

TEST REPORT

Product Name Model Number FCC ID		 Smart Identification Terminal EFace10 2AJ9T-101002
Prepared for Address	:	ZKTECO CO., LTD. No.32, Pingshan Industrial Avenue, Dongguan City, Guangdong Province, China 523728
Prepared by Address : EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zor Shenzhen, Guangdong, China		Building 69, Majialong Industry Zone, Nanshan District,
		Tel: (0755) 26954280 Fax: (0755) 26954282
Report Number Date(s) of Tests Date of issue	:	ENS2111180066W00501R November 18, 2021 to December 23, 2021 December 23, 2021

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	EU'	T TECHNICAL DESCRIPTION	4
3		MMARY OF TEST RESULT	
4		ST METHODOLOGY	
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	6 6
5	FA	CILITIES AND ACCREDITATIONS	8
	5.1 5.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	8
6	TE	ST SYSTEM UNCERTAINTY	9
7	SET	FUP OF EQUIPMENT UNDER TEST	
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	
8	TE	ST REQUIREMENTS	
	8.1 8.2 8.3 8.4 8.5 8.6	DTS (6DB) BANDWIDTH MAXIMUM PEAK CONDUCTED OUTPUT POWER MAXIMUM POWER SPECTRAL DENSITY UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS RADIATED SPURIOUS EMISSION CONDUCTED EMISSIONS TEST	20 24 31 36 49
	8.7	ANTENNA APPLICATION	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

1 TEST RESULT CERTIFICATION

Applicant	:	ZKTECO CO., LTD.
Address	:	No.32, Pingshan Industrial Avenue, Dongguan City, Guangdong Province, China 523728
Manufacturer	:	ZKTECO CO., LTD.
Address	:	No.32, Pingshan Industrial Avenue, Dongguan City, Guangdong Province, China 523728
EUT	:	Smart Identification Terminal
Model Name	:	EFace10
Trademark	:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2 , Subpart J FCC 47 CFR Part 15 , Subpart C	PASS			

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	November 18, 2021 to December 23, 2021
Prepared by :	Una yu
	Una Yu/Editor
Reviewer :	For Xia SHENZHEN S
	Joe Xia/Editor
Approve & Authorized Signer :	* * * *
	Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description		
Product	Smart Identification Terminal		
Model Number	EFace10		
IEEE 802.11 WLAN Mode Supported	⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth) ⊠802.11n(40MHz channel bandwidth)		
Data Rate	802.11 b:1,2,5.5,11Mbps; 802.11 g:6,9,12,18,24,36,48,54Mbps; 802.11n(HT20): up to 72.2Mbps; 802.11n(HT40): up to 150Mbps;		
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;		
Operating Frequency Range	 ⊠2412-2462MHz for 802.11b/g/n(HT20); ⊠2422-2452MHz for 802.11n(HT40); 		
Number of Channels	 ☑ 11 channels for 802.11b/g n(HT20); ☑ 7 Channels for 802.11n(HT40); 		
Transmit Power Max	15.36 dBm		
Antenna Type	PCB Antenna		
Antenna Gain	2 dBi		
Power Supply	DC 5V from adapter		
Test Voltage	AC 120V/60Hz		
Adapter	Model :ADS-26FSG-12 12018EPCU Input:AC100-240V,50/60Hz,0.7A Max Output:DC5V,1.5A		
Temperature Range	-20°C ~ +50°C		

Note: for more details, please refer to the User's manual of the EUT.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

FCC PartClause	Test Parameter	Verdict	Remark		
15.247(a)(2)	DTS (6dB) Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS			
15.247(e)	Maximum Power Spectral Density Level	PASS			
15.247(d)	Unwanted Emission Into Non-Restricted	PASS			
	Frequency Bands				
15.247(d)	Unwanted Emission Into Restricted Frequency	PASS			
15.209	Bands (conducted)				
15.247(d)	Radiated Spurious Emission	PASS			
15.209					
15.207	Conducted EmissionTest	PASS			
15.247(b)	Antenna Application	PASS			
	NOTE1:N/A (Not Applicable)				
	NOTE2: According to FCC OET KDB 558074, the report use radiated				
	measurements in the restricted frequency bands. In addition, the radiated				
	test is also performed to ensure the emissions emanating from the device				
	cabinet also comply with the applicable limits.				

3 SUMMARY OF TEST RESULT

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AJ9T-101002 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LASTCAL.
TYPE		NUMBER	NUMBER	
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	May 15, 2021
L.I.S.N.	Schwarzbeck	NNLK8129	8129203	May 15, 2021
50Ω Coaxial Switch	Anritsu	MP59B	M20531	May 15, 2021
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100007	May 15, 2021
Voltage Probe	Rohde & Schwarz	TK9416	N/A	May 15, 2021
I.S.N	Rohde & Schwarz	ENY22	1109.9508.02	May 15, 2021

4.2.2 Radiated Emission Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.
TYPE		NUMBER	NUMBER	
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 15, 2021
Pre-Amplifier	HP	8447F	2944A07999	May 15, 2021
Bilog Antenna	Schwarzbeck	VULB9163	660	June 12, 2021
Loop Antenna	ARA	1519-012	FMZB1519	June 12, 2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-399	June 12, 2021
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1178	July 4, 2021
Cable	Schwarzbeck	AK9513	ACRX1	May 15, 2021
Cable	Rosenberger	N/A	FP2RX2	May 15, 2021
Cable	Schwarzbeck	AK9513	CRPX1	May 15, 2021
Cable	Schwarzbeck	AK9513	CRRX2	May 15, 2021

4.2.3 Radio Frequency Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LASTCAL.
TYPE		NUMBER	NUMBER	
Spectrum Analyzer	Agilent	FSV40	100967	May 15, 2021
Spectrum Analyzer	Aglient	13140	100907	Way 15, 2021
Signal Analyzer	Agilent	N9010A	My53470879	May 16, 2021
Power meter	Anritsu	E4418B	MY45102886	May 15, 2021
Power sensor	Anritsu	MA2411B	0738172	May 15, 2021

Remark: Each piece of equipment is scheduled for calibration once a year.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (\boxtimes 802.11b:1 Mbps; \boxtimes 802.11g: 6 Mbps; \boxtimes 802.11n(HT20): MCS0; \boxtimes 802.11n(HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency	Channel	Frequency	Channel	Frequency		
	(MHz)		(MHz)		(MHz)		
1	2412	6	2437	11	2462		
2	2417	7	2442				
3	2422	8	2447				
4	2427	9	2452				
5	2432	10	2457				

Frequency and Channel list for 802.11b/g/n (HT20):

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
		6	2437		
		7	2442		
3	2422	8	2447		
4	2427	9	2452		
5	2432				

Test Frequency and Channel for 802.11b/g/n (HT20):

Lowest F	requency	Middle F	Middle Frequency		st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

Test Frequency and channel for 802.11n (HT40):

Lowest F	requency	Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

•••	Site Description	
	EMC Lab.	: Accredited by CNAS The Certificate Registration Number is L2291. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
		Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943
		Accredited by A2LA The Certificate Number is 4321.01.
		Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
	Name of Firm	: EMTEK (SHENZHEN) CO., LTD.
	Site Location	: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

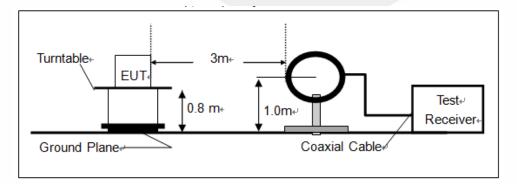
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

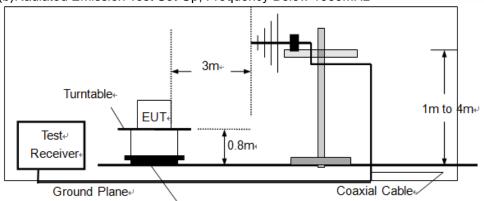
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground. For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.

