Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 9/5/2023 ### LTE Band 13 Back Communication System: UID 0, Generic LTE-FDD (0); Frequency: 782 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.891$ S/m; $\epsilon_r = 42.893$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C; # DASY Configuration: - Probe: EX3DV4 SN7494; ConvF(10.8, 10.8, 10.8) @ 782 MHz; Calibrated: 4/17/2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 3/27/2023 - Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Back 0mm/CH23230/Area Scan (71x211x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.799 W/kg **Back 0mm/CH23230/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.729 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.268 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.805 W/kg 0 dB = 0.799 W/kg = -0.97 dBW/kg Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 9/4/2023 ### LTE Band 25 Back Communication System: UID 0, Generic LTE-FDD (0); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1905 MHz; $\sigma = 1.418$ S/m; $\varepsilon_r = 41.199$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C; # **DASY Configuration:** - Probe: EX3DV4 SN7494; ConvF(8.64, 8.64, 8.64) @ 1905 MHz; Calibrated: 4/17/2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 3/27/2023 - Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) **Back 0mm/CH26590/Area Scan (71x211x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.27 W/kg Back 0mm/CH26590/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.07 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.50 W/kg SAR(1 g) = 0.721 W/kg; SAR(10 g) = 0.377 W/kg Maximum value of SAR (measured) = 1.21 W/kg 0 dB = 1.27 W/kg = 2.36 dBW/kg Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 9/4/2023 ### LTE Band 66 Back Communication System: UID 0, Generic LTE-FDD (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.378$ S/m; $\varepsilon_r = 41.403$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C; ### **DASY Configuration:** - Probe: EX3DV4 SN7494; ConvF(8.99, 8.99, 8.99) @ 1745 MHz; Calibrated: 4/17/2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 3/27/2023 - Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # **Back 0mm/CH132322/Area Scan (71x211x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.23 W/kg # **Back 0mm/CH132322/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.73 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 2.37 W/kg SAR(1 g) = 0.713 W/kg; SAR(10 g) = 0.367 W/kg Maximum value of SAR (measured) = 1.19 W/kg 0 dB = 1.19 W/kg = 1.77 dBW/kg Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 9/5/2023 ### WIFI 2.4G Back Communication System: UID 0, Generic WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.8$ S/m; $\varepsilon_r = 40.154$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C; # DASY Configuration: - Probe: EX3DV4 SN7494; ConvF(8.01, 8.01, 8.01) @ 2437 MHz; Calibrated: 4/17/2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 3/27/2023 - Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Back 0mm/CH6/Area Scan (81x261x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.729 W/kg Back 0mm/CH6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.227 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.435 W/kg; SAR(10 g) = 0.221 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.726 W/kg 0 dB = 0.729 W/kg = 0.618 dBW/kg Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 9/5/2023 ### WIFI 5G U-NII-1 Back Communication System: UID 0, Generic WIFI (0); Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; $\sigma = 4.629$ S/m; $\varepsilon_r = 37.167$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C; # **DASY Configuration:** - Probe: EX3DV4 SN7494; ConvF(5.67, 5.67, 5.67) @ 5240 MHz; Calibrated: 4/17/2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 3/27/2023 - Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) **Back 0mm/CH48/Area Scan (101x311x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.40 W/kg **Back 0mm/CH48/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.108 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 2.20 W/kg SAR(1 g) = 0.510 W/kg; SAR(10 g) = 0.271 W/kg Maximum value of SAR (measured) = 1.38 W/kg 0 dB = 1.34 W/kg = 1.27 dBW/kg Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 9/5/2023 ### WIFI 5G U-NII-3 Back Communication System: UID 0, Generic WIFI (0); Frequency: 5825 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5825 MHz; $\sigma = 5.324$ S/m; $\varepsilon_r = 36.187$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.2°C; # **DASY Configuration:** - Probe: EX3DV4 SN7494; ConvF(5.14, 5.14, 5.14) @ 5825 MHz; Calibrated: 4/17/2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1549; Calibrated: 3/27/2023 - Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) **Back 0mm/CH165/Area Scan (101x311x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.23 W/kg **Back 0mm/CH165/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.245 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.57 W/kg SAR(1 g) = 0.496 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 1.25 W/kg 0 dB = 1.83 W/kg = 2.63 dBW/kg ### 1. DAE4 Calibration Certificate E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client: HTW Certificate No: J23Z60202 #### CALIBRATION CERTIFICATE Object DAE4 - SN: 1549 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: March 27, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) 1971018 Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 14-Jun-22 (CTTL, No.J22X04180) Jun-23 Signature Calibrated by: Process Calibrator 753 Name Function SAR Test Engineer Reviewed by: Lin Hao Yu Zongying SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 28, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = (High Range: $1LSB=6.1\mu V$, full range = -100...