52

	Revision Record						
Version	VersionChapterDateModifierRemark						
01		2018-06-04		Original			

Authorized for issue by:		
	Ceo. Ci	
	Leo Li /Project Engineer	
	Evic Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180400335301 Page: 3 of 52

2 Test Summary

Radio Spectrum Technical Requirement						
Item Standard Method Requirement Result						
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
Minimum 6dB	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Bandwidth	Subpart C 15.247	Section 11.8.1	C 15.247a(2)			
Conducted Peak	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Output Power	Subpart C 15.247	Section 11.9.1	C 15.247(b)(3)			
Power Spectrum	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Density	Subpart C 15.247	Section 11.10.2	C 15.247(e)			
Conducted Band	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Edges Measurement	Subpart C 15.247	Section 11.13.3.2	C 15.247(d)			
Conducted Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Emissions	Subpart C 15.247	Section 11.11	C 15.247(d)			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass		
Radiated Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass		
Emissions	Subpart C 15.247	Section 6.4,6.5,6.6	C 15.205 & 15.209			

Report No.: SZEM180400335301 Page: 4 of 52

3 Contents

			Page
1	COVER	PAGE	1
•	TEOTO		•
2	151.2	SUMMARY	3
3	CONTE	ENTS	4
			c
4			
		ESCRIPTION OF SUPPORT UNITS	
		EASUREMENT UNCERTAINTY	
		EST EOCATION	
	-	EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
_		MENT LIST	
5	EQUIPI	MENT LIST	ð
6	RADIO	SPECTRUM TECHNICAL REQUIREMENT	12
	6.1 AN	ITENNA REQUIREMENT	12
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	
7	RADIO	SPECTRUM MATTER TEST RESULTS	13
	7.1 Mi	INIMUM 6DB BANDWIDTH	12
		E.U.T. Operation	
	7.1.2	Test Setup Diagram	
		Measurement Procedure and Data	
		ONDUCTED PEAK OUTPUT POWER	
		E.U.T. Operation	
	7.2.2	Test Setup Diagram	
		Measurement Procedure and Data	
		DWER SPECTRUM DENSITY	
		E.U.T. Operation	
	7.3.2	Test Setup Diagram	
		Measurement Procedure and Data	
		E.U.T. Operation	
		Test Setup Diagram	
		Measurement Procedure and Data	
		ONDUCTED SPURIOUS EMISSIONS	
		E.U.T. Operation	
	7.5.2	Test Setup Diagram	
		Measurement Procedure and Data	
		ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
		E.U.T. Operation	
	7.6.2	Test Setup Diagram	
		Measurement Procedure and Data	
		ADIATED SPURIOUS EMISSIONS	
	7.7.1 7.7.2	E.U.T. Operation	
	1.1.2	Test Setup Diagram	20

Report No.: SZEM180400335301 Page: 5 of 52

	7.7.3	3 Measurement Procedure and Data	27
8	PHC	DTOGRAPHS	36
	8.1 8.2	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS TEST SETUP RADIATED SPURIOUS EMISSIONS TEST SETUP	
9	APP	ENDIX	
	9.1	Appendix 15.247	

Report No.: SZEM180400335301 Page: 6 of 52

4 General Information

4.1 Details of E.U.T.

Power supply:	Lithium Ion Battery: 3.7V 70mAh rechargeable battery which charged by USB port
Test voltage:	DC 3.7V
Bluetooth version:	BT 4.0 single mode
Operation Frequency	2402MHz to 2480MHz
Channel Spacing	2MHz
Number of Channels	40
Modulation Type	GFSK
Antenna Type	Wire Antenna
Antenna Gain	0dBi

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10 ⁻⁸
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	6 Conducted Spurious emissions 0.75dB	
7	DE Dedicted power	4.5dB (below 1GHz)
/	RF Radiated power	4.8dB (above 1GHz)
8	Dedicted Spurious emission test	4.5dB (Below 1GHz)
0	Radiated Spurious emission test	4.8dB (Above 1GHz)
9	Temperature test	1 ℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM180400335301 Page: 7 of 52

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180400335301 Page: 8 of 52

5 Equipment List

Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12	
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A	
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26	

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Power Spectrum Density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Report No.: SZEM180400335301 Page: 9 of 52

Conducted Band Edges Measurement							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Conducted Spurious Emissions							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Radiated Emissions which fall in the restricted bands							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12		
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01		
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26		
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12		
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16		
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26		
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27		
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01		
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01		

Report No.: SZEM180400335301 Page: 10 of 52

DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Radiated Spurious Emissions							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12		
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01		
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26		
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12		
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16		
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26		
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27		
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01		
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01		
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21		
Band filter	N/A	N/A	SEM023-01	N/A	N/A		

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04
2	MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2017-09-27	2018-09-26
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26
4	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01
5	Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
6	Coaxial Cable	SGS	N/A	SEM025-01	2017-07-13	2018-07-12

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiciton issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400335301 Page: 11 of 52

General used equipment							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28		
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28		
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28		
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07		

Report No.: SZEM180400335301 Page: 12 of 52

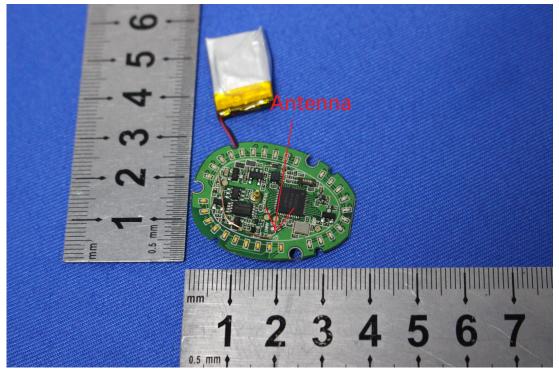
6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

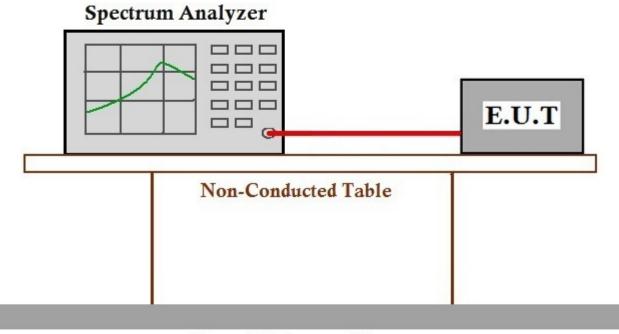
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM180400335301 Page: 13 of 52

7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:21 °CHumidity:58 % RHAtmospheric Pressure:1020 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