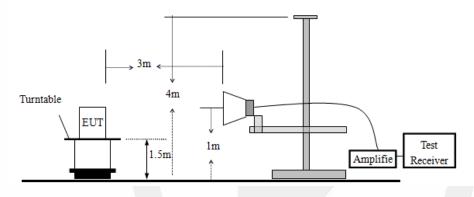

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

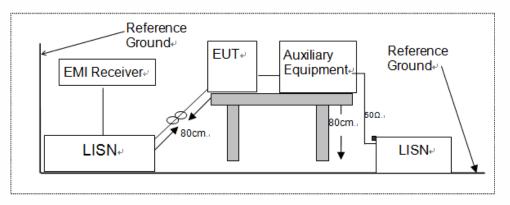

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

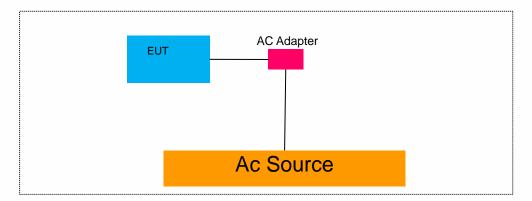
(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.


According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
1	/	1	/	
1	/	1	1	

Auxiliary Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
/	/	1	/	

Auxiliary Equipment List and Details				
Description	Manufacturer	Model	Serial Number	
/		1	/	

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. Unless otherwise denoted as EUT in *[Remark]* column , device(s) used in tested system is a support equipment

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8 TEST REQUIREMENTS

8.1 DTS (6DB) BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part15.247 (a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

8.1.5 Test Results

Temperature:	26° C	
Relative Humidity:	54%	
ATM Pressure:	1011 mbar	

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (kHz)	Verdict
	1	2412	7.18	>500	PASS
802.11b	6	2437	7.13	>500	PASS
	11	2462	7.06	>500	PASS
	1	2412	16.21	>500	PASS
802.11g	6	2437	16.16	>500	PASS
	11	2462	15.93	>500	PASS
900 11 n	1	2412	16.80	>500	PASS
802.11n (HT20)	6	2437	16.74	>500	PASS
(1120)	11	2462	16.80	>500	PASS
000.44.5	3	2422	34.93	>500	PASS
802.11n (HT40)	6	2437	33.83	>500	PASS
(11140)	9	2452	33.08	>500	PASS

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Date: 13.DEC.2021 22:00:54

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2111180066W00501R

Date: 13.DEC.2021 22:07:43

Type Ref Trc

D2 M1 M3

-70 dBm

4arker

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

X-value 2.419467 GHz -15.63 MHz

2.420046 GHz

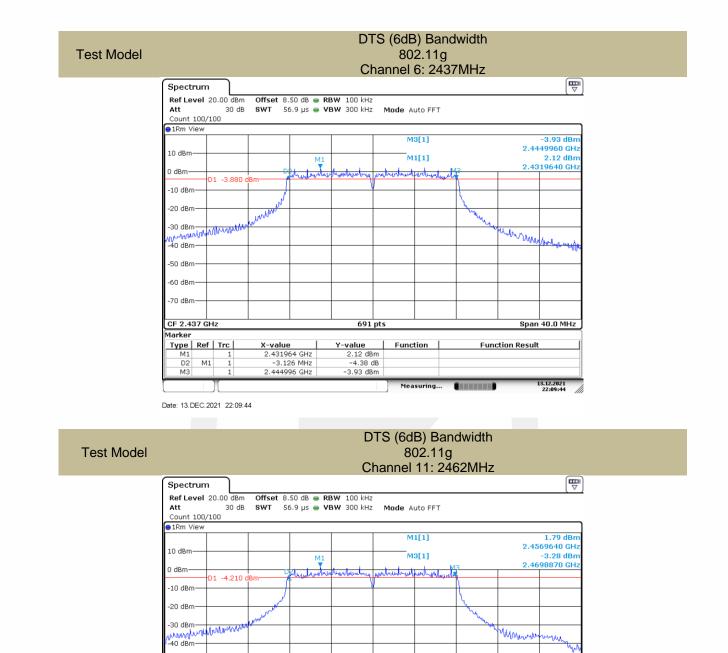
Report No. ENS2111180066W00501R

691 pts

Function

Measuring...

Y-value 1.52 dBm -4.28 dB -4.54 dBm Span 40.0 MHz


13.12.2021 22:07:43

Function Result

COLUMN 2 1

Ver.1.0

Date: 13.DEC.2021 22:11:54

M1 D2 M3

Type Ref Trc

-50 dBm -60 dBrr -70 dBm CF 2.462 GHz

4arker

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

X-value 2.456964 GHz -3.01 MHz 2.469887 GHz

Report No. ENS2111180066W00501R

691 pts

Function

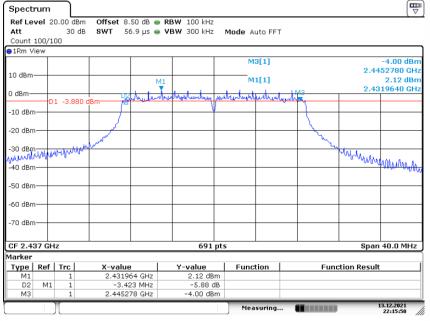
Measuring...

Y-value 1.79 dBm -5.57 dB -3.28 dBm

Marian

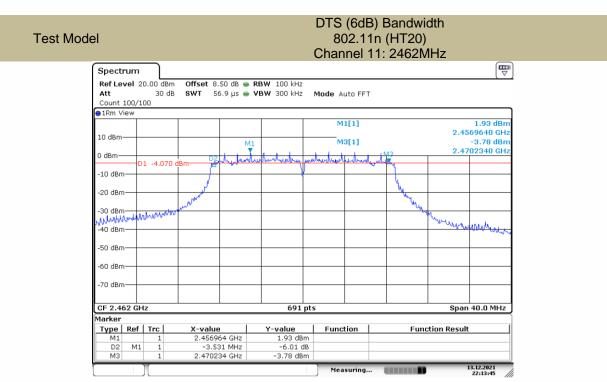
Function Result

MAU


Span 40.0 MHz

13.12.2021 22:11:54

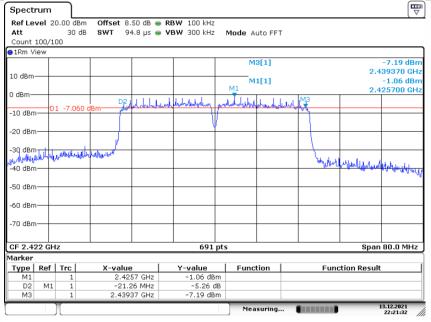
DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz


Date: 13.DEC.2021 22:15:50

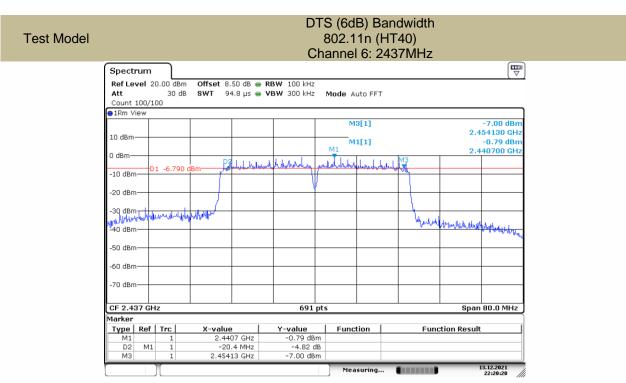
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Test Model