+300 m Low Range: 1LSB=61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV -1.....+3mV | Calibration Factors | х | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 406.340 ± 0.15% (k=2) | 406.011 ± 0.15% (k=2) | 406.173 ± 0.15% (k=2) | | Low Range | 3.98404 ± 0.7% (k=2) | 3.99064 ± 0.7% (k=2) | 3.99140 ± 0.7% (k=2) | ### Connector Angle | Connector Angle to be used in DASY system | 18.5° ± 1 ° | |---|-------------| |---|-------------| ### 2. Probe Calibration Certificate Client HTW Certificate No: Z23-60186 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7494 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: April 17, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Power sensor NRP-Z91 | 101547 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Power sensor NRP-Z91 | 101548 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Reference 10dBAttenuator | 18N50W-10dB | 19-Jan-23(CTTL, No.J23X00212) | Jan-25 | | Reference 20dBAttenuator | 18N50W-20dB | 19-Jan-23(CTTL, No.J23X00211) | Jan-25 | | Reference Probe EX3DV4 | SN 3846 | 20-May-22(SPEAG, No.EX3-3846_May | 22) May-23 | | DAE4 | SN 1555 | 25-Aug-22(SPEAG, No.DAE4-1555_Au | g22) Aug-23 | | DAE4 | SN 549 | 24-Jan-23(SPEAG, No.DAE4-549_Jan2 | 23) Jan-24 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 14-Jun-22(CTTL, No.J22X04182) | Jun-23 | | Network Analyzer E5071C | MY46110673 | 10-Jan-23(CTTL, No.J23X00104) | Jan-24 | | | 1010 | E | 461 | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: April 24, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emfalcaict.ac.en http://www.caict.ac.en Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x, y,z = NORMx, y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. • ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Add: No.52 HuaYuanBei Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.en # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)^ | 0.40 | 0.47 | 0.41 | ±10.0% | | DCP(mV) ⁸ | 97.0 | 98.5 | 97.6 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc E
(k=2) | |------|------------------------------|-----|---------|-----------|------|---------|----------|----------------| | 0 CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 148.8 | ±2.0% | | | | | Y | 0.0 | 0.0 | 1.0 | | 160.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 149.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4). B Numerical linearization parameter: uncertainty not required. E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.80 | 10.80 | 10.80 | 0.13 | 1.41 | ±12.7% | | 835 | 41.5 | 0.90 | 10.40 | 10.40 | 10.40 | 0.12 | 1.50 | ±12.7% | | 1750 | 40.1 | 1.37 | 8.99 | 8.99 | 8.99 | 0.26 | 0.92 | ±12.7% | | 1900 | 40.0 | 1.40 | 8.64 | 8.64 | 8.64 | 0.26 | 1.03 | ±12.7% | | 2000 | 40.0 | 1.40 | 8.73 | 8.73 | 8.73 | 0.23 | 1.04 | ±12.7% | | 2300 | 39.5 | 1.67 | 8.35 | 8.35 | 8.35 | 0.63 | 0.64 | ±12.7% | | 2450 | 39.2 | 1.80 | 8.01 | 8.01 | 8.01 | 0.33 | 0.99 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.83 | 7.83 | 7.83 | 0.55 | 0.71 | ±12.7% | | 5250 | 35.9 | 4.71 | 5.67 | 5.67 | 5.67 | 0.40 | 1.55 | ±13.9% | | 5600 | 35.5 | 5.07 | 5.07 | 5.07 | 5.07 | 0.45 | 1.45 | ±13.9% | | 5750 | 35.4 | 5.22 | 5.14 | 5.14 | 5.14 | 0.40 | 1.55 | ±13.9% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: *86-10-62304633-2117 E-mail: emf@caict.se.cn http://www.caict.se.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.en # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494 # Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 23.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | # 1.1. D750V3 Dipole Calibration Certificate Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn CALIBRATION **CNAS L0570** Client HTW Certificate No: Z21-60016 # CALIBRATION CERTIFICATE Object D750V3 - SN: 1180 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 22, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70% Calibration Equipment used (M&TE critical for calibration) | | 15.21 | Cortificate No.) | Scheduled Calibration | |--|---------------------------------------|--|--------------------------------------| | Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 | 106276
101369
SN 7600
SN 771 | Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Nov-20(CTTL-SPEAG,No.Z20-60421) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | May-21
May-21
Nov-21
Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration
Feb-21 | | Signal Generator E4438C
NetworkAnalyzer E5071C | MY49071430
MY46110673 | 25-Feb-20 (CTTL, No.J20X00516)
