FCC 47 CFR MPE REPORT

Snap One, LLC

ACI Snap One SUB

Model Number: SUB-8

FCC ID: 2AJAC-BLKSUB8

Prepared for:	Snap One, LLC			
	1800 Continental Blvd Suite 200-300 Charlotte, North Carolina 28273 USA			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R2110014		
Date of Test:	Aug. 12~Sep. 30, 2021		
Date of Report:	Oct. 08, 2021		

EST Technology Co. ,Ltd Report No. ESTE-R2110014

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}$, $ H ^{2}$ or S
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

EST Technology Co. ,Ltd Report No. ESTE-R2110014 Page 2 of 4

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Calculated Result and Limit

For 2.4G SRD
Ant gain= -4.50dBi
Ant numeric gain= 0.3548

Field strength = 99.15 dBuV/m@3m

 $P = \{ [10^{(99.15/20)}/10^6*3]^2/(30*0.3548) \}*1000mW = 6.9524mW$

Pd= (30*6.9524*0.3548) / (377*20^2)=0.00049< 1

End of Test Report