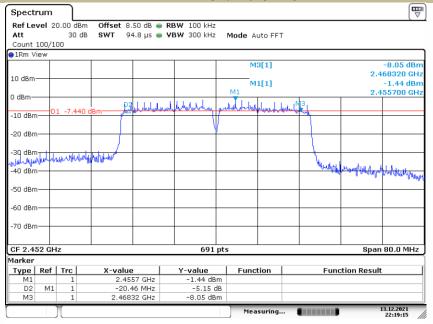


Date: 13.DEC.2021 22:13:45


Test Model

DTS (6dB) Bandwidth 802.11n (HT40) Channel 3: 2422MHz

Date: 13.DEC.2021 22:21:32



Date: 13.DEC.2021 22:20:21

Test Model

DTS (6dB) Bandwidth 802.11n (HT40) Channel 9: 2452MHz

Date: 13.DEC.2021 22:19:14

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part15.247 (b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The testing follows FCC public Notice DA 00-705 Measurement Guidelines.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

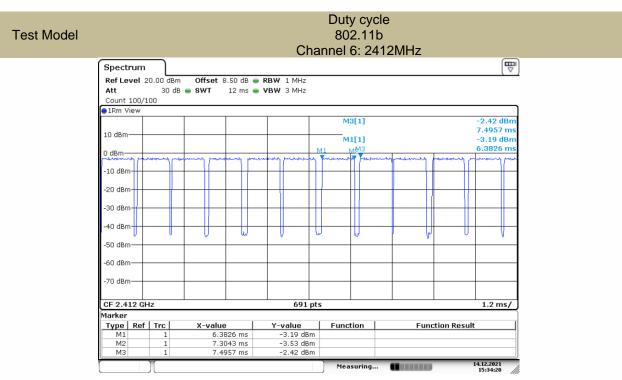
Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6)

8.2.5 Test Results

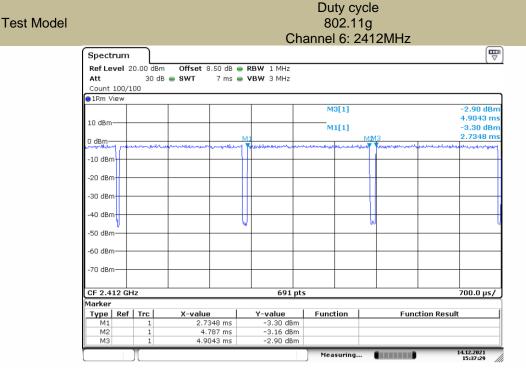
Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

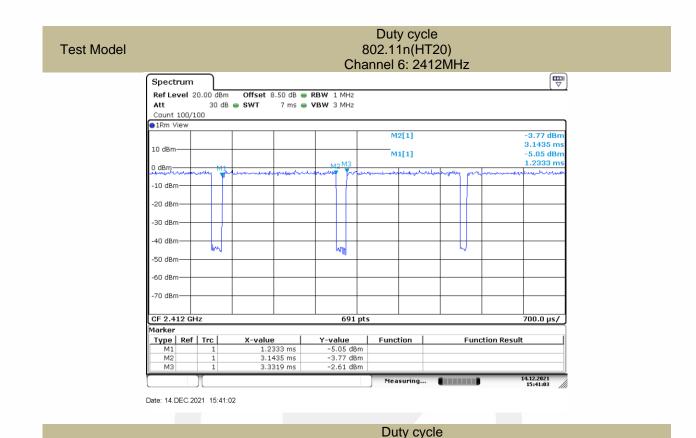
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	1	2412	13.96	30	PASS
802.11b	6	2437	15.36	30	PASS
	11	2462	14.68	30	PASS
	1	2412	13.21	30	PASS
802.11g	6	2437	13.63	30	PASS
	11	2462	13.02	30	PASS
902.11 m	1	2412	13.73	30	PASS
802.11n (HT20) -	6	2437	13.80	30	PASS
	11	2462	12.99	30	PASS
000.44	3	2422	13.41	30	PASS
802.11n	6	2437	12.76	30	PASS
(HT40)	9	2452	12.87	30	PASS

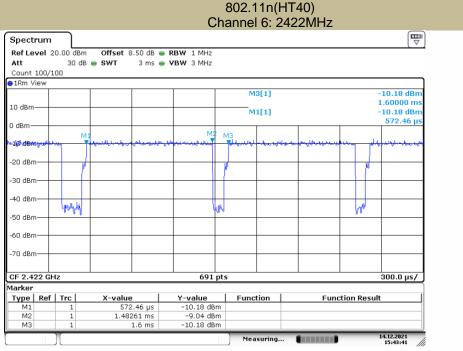

Note:

802.11b Duty cycle factor=10log(1/duty cycle)=0.82db 802.11g Duty cycle factor=10log(1/duty cycle)=0.24db 802.11n(HT20) Duty cycle factor=10log(1/duty cycle)=0.41db 802.11n(HT40) Duty cycle factor=10log(1/duty cycle)= 0.53db


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2111180066W00501R




Date: 14.DEC.2021 15:34:21

Date: 14.DEC.2021 15:37:29

Test Model

Date: 14.DEC.2021 15:43:41

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to:10 kHz.

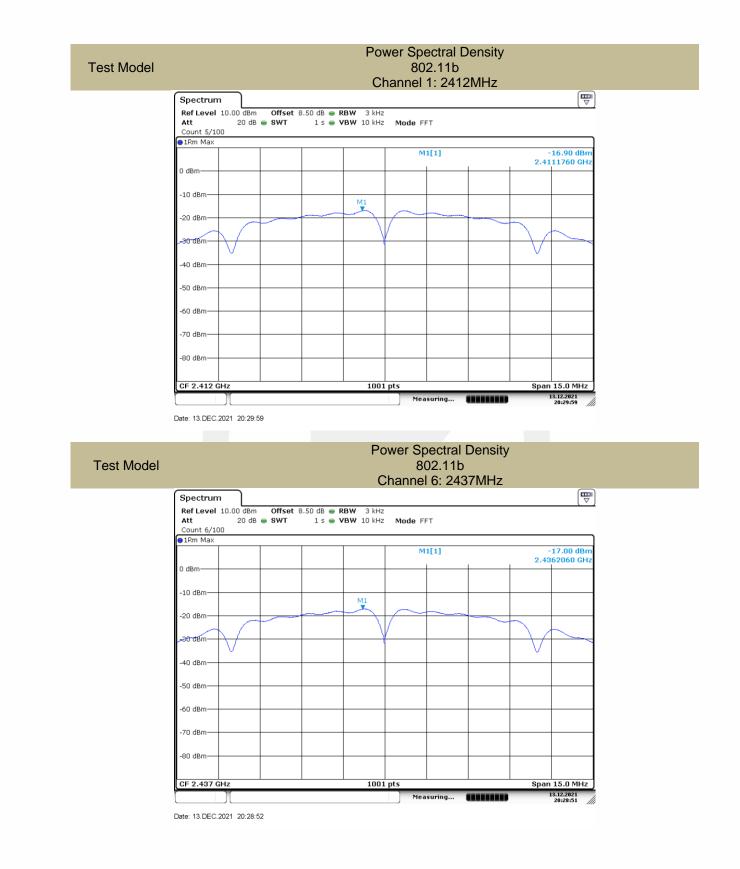
Set Detector = peak.