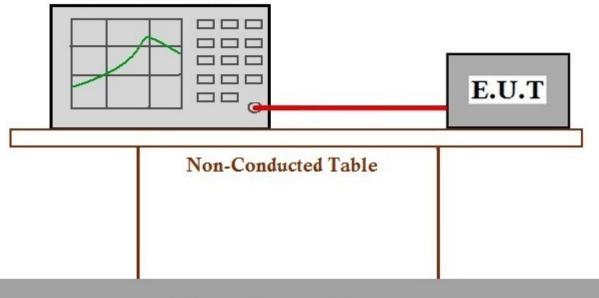
The detailed test data see: Appendix 15.247

Report No.: SZEM180400335301 Page: 14 of 52

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method:	ANSI C63.10 (2013) Section 11.9.1
Limit:	

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation


7.2.1 E.U.T. Operation

Operating Environment:

Temperature:	21	°C	Humidity:	58	% RH	Atmospheric Pressure: 1020	mbar
Test mode		X mode_ dulation	Keep the EUT	in coi	ntinuously	transmitting mode with GFSK	

7.2.2 Test Setup Diagram

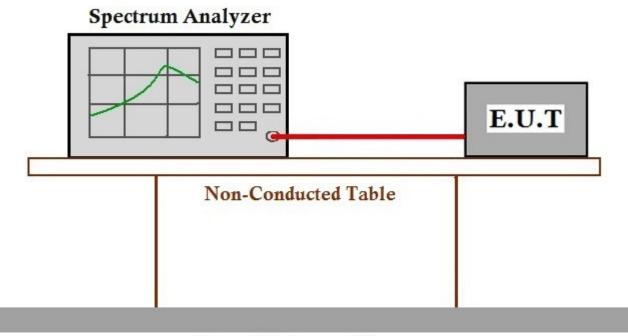
Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180400335301 Page: 15 of 52

7.3 Power Spectrum Density


Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	${\leq}8\text{dBm}$ in any 3 kHz band during any time interval of continuous transmission

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	21 °C	Humidity:	58	% RH	Atmospheric Pressure: 1020	mbar
Test mode	a:TX mode_ modulation	Keep the EUT	in cor	ntinuously t	ransmitting mode with GFSK	

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

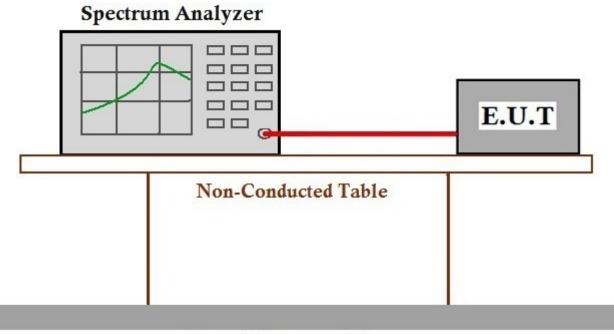
The detailed test data see: Appendix 15.247

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180400335301 Page: 16 of 52

7.4 Conducted Band Edges Measurement

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.13.3.2
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)


Report No.: SZEM180400335301 Page: 17 of 52

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	21 °C	Humidity:	58	% RH	Atmospheric Pressure: 102	20 mbar
Test mode	a:TX mode_Ke modulation	ep the EUT	in cor	ntinuously tr	ansmitting mode with GFSK	

7.4.2 Test Setup Diagram

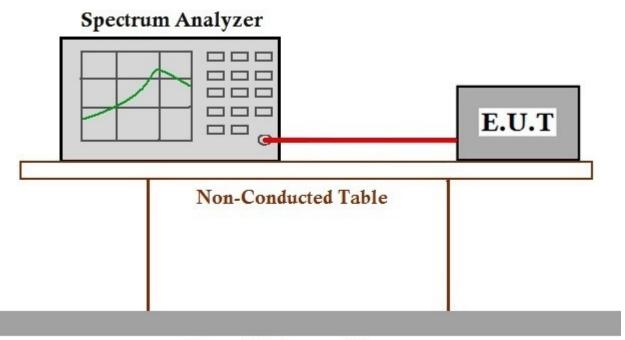
Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180400335301 Page: 18 of 52

7.5 Conducted Spurious Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	21	°C	Humidity:	58	% RH	Atmospheric Pressure:	1020	mbar
Test mode		X mode_Ke dulation	ep the EUT	in cor	ntinuously tra	ansmitting mode with GF	SK	

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

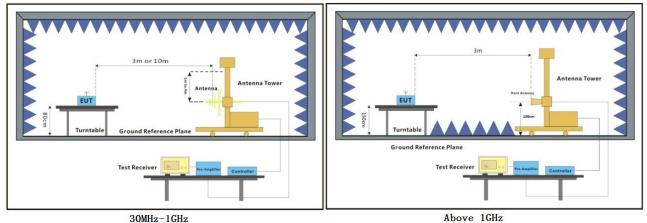
The detailed test data see: Appendix 15.247

Report No.: SZEM180400335301 Page: 19 of 52

7.6 Radiated Emissions which fall in the restricted bands

Test Requirement47 CFR Part 15, Subpart C 15.205 & 15.209Test Method:ANSI C63.10 (2013) Section 6.10.5Measurement Distance:3mLimit:Image: Construction of the section of t

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.6.1 E.U.T. Operation

Operating Environment:

Temperature:21 °CHumidity:58 % RHAtmospheric Pressure:1020 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulationmodemodemode

7.6.2 Test Setup Diagram

Report No.: SZEM180400335301 Page: 20 of 52

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

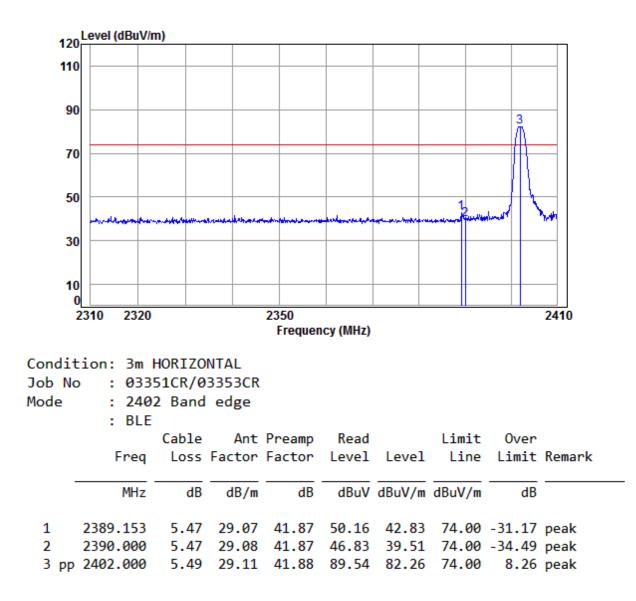
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