10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | 58.65 | | The second second | Signature Function Name SAR Test Engineer Calibrated by: Zhao Jing SAR Test Engineer Lin Hao Reviewed by: SAR Project Leader Approved by: Qi Dianyuan Issued: January 29, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60016 Page 1 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60016 Page 2 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.43 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.59 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60016 Page 3 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6Ω- 1.34jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.944 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 0.944 118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Date: 01.22.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1180 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.905$ S/m; $\varepsilon_f = 42.25$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7600; ConvF(10.88, 10.88, 10.88) @ 750 MHz; Calibrated: 2020-11-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.99 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 22.7 mm Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 6 # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | Head-750 | | | | | | |-------------|------------------|------------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-ioss (db) | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2021-01-22 | -28.6 | | 53.6 | | -1.34 | | | 2022-01-17 | -28.1 | -1.75 | 53.5 | 0.1 | -1.11 | 0.23 | | 2023-01-15 | -28.3 | -1.05 | 53.3 | 0.3 | -1.22 | 0.12 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. # 1.2. D835V2 Dipole Calibration Certificate http://www.chinattl.cn Client HTW Certificate No: Z21-60017 # CALIBRATION CERTIFICATE Object D835V2 - SN: 4d238 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 22, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 7600 | 30-Nov-20(CTTL-SPEAG,No.Z20-60421) | Nov-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | Function Name Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: January 29, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60017 Page 1 of 6 In Collaboration with S P E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 F-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60017 Page 2 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|-------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.89 mlho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | Condition | | |--------------------|---| | 250 mW input power | 2.32 W/kg | | normalized to 1W | 9.39 W/kg ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 1.52 W/kg | | normalized to 1W | 6.14 W/kg ± 18.7 % (k=2) | | | 250 mW input power
normalized to 1W
Condition
250 mW input power | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5Ω- 3.95jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.298 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** Manufactured by SPEAG Certificate No: Z21-60017 Page 4 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Date: 01.22.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d238 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.885$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7600; ConvF(10.88, 10.88, 10.88) @ 835 MHz; Calibrated: 2020-11-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.12 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.52 W/kg Smallest distance from peaks to all points 3 dB below = 19.8 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 3.14 W/kg 0 dB = 3.14 W/kg = 4.97 dBW/kg Page 5 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z21-60017 Page 6 of 6 # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head-835 | | | | | | | |-------------|------------------|------------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-1055 (db) | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2022-01-22 | -27.6 | | 51.5 | | -3.95 | | | 2022-01-17 | -27.3 | -1.09 | 51.8 | 0.3 | -3.45 | 0.5 | | 2023-01-15 | -27.5 | -0.36 | 51.6 | 0.1 | -3.55 | 0.4 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. # 1.3. D1750V2 Dipole Calibration Certificate Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.en Client Certificate No: Z21-60018 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1164 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 22, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |------------|--|--|--| | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | | SN 7600 | 30-Nov-20(CTTL-SPEAG,No.Z20-60421) | Nov-21 | | | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | 106276
101369
SN 7600
SN 771
ID#
MY49071430 | 106276 12-May-20 (CTTL, No.J20X02965) 101369 12-May-20 (CTTL, No.J20X02965) SN 7600 30-Nov-20(CTTL-SPEAG,No.Z20-60421) SN 771 10-Feb-20(CTTL-SPEAG,No.Z20-60017) ID # Cal Date(Calibrated by, Certificate No.) MY49071430 25-Feb-20 (CTTL, No.J20X00516) | | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: January 29, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60018 Page 1 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | | , | 11 00 min 2 1 min 2 | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | W input power | 9.13 W/kg | |----------------------|-----------------------------| | | | | nalized to 1W 36.4 V | W/kg ± 18.8 % (k=2) | | ondition | | | W input power | 4.80 W/kg | | alized to 1W 19.2 V | N/kg ± 18.7 % (k=2) | | | Condition
nW input power | Certificate No: Z21-60018 Page 3 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail; cttl@chinattl.com http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.9Ω- 3.86jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.3 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.124 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | EAG | |-----| | PI | Date: 01.22.2021 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1164 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.374$ S/m; $\varepsilon_r = 39.78$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7600; ConvF(9.01, 9.01, 9.01) @ 1750 MHz; Calibrated: 2020-11-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.29 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.8 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52,7% Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Page 5 of 6