Set Sweep time = auto couple.

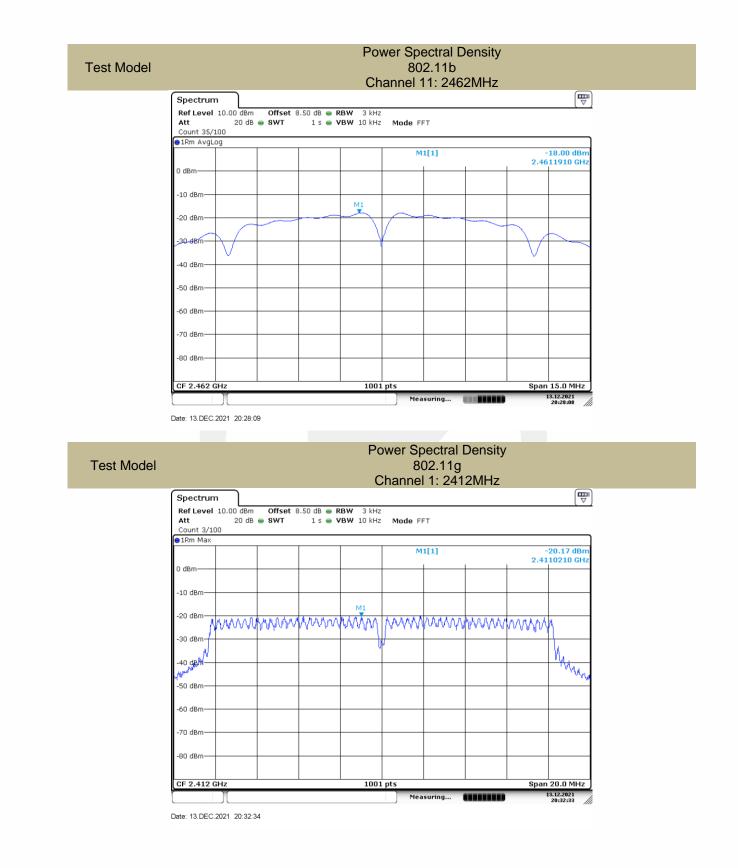
Set Trace mode = max hold.

Allow trace to fully stabilize.

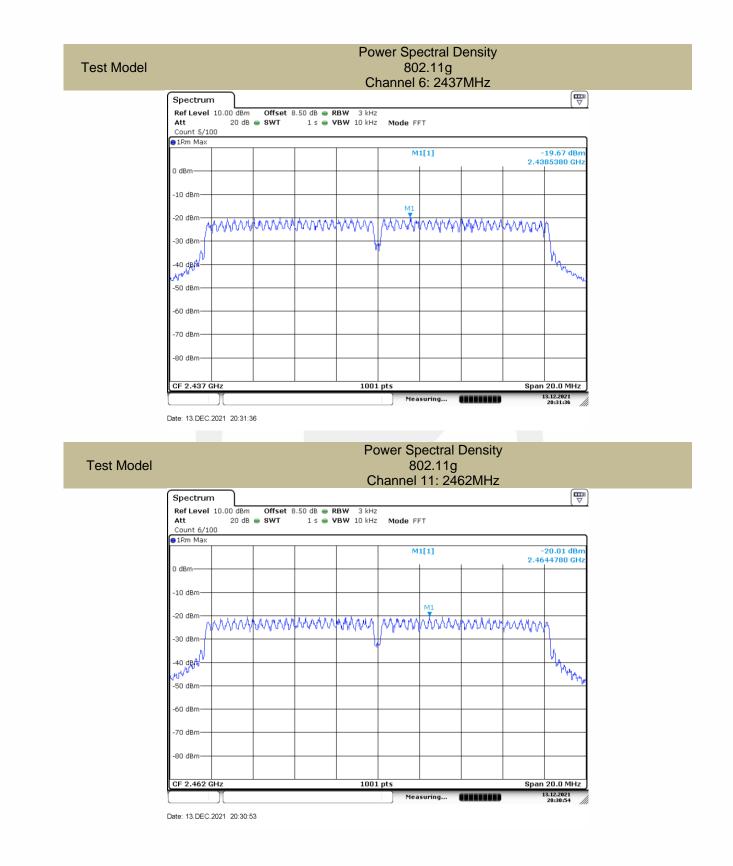
Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