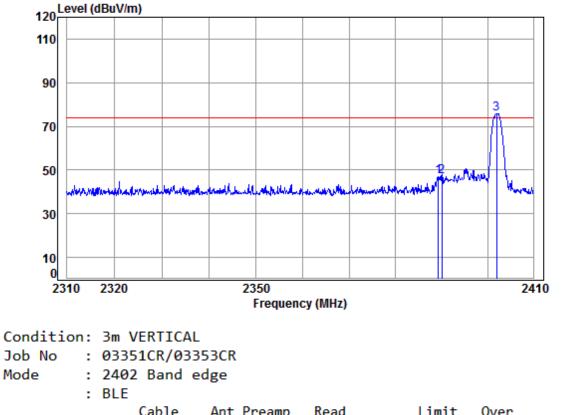
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

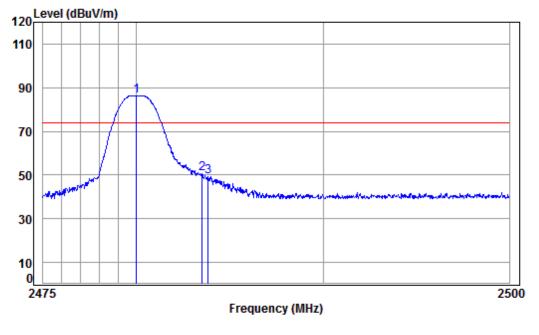
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180400335301 Page: 21 of 52


Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Report No.: SZEM180400335301 Page: 22 of 52

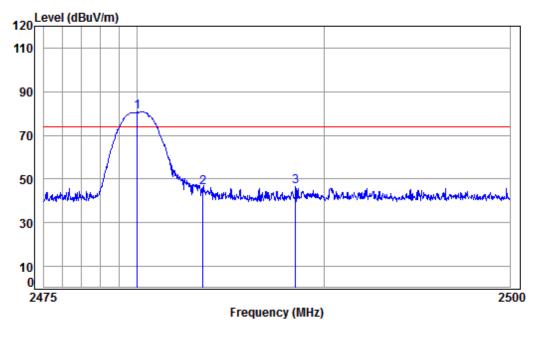
Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low



	Freq			Factor					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.254	5.47	29.08	41.87	54.39	47.07	74.00	-26.93	peak
2	2390.000	5.47	29.08	41.87	54.35	47.03	74.00	-26.97	peak
3 pp	2402.000	5.49	29.11	41.88	82.94	75.66	74.00	1.66	peak

Report No.: SZEM180400335301 Page: 23 of 52

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High


Condition: 3m HORIZONTAL

Job No Mode									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2480.000	5.59	29.34	41.91	93.41	86.43	74.00	12.43	peak
2	2483.500			41.91					
3	2483.821	5.60	29.35	41.91	56.14	49.18	74.00	-24.82	peak

Report No.: SZEM180400335301 Page: 24 of 52

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition: 3m VERTICAL

Job No Mode	: 2480 Band edge								
	: BLE	Cable	Ant	Preamp	Read		limit	0ver	
	_								
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
		5 50					74.00	<i>c c c c c c c c c c</i>	
1 pp	2480.000	5.59	29.34	41.91	87.67	80.69	74.00	6.69	реак
2	2483.500	5.60	29.35	41.91	52.97	46.01	74.00	-27.99	peak
3	2488.469	5.61	29.37	41.91	53.55	46.62	74.00	-27.38	peak

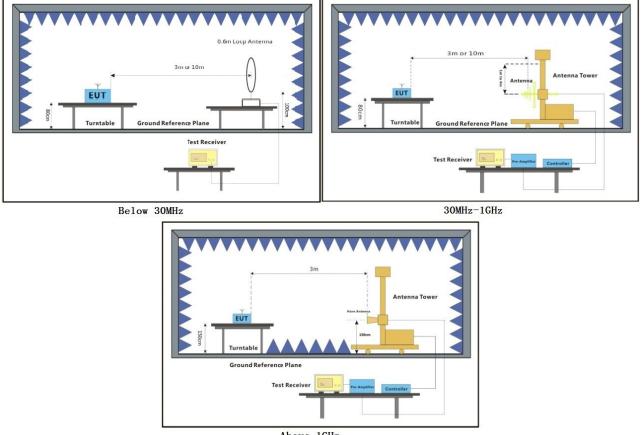
Report No.: SZEM180400335301 Page: 25 of 52

7.7 Radiated Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SZEM180400335301 Page: 26 of 52

7.7.1 E.U.T. Operation

Operating Environment:

Humidity: 55.4 % RH Atmospheric Pressure: 1020 mbar Temperature: 21.2 °C a:TX mode_Keep the EUT in continuously transmitting mode with GFSK Test mode modulation

7.7.2 Test Setup Diagram

Above 1GHz

Report No.: SZEM180400335301 Page: 27 of 52

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

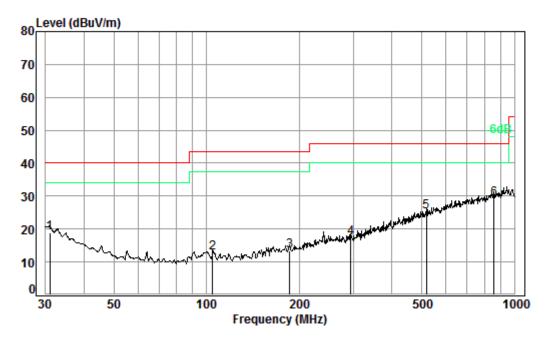
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

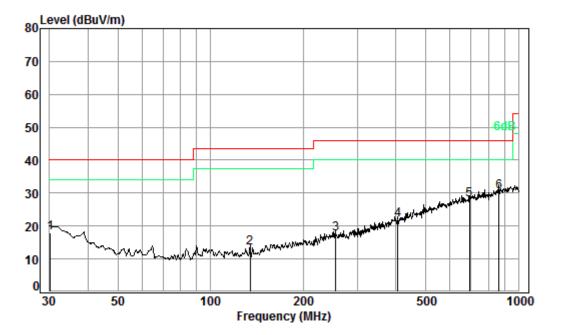
3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180400335301 Page: 28 of 52

Radiated emission below 1GHz

Mode:a; Polarization:Horizontal;


Condition: 3m HORIZONTAL Job No. : 03353CR Test mode: a

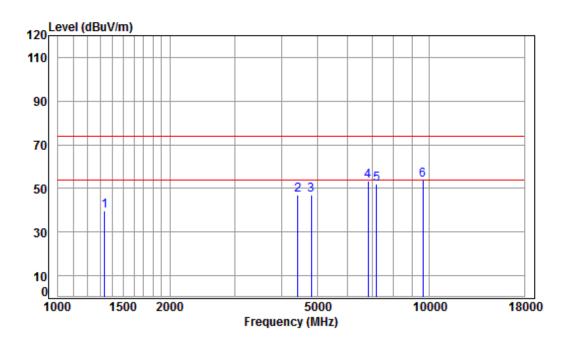
	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5	30.96 104.54 186.44 294.11 517.25	1.21 1.38 1.87	13.78 16.10 19.37	27.67 27.51 27.53 27.54 27.85	25.32 23.33 23.78	12.80 13.28 17.48	43.50 43.50 46.00	-30.22 -28.52
6 pp				27.22				

Report No.: SZEM180400335301 Page: 29 of 52

Mode:a; Polarization:Vertical;

Condition: 3m VERTICAL Job No. : 03353CR

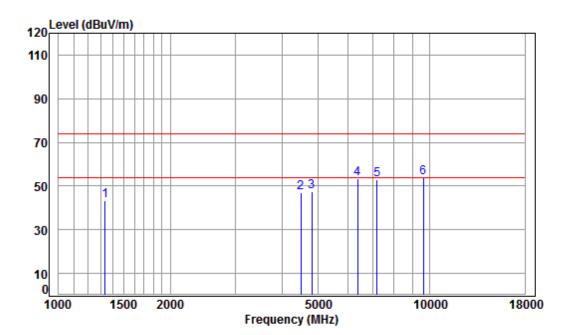
Test mode: a


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.21	0.60	22.38	27.67	22.69	18.00	40.00	-22.00
2	134.56	1.29	13.55	27.52	25.96	13.28	43.50	-30.22
3	254.73	1.70	19.02	27.54	24.39	17.57	46.00	-28.43
4	406.09	2.23	22.55	27.74	24.73	21.77	46.00	-24.23
5	694.42	2.89	27.83	27.56	24.92	28.08	46.00	-17.92
6 pp	866.09	3.47	29.38	27.19	24.89	30.55	46.00	-15.45

Report No.: SZEM180400335301 Page: 30 of 52

Radiated emission Above 1GHz

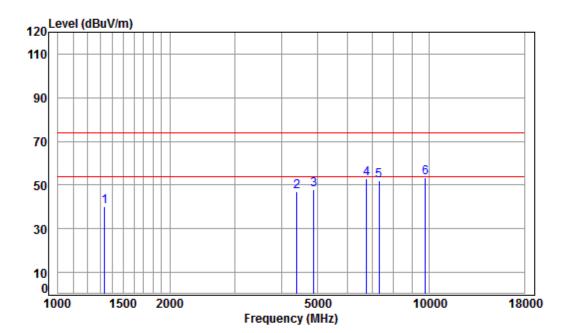
Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low


Condition:	3m HORIZONTAL
Job No :	03351CR/03353CR
Mode :	2402 TX RSE

: BLE								
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1335.141	4.93	25.17	41.29	50.85	39.66	74.00	-34.34	peak
4417.841	7.47	33.46	42.40	48.27	46.80	74.00	-27.20	peak
4804.000	7.89	33.97	42.47	47.64	47.03	74.00	-26.97	peak
6835.278	10.58	35.80	40.97	48.04	53.45	74.00	-20.55	peak
7206.000	10.08	36.07	40.71	46.47	51.91	74.00	-22.09	peak
9608.000	10.75	37.67	37.74	43.22	53.90	74.00	-20.10	peak
	Freq MHz 1335.141 4417.841 4804.000 6835.278 7206.000	Cable Freq Loss MHz dB 1335.141 4.93 4417.841 7.47 4804.000 7.89 6835.278 10.58 7206.000 10.08	Cable Ant Freq Loss Factor MHz dB dB/m 1335.141 4.93 25.17 4417.841 7.47 33.46 4804.000 7.89 33.97 6835.278 10.58 35.80 7206.000 10.08 36.07	CableAntPreamp LossFreqLossFactorMHzdBdB/mdBdB/mdB1335.1414.9325.174417.8417.4733.4642.404804.0007.89435.27810.5835.8040.977206.00010.08	Cable Ant Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1335.141 4.93 25.17 41.29 50.85 4417.841 7.47 33.46 42.40 48.27 4804.000 7.89 33.97 42.47 47.64 6835.278 10.58 35.80 40.97 48.04 7206.000 10.08 36.07 40.71 46.47	Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1335.141 4.93 25.17 41.29 50.85 39.66 4417.841 7.47 33.46 42.40 48.27 46.80 4804.000 7.89 33.97 42.47 47.64 47.03 6835.278 10.58 35.80 40.97 48.04 53.45 7206.000 10.08 36.07 40.71 46.47 51.91	Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Level Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m 1335.141 4.93 25.17 41.29 50.85 39.66 74.00 4417.841 7.47 33.46 42.40 48.27 46.80 74.00 4804.000 7.89 33.97 42.47 47.64 47.03 74.00 6835.278 10.58 35.80 40.97 48.04 53.45 74.00 7206.000 10.08 36.07 40.71 46.47 51.91 74.00	Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Limit Over MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 1335.141 4.93 25.17 41.29 50.85 39.66 74.00 -34.34 4417.841 7.47 33.46 42.40 48.27 46.80 74.00 -27.20 4804.000 7.89 33.97 42.47 47.64 47.03 74.00 -26.97 6835.278 10.58 35.80 40.97 48.04 53.45 74.00 -20.55

Report No.: SZEM180400335301 Page: 31 of 52

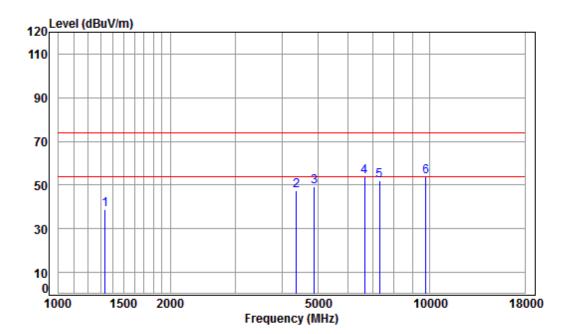
Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low


Condition: 3m VERTICAL

Job No	Job No : 03351CR/03353CR											
Mode : 2402 TX RSE												
Note	: BLE											
		Cable	Ant	Preamp	Read		Limit	0ver				
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark			
-	MLI-				- dB-M	dD. M/m	dDu//m					
	MHz	dB	dB/m	ab	abuv	dBuV/m	abuv/m	dB				
1	1335.141	4.93	25.17	41.29	54.36	43.17	74.00	-30.83	peak			
2	4495.125	7.55	33.59	42.42	48.29	47.01	74.00	-26.99	peak			
3	4804.000	7.89	33.97	42.47	47.91	47.30	74.00	-26.70	peak			
4	6395.654	11.34	35.50	41.30	47.62	53.16	74.00	-20.84	peak			
5	7206.000	10.08	36.07	40.71	47.33	52.77	74.00	-21.23	peak			
6 pp	9608.000	10.75	37.67	37.74	43.16	53.84	74.00	-20.16	peak			

Report No.: SZEM180400335301 Page: 32 of 52

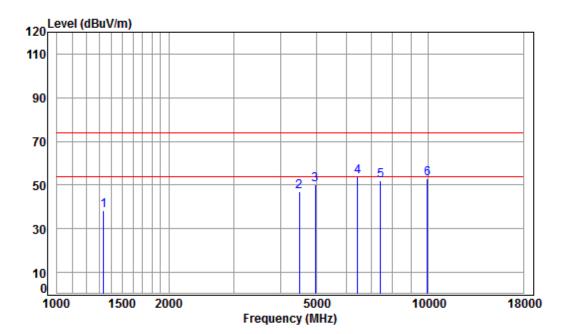
Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:middle


Condition: 3m HORIZONTAL

Job No	Job No : 03351CR/03353CR										
Mode	: 244	0 TX R	SE								
Note	: BLE										
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
	MHz	dB	dB/m	dB		dBuV/m	dBuV/m	dB			
			00/m		abat	0001/11	000171	40			
1	1335.141	4.93	25.17	41.29	51.53	40.34	74.00	-33.66	peak		
2	4392.376	7.44	33.42	42.40	48.54	47.00	74.00	-27.00	peak		
3	4880.000	7.97	34.06	42.48	48.35	47.90	74.00	-26.10	peak		
4	6776.265	10.75	35.77	41.01	47.48	52.99	74.00	-21.01	peak		
5	7320.000	10.05	36.16	40.63	46.51	52.09	74.00	-21.91	peak		
6 pp	9760.000	10.82	37.76	37.53	42.28	53.33	74.00	-20.67	peak		

Report No.: SZEM180400335301 Page: 33 of 52

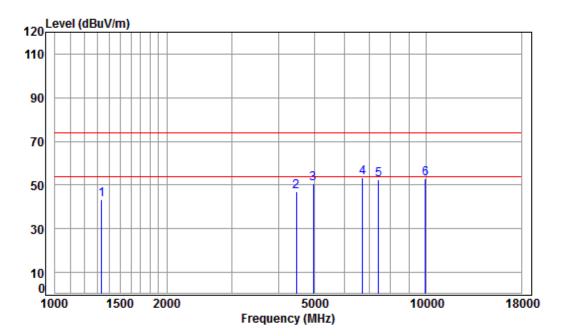
Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:middle


Condition: 3m VERTICAL

Job No Mode Note	o : 03351CR/03353CR : 2440 TX RSE : BLE									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1335.141	4.93	25.17	41.29	49.85	38.66	74.00	-35.34	peak	
2	4367.058	7.41	33.37	42.39	49.16	47.55	74.00	-26.45	peak	
3	4880.000	7.97	34.06	42.48	49.59	49.14	74.00	-24.86	peak	
4 pp	6659.763	11.08	35.70	41.10	48.14	53.82	74.00	-20.18	peak	
5	7320.000	10.05	36.16	40.63	46.28	51.86	74.00	-22.14	peak	
6	9760.000	10.82	37.76	37.53	42.64	53.69	74.00	-20.31	peak	

Report No.: SZEM180400335301 Page: 34 of 52

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High


Condition: 3m HORIZONTAL

Job No	Job No : 03351CR/03353CR										
Mode	: 248	0 TX R	SE								
Note	: BLE										
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
-	MLI-			dB	-dBV	dDu///m	dDuV/m				
	MHz	dB	ub/m	ub	ubuv	ubuv/m	ubuv/m	dB			
1	1335.141	4.93	25.17	41.29	49.44	38.25	74.00	-35.75	peak		
2	4495.125										
3	4960.000	8.05	34.15	42.49	50.32	50.03	74.00	-23.97	peak		
4 pp	6451.353	11.45	35.55	41.25	48.00	53.75	74.00	-20.25	peak		
5	7440.000	10.02	36.25	40.56	46.20	51.91	74.00	-22.09	peak		
6	9920.000	10.90	37.85	37.31	41.60	53.04	74.00	-20.96	peak		

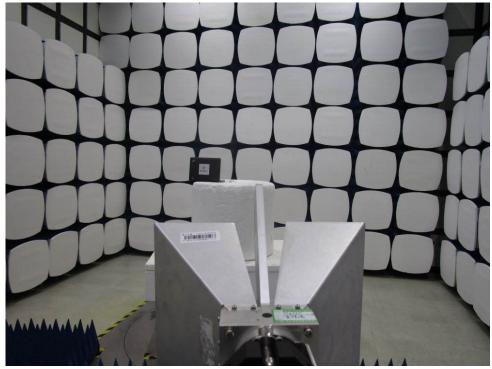
Report No.: SZEM180400335301 Page: 35 of 52

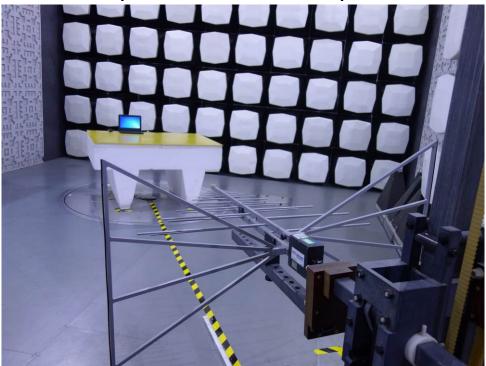
Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition: 3m VERTICAL

Job No	:	03351CR/03353CR
Mode	:	2480 TX RSE

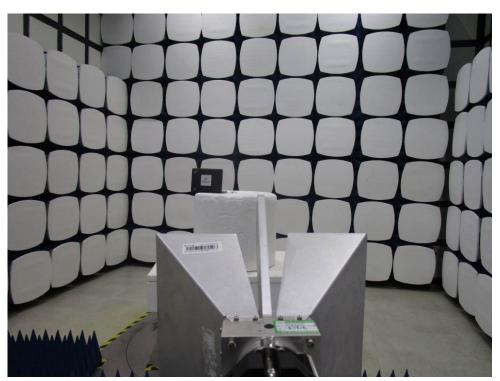
nouc	•	2400
Note	:	BLE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1335.141	4.93	25.17	41.29	54.75	43.56	74.00	-30.44	peak
2	4469.214	7.53	33.55	42.41	48.54	47.21	74.00	-26.79	peak
3	4960.000	8.05	34.15	42.49	50.75	50.46	74.00	-23.54	peak
4 pp	6737.207	10.86	35.75	41.04	47.92	53.49	74.00	-20.51	peak
5	7440.000	10.02	36.25	40.56	46.93	52.64	74.00	-21.36	peak
6	9920.000	10.90	37.85	37.31	41.45	52.89	74.00	-21.11	peak


Report No.: SZEM180400335301 Page: 36 of 52

8 Photographs

8.1 Radiated Emissions which fall in the restricted bands Test Setup

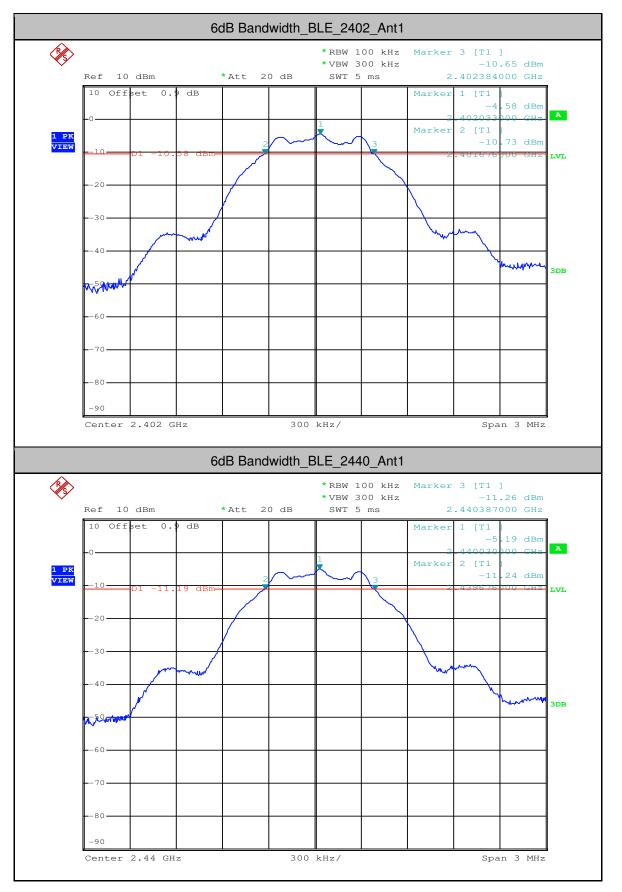


8.2 Radiated Spurious Emissions Test Setup

Report No.: SZEM180400335301 Page: 37 of 52

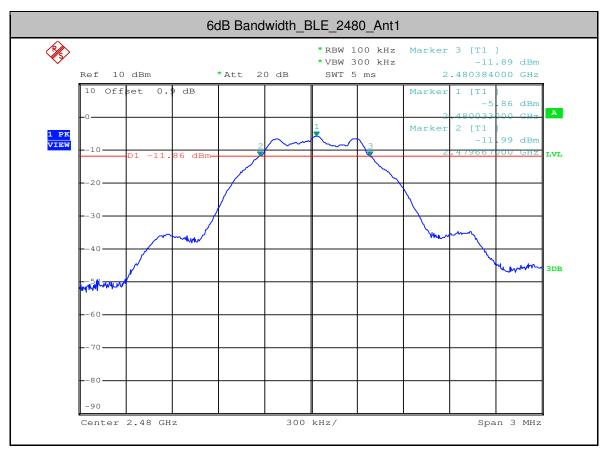
Report No.: SZEM180400335301 Page: 38 of 52

9 Appendix


9.1 Appendix 15.247

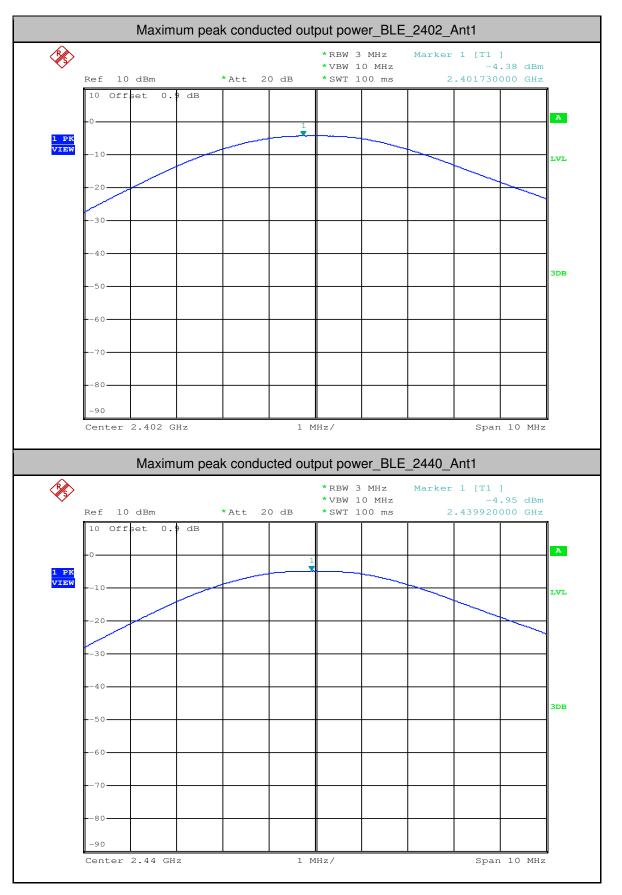
1.6dB Bandwidth

Test Mode	Test Channel	Ant EBW[MHz]		Limit[MHz]	Verdict
BLE	2402	Ant1	0.708	>=0.5	PASS
BLE	2440	Ant1	0.711	>=0.5	PASS
BLE	BLE 2480 Ant1		0.717	>=0.5	PASS



Report No.: SZEM180400335301 Page: 39 of 52

Report No.: SZEM180400335301 Page: 40 of 52

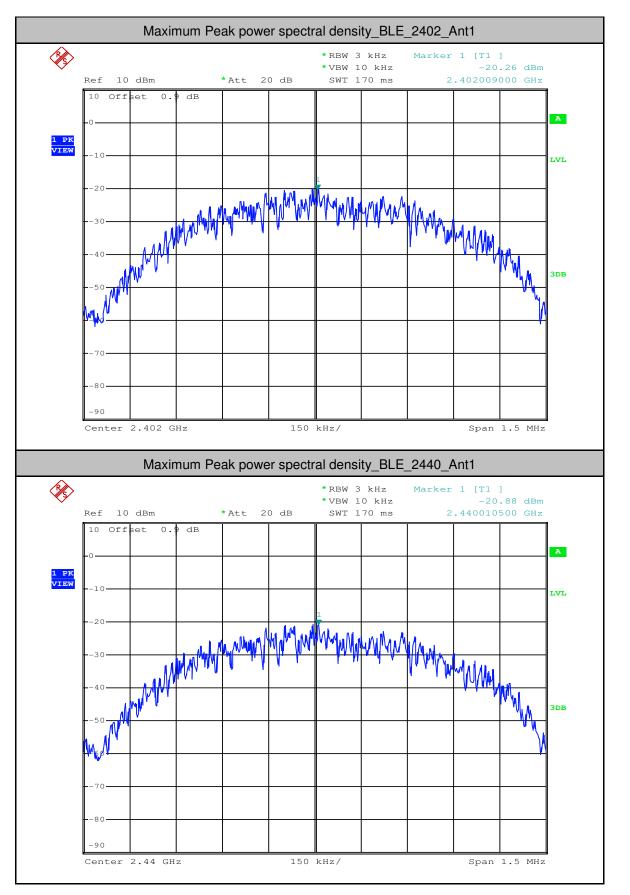

Report No.: SZEM180400335301 Page: 41 of 52

Test Mode	Test Channel	Ant	Ant Power[dBm]		Verdict
BLE	2402	Ant1	-4.38	<30	PASS
BLE	2440	Ant1	-4.95	<30	PASS
BLE	2480	Ant1	-5.63	<30	PASS

2.Maximum peak conducted output power

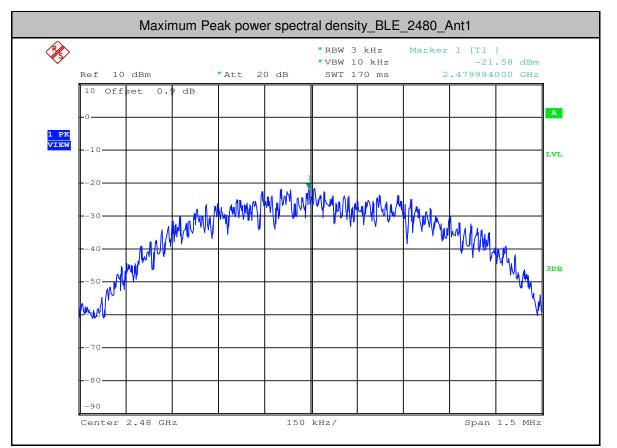
Report No.: SZEM180400335301 Page: 42 of 52

Report No.: SZEM180400335301 Page: 43 of 52



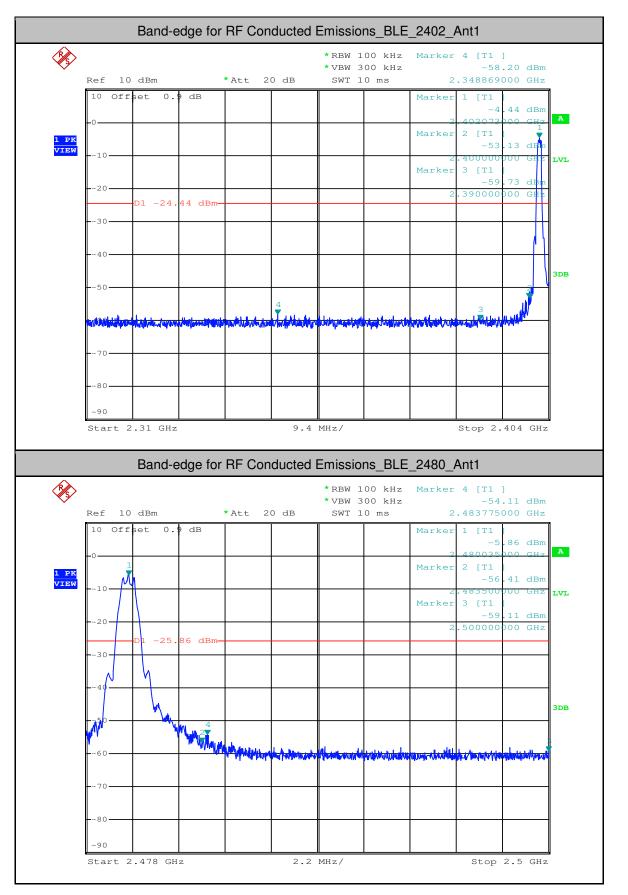
3.Maximum Peak power spectral density

Test Mode	Test Channel	Ant	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	Ant1	-20.26	<8.00	PASS
BLE	2440	Ant1	-20.88	<8.00	PASS
BLE	2480	Ant1	-21.58	<8.00	PASS



Report No.: SZEM180400335301 Page: 44 of 52

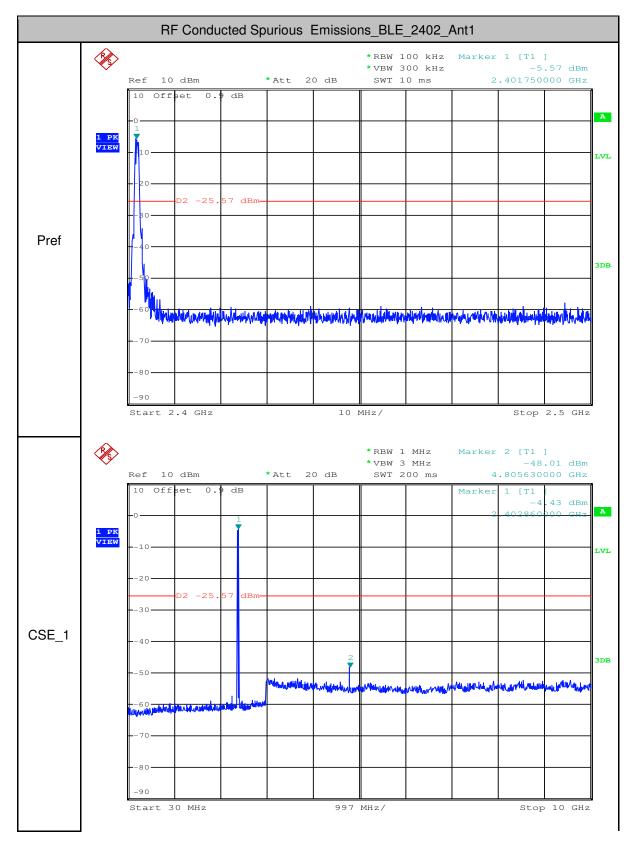
Report No.: SZEM180400335301 Page: 45 of 52



4.Band-edge for RF Conducted Emissions

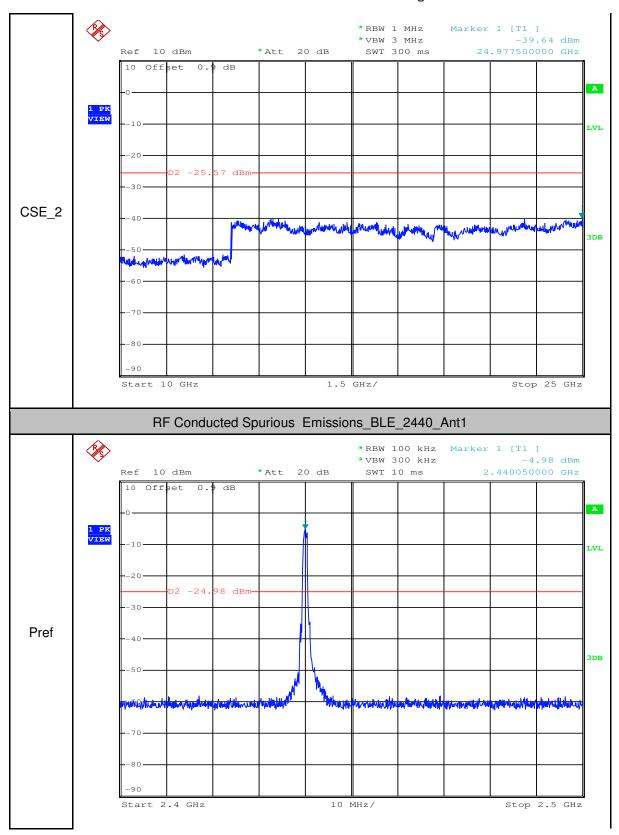
Test Mode	Test Channel	Ant	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	2402	Ant1	-4.440	-58.196	<-24.44	PASS
BLE	2480	Ant1	-5.860	-54.111	<-25.86	PASS

Report No.: SZEM180400335301 Page: 46 of 52

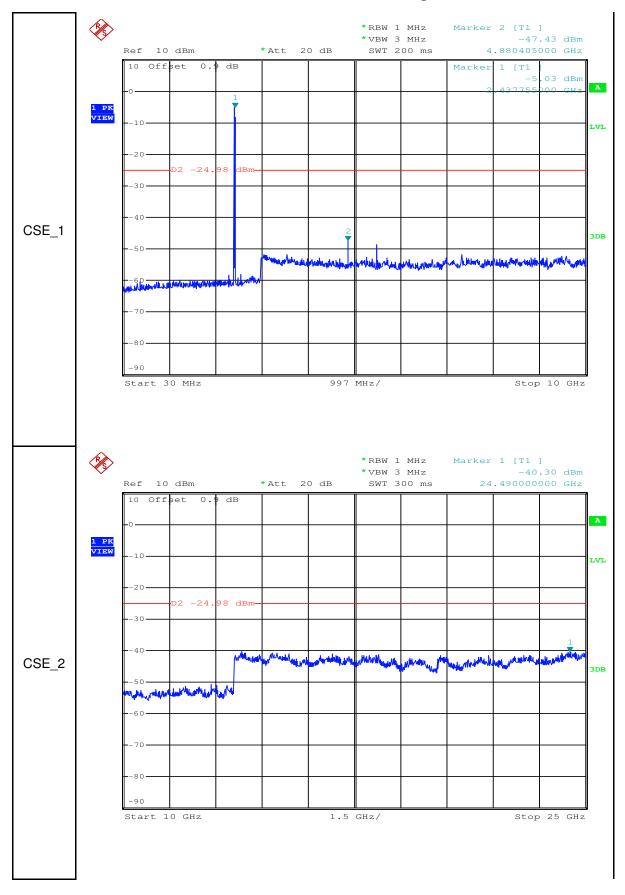

Report No.: SZEM180400335301 Page: 47 of 52

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	1000	3000	-5.57	-48.010	<- 25.57	PASS
BLE	2402	10000	25000	1000	3000	-5.57	-39.640	<- 25.57	PASS
BLE	2440	30	10000	1000	3000	-4.98	-47.430	<- 24.98	PASS
BLE	2440	10000	25000	1000	3000	-4.98	-40.300	<- 24.98	PASS
BLE	2480	30	10000	1000	3000	-5.81	-46.160	<- 25.81	PASS
BLE	2480	10000	25000	1000	3000	-5.81	-39.820	<- 25.81	PASS

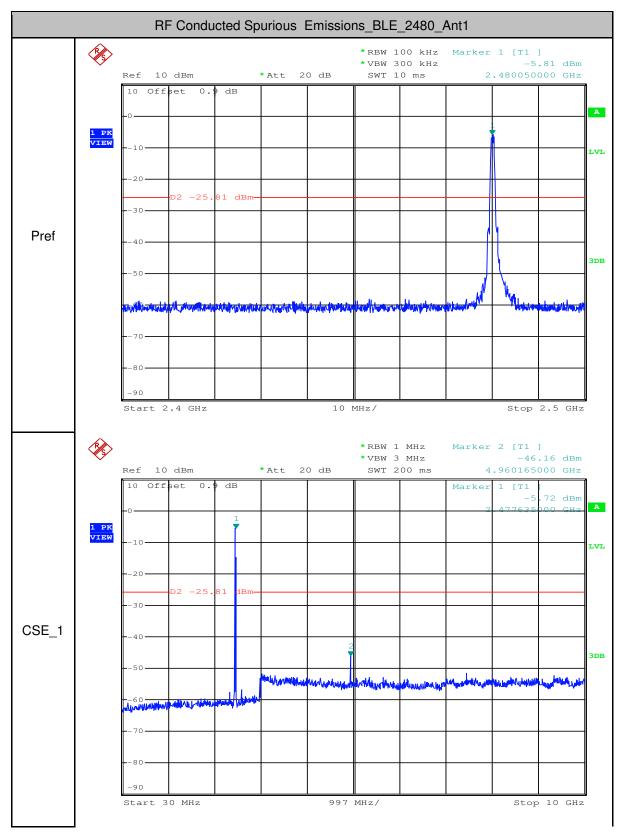
5.RF Conducted Spurious Emissions



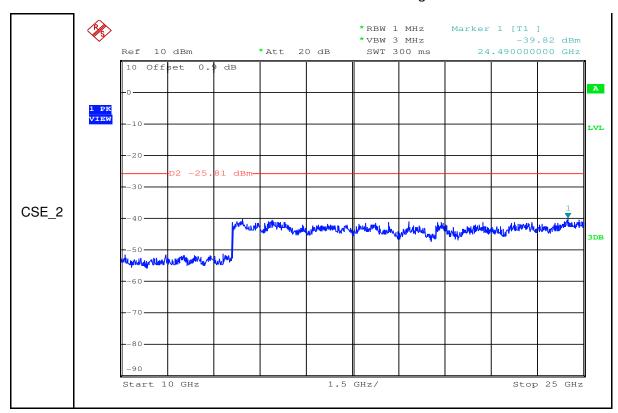
Report No.: SZEM180400335301 Page: 48 of 52



Report No.: SZEM180400335301 Page: 49 of 52



Report No.: SZEM180400335301 Page: 50 of 52



Report No.: SZEM180400335301 Page: 51 of 52

Report No.: SZEM180400335301 Page: 52 of 52

- End of the Report -