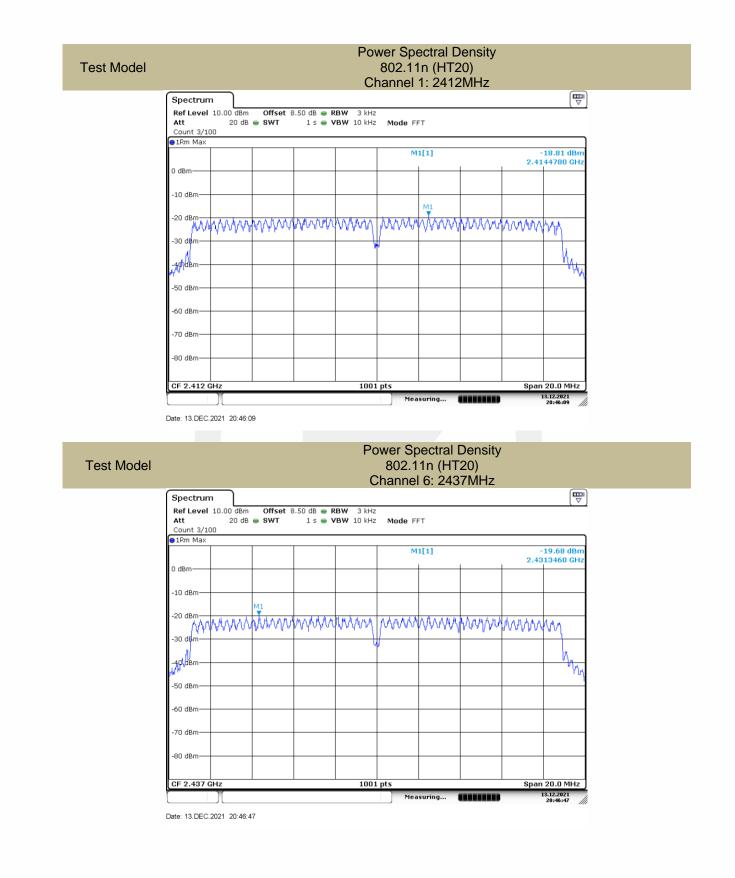

8.3.5 Test Results

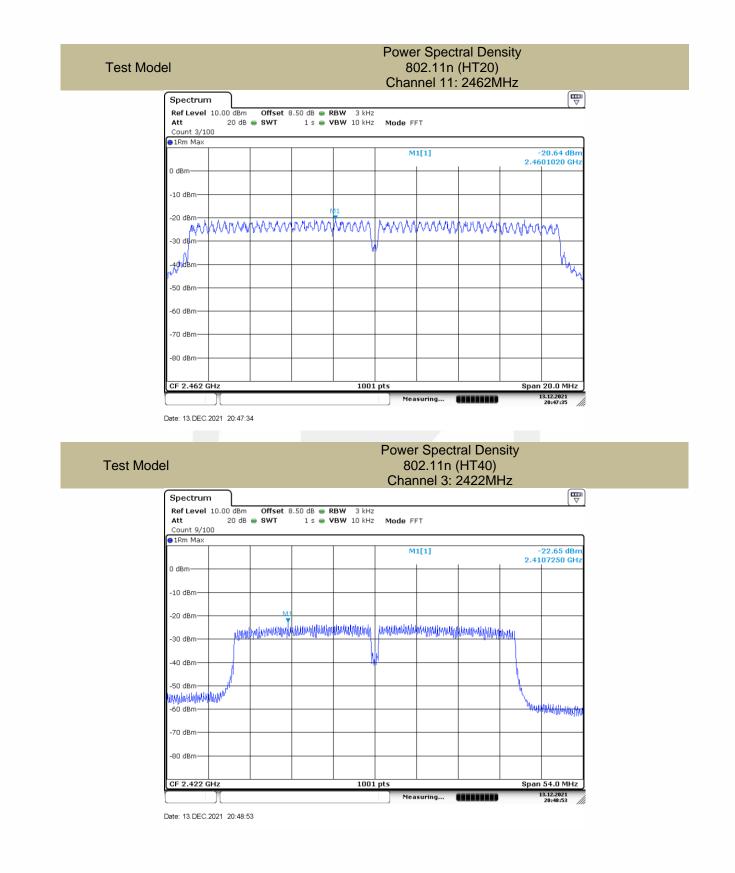
Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

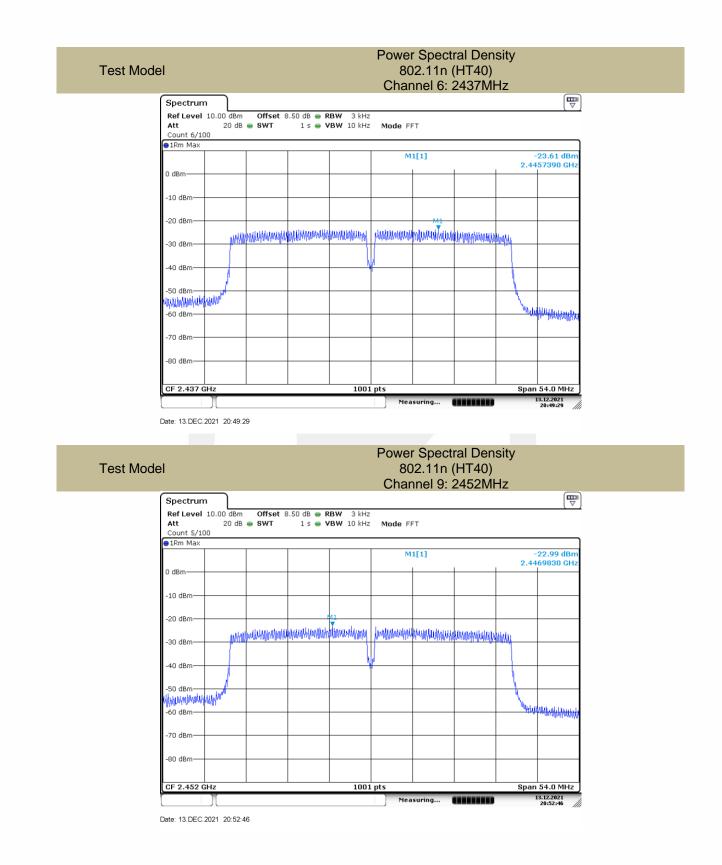

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
802.11b	1	2412	-16.90	8	PASS
	6	2437	-17.00	8	PASS
	11	2462	-18.00	8	PASS
802.11g	1	2412	-20.17	8	PASS
	6	2437	-19.67	8	PASS
	11	2462	-20.01	8	PASS
802.11n (HT20)	1	2412	-18.81	8	PASS
	6	2437	-19.68	8	PASS
	11	2462	-20.64	8	PASS
802.11n (HT40)	3	2422	-22.65	8	PASS
	6	2437	-23.61	8	PASS
	9	2452	-22.99	8	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn









8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

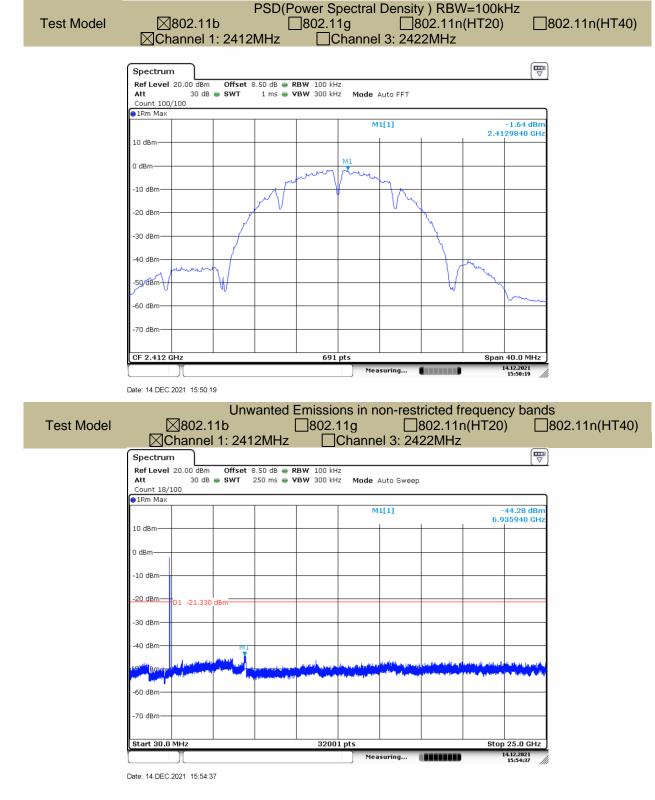
Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

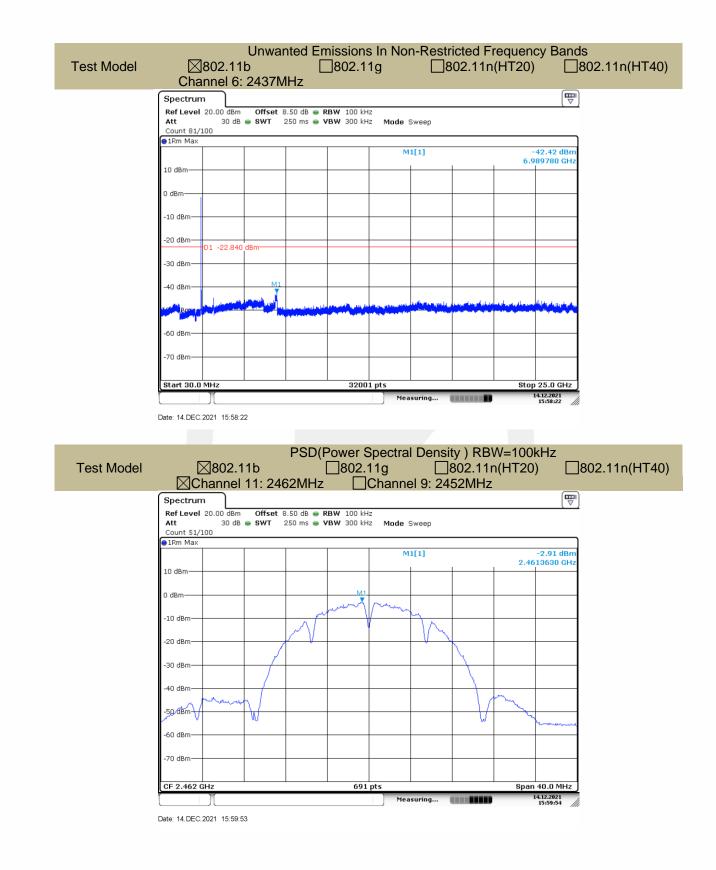
Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn


All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:



8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for f<30MHz(150KHz to 30KHz)

 $VBW \ge RBW$ Sweep = auto Detector function = peak

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Spurious Emission below 30MHz(9KHz to 30MHz)

Freq.	Ant.Pol.	Emis Level(d		Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK È	ÁÝ	PK	AV	PK	AV	
				//				

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

- Spurious Emission Above 1GHz(1GHz to 25GHz)
- All modes 2.4G 802.11b/g/n have been tested, and the worst result of 802.11b recorded was report as below:

Test mode:	802.1	1 b	Frequ	ency:	z			
Freq.				Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
12079.38	V	56.85	39.60	74	54	-17.15	-14.40	
14491.95	V	57.31	40.50	74	54	-16.69	-13.50	
18000.00	V	62.84	45.90	74	54	-11.16	-8.10	
11975.09	Н	57.27	39.90	74	54	-16.73	-14.10	
15090.40	Н	57.59	40.50	74	54	-16.41	-13.50	
18000.00	Н	62.81	45.80	74	54	-11.19	-8.20	

Test mo	de: 802.	11 b	Frequ	ency:	Channe	Channel 6: 2437MHz			
Freq. (MHz)	Ant.Pol.	Emis Level(d		Limit 3m((dBuV/m)	Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV		
12079.38	V	56.85	39.80	74	54	-17.15	-14.20		
14491.95	V	57.31	40.20	74	54	-16.69	-13.80		
17948.04	V	63.00	46.80	74	54	-11.00	-7.20		
12255.22	Н	56.69	39.80	74	54	-17.31	-14.20		
14960.12	Н	57.70	40.50	74	54	-16.30	-13.50		
17948.04	Н	63.56	46.20	74	54	-10.44	-7.80		

	802.11 b	Frequ	ency:	Channel 11: 2462MHz			
Freq. Ant.Pol.			Limit 3m	(dBuV/m)	Over(dB)		
H/V	PK	AV	PK	AV	PK	AV	
V	57.37	40.10	74	54	-16.63	-13.90	
V	56.27	39.60	74	54	-17.73	-14.40	
V	63.19	46.50	74	54	-10.81	-7.50	
Н	56.44	39.20	74	54	-17.56	-14.80	
Н	56.93	39.50	74	54	-17.07	-14.50	
Н	63.12	46.20	74	54	-10.88	-7.80	
	H/V V V H H	Ant.Pol. Emilication H/V PK V 57.37 V 56.27 V 63.19 H 56.44 H 56.93	Ant.Pol. Emission Level(dBuV/m) H/V PK AV V 57.37 40.10 V 56.27 39.60 V 63.19 46.50 H 56.44 39.20 H 56.93 39.50	Ant.Pol. Emission Level(dBuV/m) Limit 3m(PK H/V PK AV PK V 57.37 40.10 74 V 56.27 39.60 74 V 63.19 46.50 74 H 56.44 39.20 74 H 56.93 39.50 74	Ant.Pol. Emission Level(dBuV/m) Limit 3m(dBuV/m) H/V PK AV PK AV V 57.37 40.10 74 54 V 56.27 39.60 74 54 V 63.19 46.50 74 54 H 56.44 39.20 74 54 H 56.93 39.50 74 54	Ant.Pol. Emission Level(dBuV/m) Limit 3m(dBuV/m) Over PK H/V PK AV PK AV PK V 57.37 40.10 74 54 -16.63 V 56.27 39.60 74 54 -17.73 V 63.19 46.50 74 54 -10.81 H 56.44 39.20 74 54 -17.56 H 56.93 39.50 74 54 -17.07	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4)The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All modes 2.4G 802.11b/g/n have been tested, and the worst result of 802.11b recorded was report as below:

Test mode:	802.11 b	Frequ	ency: C	Channel 1: 2412MHz		
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	
2382.880	Н	45.87	74	29.60	54	
2384.880	V	45.96	74	28.90	54	
Test mode:	802.11 b	Frequ	ency: C	Channel 11: 2462MH	z	
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	

48.44 Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

50.40

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp

Н

V

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

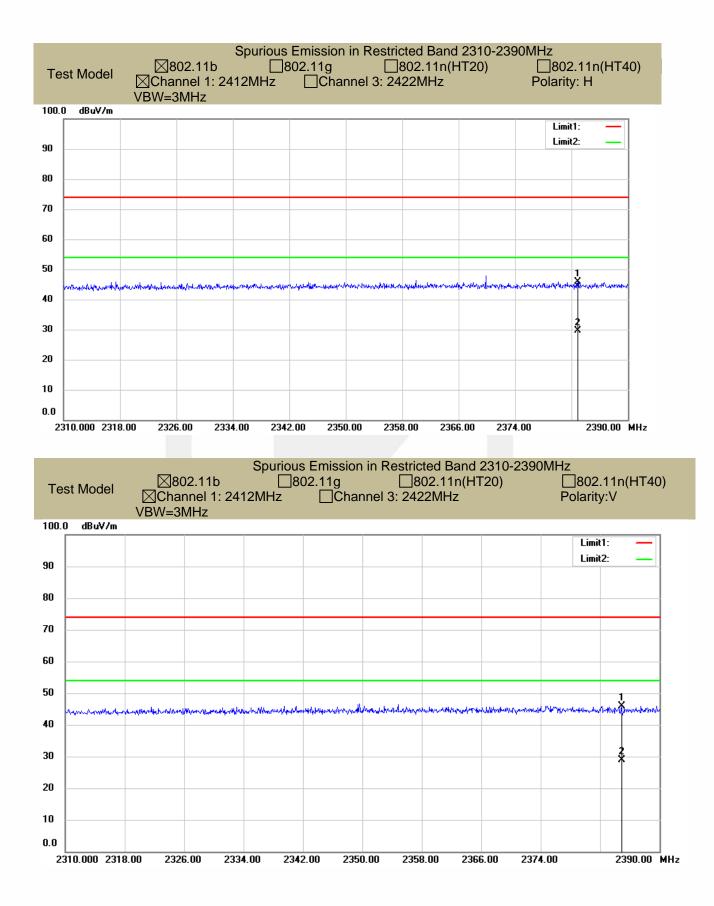
74

74

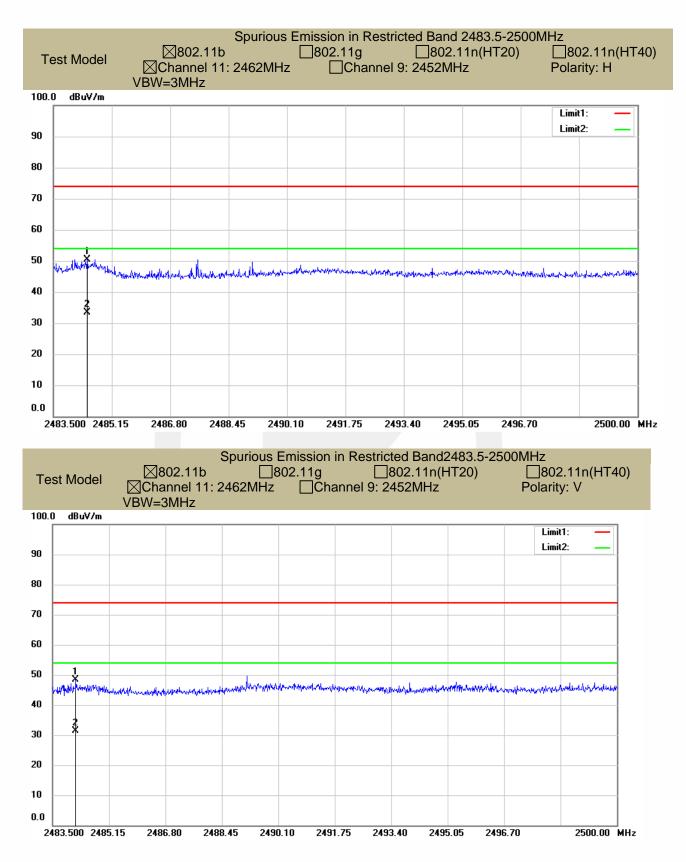
33.50

31.50

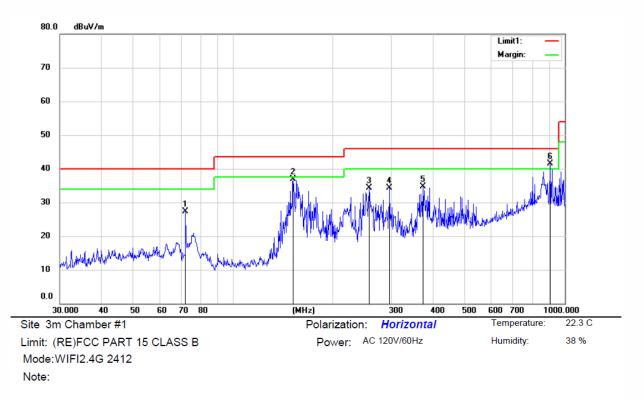
54


54

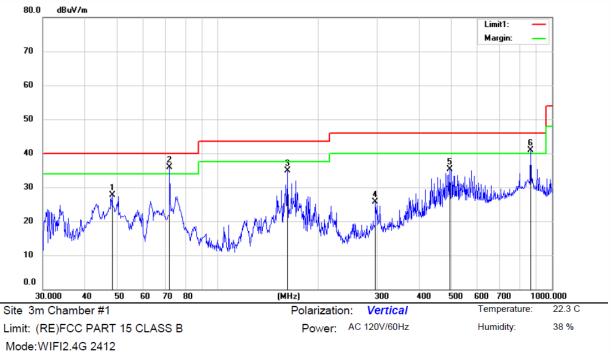
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn


2484.457

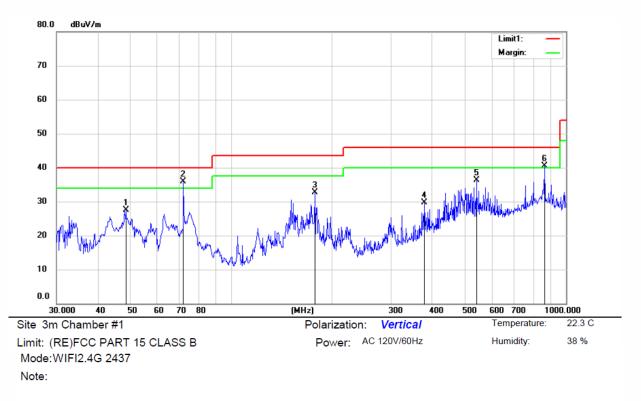
2484.177



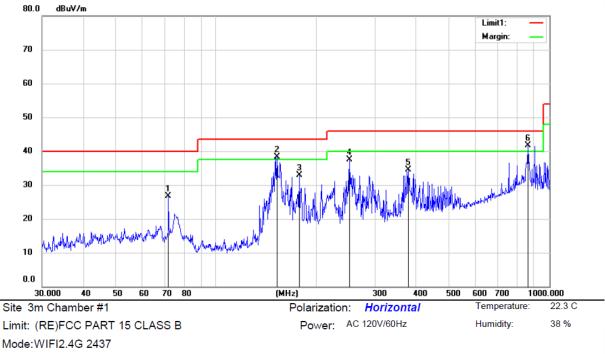
Spurious Emission below 1GHz (30MHz to 1GHz)
 All modes 2.4G 802.11b/g/n have been tested, and the worst result of 802.11b recorded was report as below:

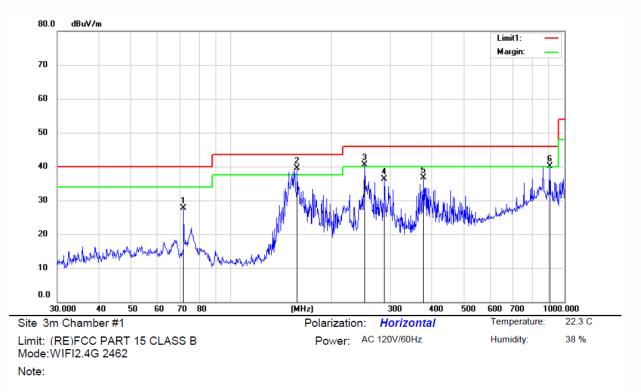


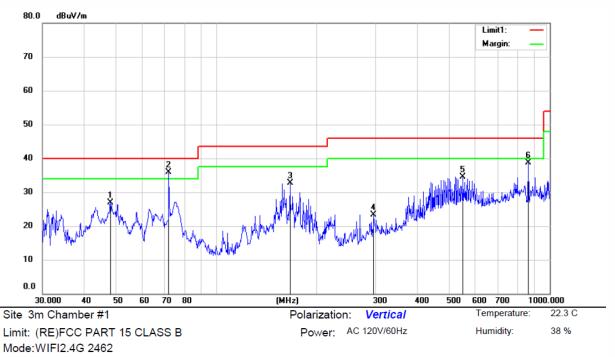
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		72.0211	40.79	-13.57	27.22	40.00	-12.78	QP			
2		152.0631	50.68	-13.83	36.85	43.50	-6.65	QP			
3		258.1000	45.35	-11.05	34.30	46.00	-11.70	QP			
4		297.0938	43.45	-9.16	34.29	46.00	-11.71	QP			
5		373.6386	41.99	-7.20	34.79	46.00	-11.21	QP			
6	*	904.8945	40.41	1.17	41.58	46.00	-4.42	QP			



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		48.3954	40.11	-12.41	27.70	40.00	-12.30	QP			
2	*	71.9896	49.48	-13.57	35.91	40.00	-4.09	QP			
3		162.0414	49.01	-14.03	34.98	43.50	-8.52	QP			
4		296.9636	34.81	-9.17	25.64	46.00	-20.36	QP			
5		495.0657	40.42	-5.19	35.23	46.00	-10.77	QP			
6	İ	864.1920	38.89	2.08	40.97	46.00	-5.03	QP			


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		48.4803	39.91	-12.39	27.52	40.00	-12.48	QP			
2	*	71.9896	49.49	-13.57	35.92	40.00	-4.08	QP			
3		177.8207	46.74	-13.95	32.79	43.50	-10.71	QP			
4		378.0867	36.77	-7.14	29.63	46.00	-16.37	QP			
5		540.1874	40.69	-4.45	36.24	46.00	-9.76	QP			
6	İ	864.1920	38.52	2.08	40.60	46.00	-5.40	QP			


Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	71.9896	40.31	-13.57	26.74	40.00	-13.26	QP			
İ	152.5304	52.18	-13.84	38.34	43.50	-5.16	QP			
	177.8207	46.91	-13.95	32.96	43.50	-10.54	QP			
	251.9523	48.64	-11.19	37.45	46.00	-8.55	QP			
	378.0867	41.68	-7.14	34.54	46.00	-11.46	QP			
*	864.1920	39.70	2.08	41.78	46.00	-4.22	QP			
	Mk !	MHz 71.9896 ! 152.5304 177.8207 251.9523 378.0867	Mk. Freq. Level MHz dBuV 71.9896 40.31 ! 152.5304 52.18 177.8207 46.91 251.9523 48.64 378.0867 41.68	Mk. Freq. Level Factor MHz dBuV dB 71.9896 40.31 -13.57 ! 152.5304 52.18 -13.84 177.8207 46.91 -13.95 251.9523 48.64 -11.19 378.0867 41.68 -7.14	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 71.9896 40.31 -13.57 26.74 ! 152.5304 52.18 -13.84 38.34 177.8207 46.91 -13.95 32.96 251.9523 48.64 -11.19 37.45 378.0867 41.68 -7.14 34.54	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 71.9896 40.31 -13.57 26.74 40.00 ! 152.5304 52.18 -13.84 38.34 43.50 177.8207 46.91 -13.95 32.96 43.50 251.9523 48.64 -11.19 37.45 46.00 378.0867 41.68 -7.14 34.54 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 71.9896 40.31 -13.57 26.74 40.00 -13.26 QP ! 152.5304 52.18 -13.84 38.34 43.50 -5.16 QP 177.8207 46.91 -13.95 32.96 43.50 -10.54 QP 251.9523 48.64 -11.19 37.45 46.00 -8.55 QP 378.0867 41.68 -7.14 34.54 46.00 -11.46 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 71.9896 40.31 -13.57 26.74 40.00 -13.26 QP 1 152.5304 52.18 -13.84 38.34 43.50 -5.16 QP 177.8207 46.91 -13.95 32.96 43.50 -10.54 QP 251.9523 48.64 -11.19 37.45 46.00 -8.55 QP 378.0867 41.68 -7.14 34.54 46.00 -11.46 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 71.9896 40.31 -13.57 26.74 40.00 -13.26 QP - - 1 152.5304 52.18 -13.84 38.34 43.50 -5.16 QP - - 177.8207 46.91 -13.95 32.96 43.50 -10.54 QP - - 251.9523 48.64 -11.19 37.45 46.00 -8.55 QP - - 378.0867 41.68 -7.14 34.54 46.00 -11.46 QP -

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		71.9896	41.26	-13.57	27.69	40.00	-12.31	QP			
2	*	157.5588	53.39	-13.90	39.49	43.50	-4.01	QP			
3	ļ.	251.9523	51.66	-11.19	40.47	46.00	-5.53	QP			
4		288.1167	46.06	-9.66	36.40	46.00	-9.60	QP			
5		378.0867	43.93	-7.14	36.79	46.00	-9.21	QP			
6	ļ	904.8945	38.88	1.17	40.05	46.00	-5.95	QP			

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		47.9940	39.45	-12.52	26.93	40.00	-13.07	QP			
2	*	71.9896	49.39	-13.57	35.82	40.00	-4.18	QP			
3		166.5784	46.88	-14.19	32.69	43.50	-10.81	QP			
4		297.0938	32.41	-9.16	23.25	46.00	-22.75	QP			
5		549.2602	38.61	-4.06	34.55	46.00	-11.45	QP			
6		864.1920	36.65	2.08	38.73	46.00	-7.27	QP			

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Conducted Emission Limit						
Frequency(MHz)	Quasi-peak	Average				
0.15-0.5	66-56	56-46				
0.5-5.0	56	46				
5.0-30.0	60	50				

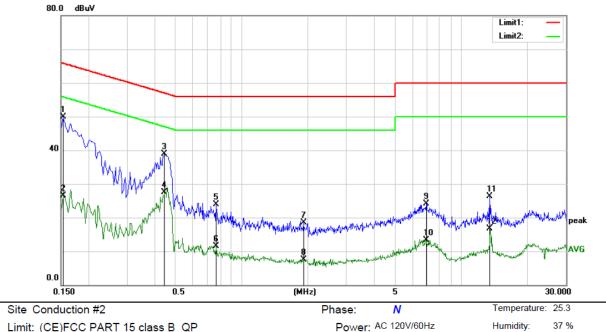
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3conducted emission test setup

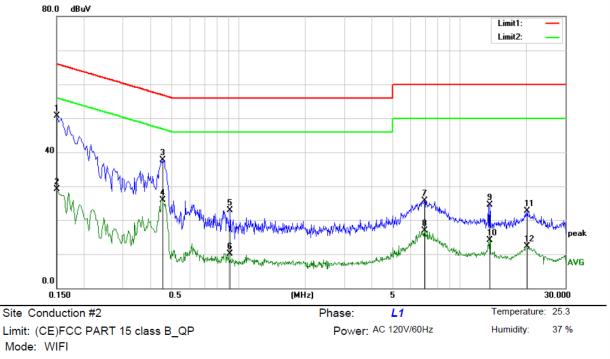
8.6.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

Pass

The 120V &240V voltagehave been tested, and the worst result recorded was report as below:



Limit: (CE)FCC PART 15 class B_QP Mode: WIFI Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1540	39.44	10.48	49.92	65.78	-15.86	QP	
2	0.1540	16.09	10.48	26.57	55.78	-29.21	AVG	
3	0.4460	28.63	10.36	38.99	56.95	-17.96	QP	
4	0.4460	17.15	10.36	27.51	46.95	-19.44	AVG	
5	0.7660	13.54	10.36	23.90	56.00	-32.10	QP	
6	0.7660	1.10	10.36	11.46	46.00	-34.54	AVG	
7	1.9100	8.12	10.33	18.45	56.00	-37.55	QP	
8	1.9100	-2.88	10.33	7.45	46.00	-38.55	AVG	
9	6.9220	13.43	10.62	24.05	60.00	-35.95	QP	
10	6.9220	2.74	10.62	13.36	50.00	-36.64	AVG	
11	13.4300	15.53	10.73	26.26	60.00	-33.74	QP	
12	13.4300	5.89	10.73	16.62	50.00	-33.38	AVG	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	40.26	10.48	50.74	66.00	-15.26	QP	
2		0.1500	18.62	10.48	29.10	56.00	-26.90	AVG	
3		0.4540	27.31	10.36	37.67	56.80	-19.13	QP	
4		0.4540	15.63	10.36	25.99	46.80	-20.81	AVG	
5		0.9180	12.59	10.39	22.98	56.00	-33.02	QP	
6		0.9180	-0.37	10.39	10.02	46.00	-35.98	AVG	
7		6.9420	15.18	10.62	25.80	60.00	-34.20	QP	
8		6.9420	6.34	10.62	16.96	50.00	-33.04	AVG	
9		13.6500	13.76	10.73	24.49	60.00	-35.51	QP	
10		13.6500	3.42	10.73	14.15	50.00	-35.85	AVG	
11		20.2380	12.03	10.76	22.79	60.00	-37.21	QP	
12		20.2380	1.47	10.76	12.23	50.00	-37.77	AVG	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

PASS.

Note:

• The EUT has a PCB Antenna for WIFI 2.4G, the antenna gain is 2 dBi.

Antenna uses a permanently attached antenna which is not replaceable.

- Not using a standard antenna jack or electrical connector for antenna replacement

The antenna has to be professionally installed (please provide method of installation)

Which in accordance to section 15.203, please refer to the internal photos.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Detail of factor for rac			1	1
Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	\	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	\	20.38
30	18.8	0.45	\	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

Detail of factor for radiated emission

*** End of Report ***

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn