

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

Wireless doorbell for socket

MODEL NUMBER: SFS 52 B2

FCC ID: 2AJ9O-SFS52B2

REPORT NUMBER: 4788096206.2-1

ISSUE DATE: October 25, 2017

Prepared for

Lidl US, LLC 3500 S. Clark Street, Arlington, Virginia, United States 22202

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33871725 Fax: +86 769 33871725 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/25/2017	Initial Issue	

REPORT NO: 4788096206.2-1 FCC ID: 2AJ9O-SFS52B2

	Summary of Test Results							
Clause	Test Items FCC Rules Test Res							
1	Dell Time	FCC 15.231 (a) (1)	PASS					
2	20dB Bandwidth	FCC 15.231 (c)	PASS					
3	Radiated emission	FCC 15.231 (b)/15.209	PASS					

DATE: October 25, 2017

MODEL: SFS 52 B2

TABLE OF CONTENTS

DATE: October 25, 2017

MODEL: SFS 52 B2

1.	AT [*]	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	ε
4.	CA	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	
5.	EQ	UIPMENT UNDER TEST	ε
;	5.1.	DESCRIPTION OF EUT	8
;	5.2.	TEST CHANNEL CONFIGURATION	8
;	5.3.	TEST ENVIRONMENT	8
;	5.4.	DESCRIPTION OF TEST SETUP	
;	5.5.	MEASURING INSTRUMENT AND SOFTWARE USED	10
6.	AN	ITENNA PORT TEST RESULTS	11
(6.1.	ON TIME AND DUTY CYCLE	11
(6.2.	TRANSMITTER TIMEOUT	14
	6.3.	20dB BANDWIDTH	16
	6.4.	RADIATED EMISSION	
	6.4		
	6.4	I.2. SPURIOUS EMISSIONS ABOVE 1G	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Lidl US, LLC

Address: 3500 S. Clark Street, Arlington, Virginia, United States 22202

Manufacturer Information

Company Name: WINKA ELECTRONIC CO.,LTD

Address: The west of Lihan Avenue (Within Putian City Jiali Electronic

Industry Co., Ltd), Hanjiang District, Putian, Fujian, China.

EUT Name: Wireless doorbell for socket

Model: SFS 52 B2

Sample Status: Normal

Sample ID: 1090375

Brand: N/A

Sample Received: October 12, 2017

Date of Tested: October 12, 2017 ~ October 23, 2017

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

Tested By: Checked By:

kebo. zhang. Shemmy ben

Kebo Zhang Shawn Wen Engineer Laboratory Leader

Approved By:

Stephen Guo

Laboratory Manager

Applientus

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. The Certificate Registration Number is 4102.01. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The Designation Number is CN1187. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.

Note: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Uncertainty for Conduction emission test	2.90dB			
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB			
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)			
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)			
emission)	5.23dB (18GHz-26Gz)			
Note: This upportainty represents an expended upportainty expressed at approximately				

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Wireless doorbell for socket	
Model Name	SFS 52 B2	
Operation Frequency	433.92MHz	
Modulation Type	FSK	
Power supply	DC 3V via Battery	

5.2. TEST CHANNEL CONFIGURATION

Test Mode	Frequency
FSK	433.92MHz

5.3. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	5 ~ 65%				
Atmospheric Pressure:	1025Pa				
Temperature	TN	23 ~ 28°C			
	VL	N/A			
Voltage :	VN	DC3V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage, DC 3V via Battery

VH= Upper Extreme Test Voltage

TN= Normal Temperature

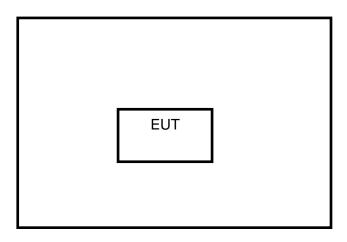
5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N	
1	N/A	N/A N/A		N/A	

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	N/A	N/A	N/A	N/A	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

- 1. A fully charged battery was used for all tests.
- 2. The test sample can be into a transmission mode through the power on.

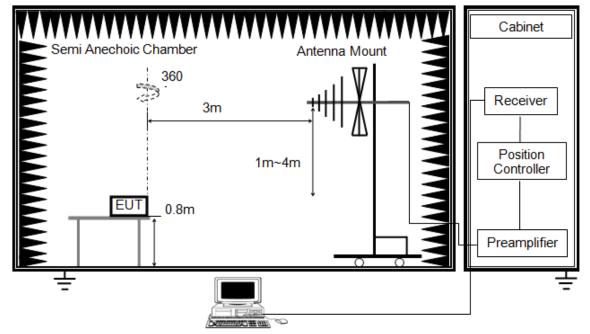
SETUP DIAGRAM FOR TEST

5.5. MEASURING INSTRUMENT AND SOFTWARE USED

Instrument								
Used	Equipment	Manufacturer	Мо	Model No.		al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	Ν	19038A	MY56400 036		Feb. 24, 2017	Feb. 24, 2018
V	Hybrid Log Periodic Antenna	TDK	HL	P-3003C	130	0960	Jan.09, 2016	Jan.09, 2019
V	Preamplifier	HP	8	3447D		4A090 99	Feb. 13, 2017	Feb. 13, 2018
V	EMI Measurement Receiver	R&S	E	ESR26	10	1377	Dec. 20, 2016	Dec. 20, 2017
\checkmark	Horn Antenna	TDK	HF	RN-0118	130	0939	Jan. 09, 2016	Jan. 09, 2019
V	High Gain Horn Antenna	Schwarzbeck	ВВ	BBHA-9170		91	Jan.06, 2016	Jan.06, 2019
V	Preamplifier	TDK	PA [.]	PA-02-0118		S-305- 1066	Jan. 14, 2017	Jan. 14, 2018
	Preamplifier	TDK	Р	PA-02-2		S-307- 0003	Dec. 20, 2016	Dec. 20, 2017
V	Loop antenna	Schwarzbeck	•	1519B	80000		Mar. 26, 2016	Mar. 26, 2019
			So	ftware				
Used	Descr	iption		Manufact	turer		Name	Version
\checkmark	Test Software for R	adiated disturba	nce	Farac	arad E		EZ-EMC	Ver. UL-3A1
		Oth	ner ir	nstrumen	ts			
Used	Equipment	Manufacturer	Мо	odel No.	Seri	al No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N	19030A		55410 512	Dec. 20, 2016	Dec. 20, 2017
V	Power Meter	Keysight	N	19031A	1A MY55416 024		Feb. 13, 2017	Feb. 13, 2018
V	Power Sensor	Keysight	N	19323A		55440 113	Feb. 13, 2017	Feb. 13, 2018

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

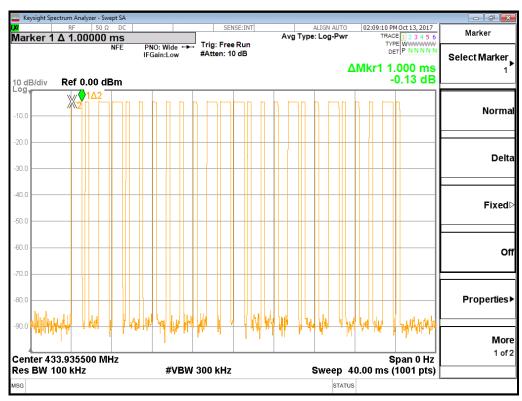
FCC Reference:	Part 15.35(c)
Test Method Used:	ANSI C63.10 Section 7.5

TEST SETUP

- a. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sweep Time is at least a 100 ms.
- d. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- e. Measure the maximum time duration of one single pulse.

RESULTS

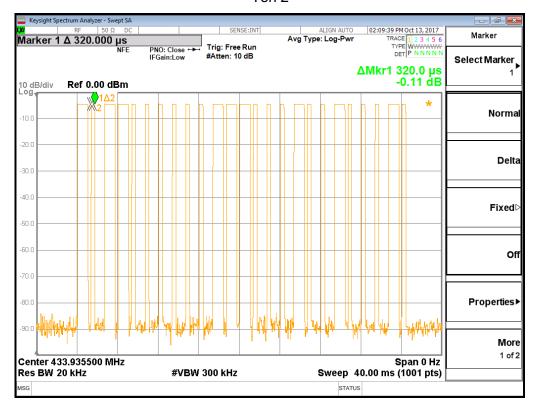
	On Time (ms)	Times	Ton (ms)	Total Ton times (ms)	
Ton1	1	9	9	11.88	
Ton2	0.32	16	2.88		


Note: Total Ton times= Ton1*9+Ton2*16

Total Ton times (ms)	Period (ms)	Duty Cycle (Linear)	Duty Cycle Correction Factor
11.8	42.6	0.277	-11.15

Note: Duty Cycle Correction Factor=20log(x).

Where: x is Duty Cycle


Ton 1

Ton 2

DATE: October 25, 2017

MODEL: SFS 52 B2

Period

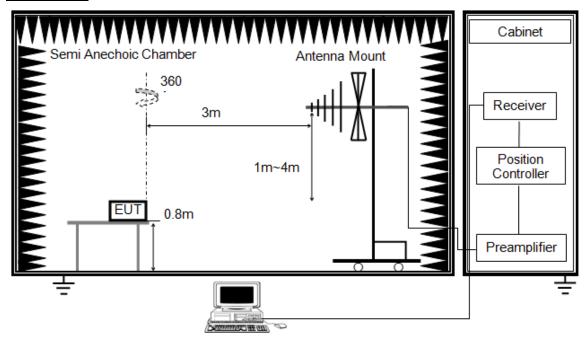
(ms)

Page 13 of 32

6.2. TRANSMITTER TIMEOUT

LIMITS

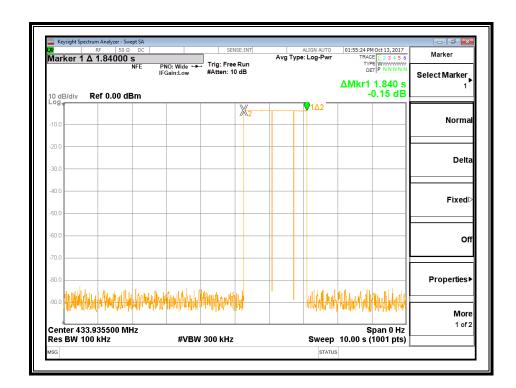
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


TEST PROCEDURE

FCC Reference:	Part 15.231(a)
Test Method Used:	The EUT transmitter was activated and monitored using a spectrum analyser for a period of 10 seconds.

DATE: October 25, 2017

MODEL: SFS 52 B2


TEST SETUP

- a. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sew Sweep Time to 10 s.
- d. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- e. Measure the maximum time duration of one single pulse.

RESULTS

Deactivation Time (seconds)	Limit (seconds)	Margin (seconds)	Result
1.84	5.000	3.16	Complied

6.3. 20dB BANDWIDTH

LIMITS

1. The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

DATE: October 25, 2017


MODEL: SFS 52 B2

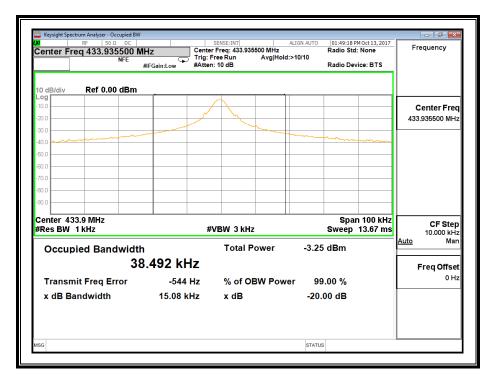
2. The limit has been calculated as: 0.0025 * 433.92 MHz = 1.0848 MHz

TEST PROCEDURE

FCC Reference:	Part 15.231(c)
Test Method Used:	ANSI C63.10 Section 6.9.2

TEST SETUP

- 1. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 2. The EUT was placed on a turntable with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower
- 4. Set the spectrum analyzer in the following setting as: RBW is set to 1 kHz and VBW is set 3 kHz.


REPORT NO: 4788096206.2-1 FCC ID: 2AJ9O-SFS52B2

RESULTS

Transmitter 20 dB Bandwidth (MHz)	Limit (MHz)	Result
0.01508	1.0848	Complied

DATE: October 25, 2017

MODEL: SFS 52 B2

6.4. RADIATED EMISSION

LIMITS

1. In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

Note:

1. To obtain the average limit at the test frequency the values given in the table of FCC part 15.231(b) have to be linear interpolated and then converted to dB μ V/m. The limit at 260 MHz is 3750 μ V/m and at 470 MHz it is 12500 μ V/m. Limit at 433.92 MHz is calculated as shown in ANSI C63.10 Section 7.6.2:

Limit [μ V/m] = Limlower + Δ F [(Limupper – Limlower) / (fupper – flower)] where Δ F = fc – flower = 433.92 – 260 = 173.92

Limit = 3750 + 173.92 * [(12500 - 3750) / (470 - 260)]= 3750 + 173.92 * [8750 / 210]= $10996.7 \mu V/m$ dB $\mu V/m = 20 * log (\mu V/m)$ = 20 * log (10996.7)

Average Limit at 433.92 MHz = 80.8 dBµV/m

- 2. If the average limit is specified for the EUT, the peak limit is 20 dB above the average limit as specified in FCC 15.35 (b)
- 2. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

3. Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

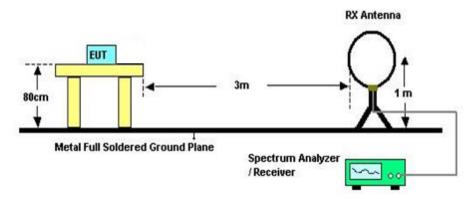
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			•

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

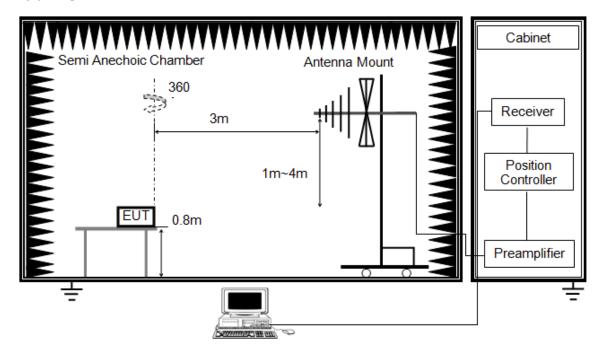

FCC Reference:	Parts 15.231(b) / 15.209
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5

DATE: October 25, 2017

MODEL: SFS 52 B2

TEST SETUP

Below 30MHz

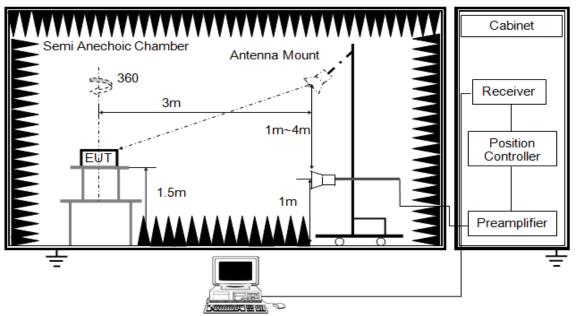


The setting of the spectrum analyser

	J
RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

Below 1G



The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower

ABOVE 1G

RBW	1M
VBW	3M
Sweep	Auto
Detector	Peak For Average see note 6
Trace	Max hold

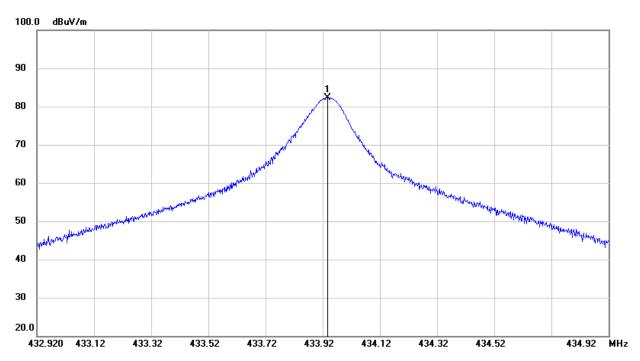
- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For average value=peak average+Duty Correction Factor

For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.

8. For the actual test configuration, please refer to the related item in this test report. (Photographs of the Test Configuration)

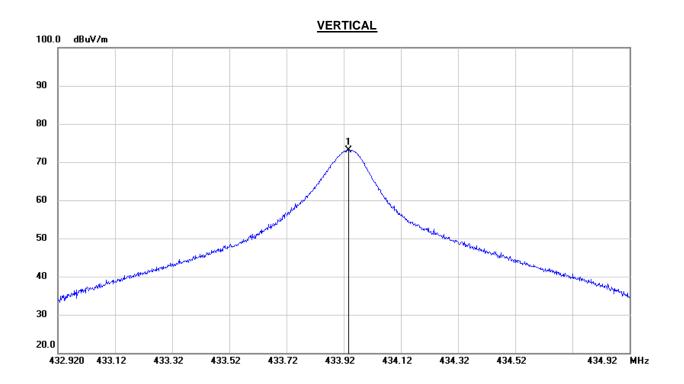
RESULTS

X axis, Y axis, Z axis positions:



Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

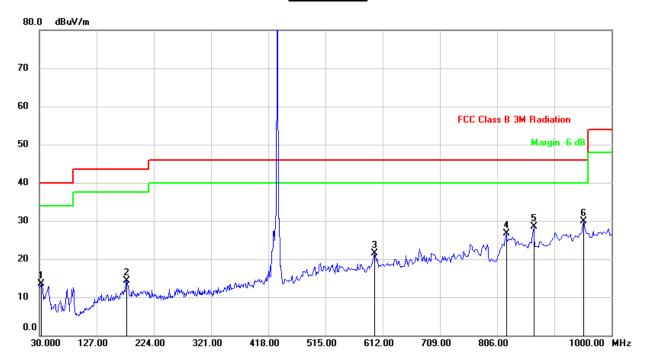
DATE: October 25, 2017


MODEL: SFS 52 B2

6.4.1. Fundamental Field Strength HORIZONTAL

Frequency	Reading	Correct	Peak Result	Average Result	Limit	Margin	Remark
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
433.9380	91.94	-9.63	82.31		100.8	-18.49	peak
				71.16	80.8	-9.64	Average

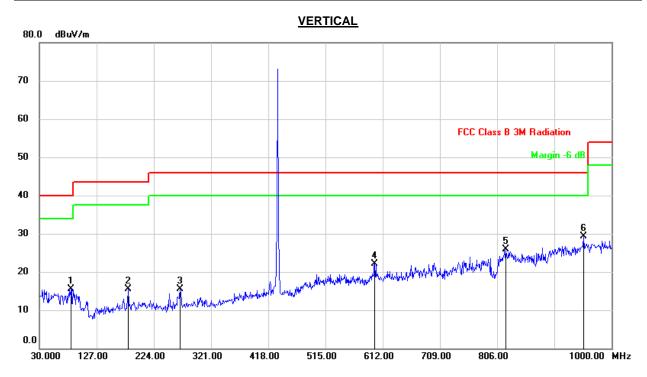
Note: 1. Peak Result = Reading+ Duty Correction Factor 2. Average Result= Peak Result+ Correct Factor



Frequency	Reading	Correct	Peak	Average	Limit	Margin	Remark
			Result	Result			
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
433.92	82.79	-9.63	73.16		100.8	-26.92	peak
				62.01	80.8	-18.79	Average

Note: 1. Peak Result = Reading+ Duty Correction Factor 2. Average Result= Peak Result+ Correct Factor

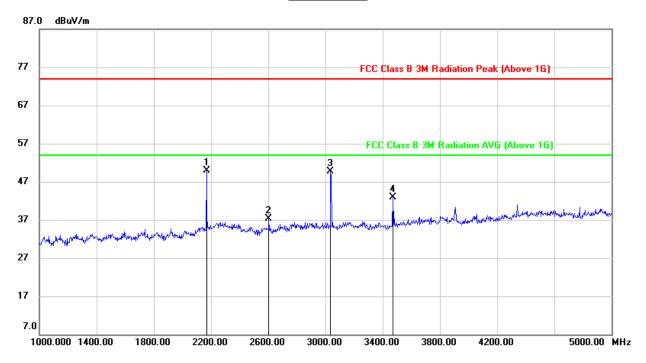
6.4.2. SPURIOUS EMISSIONS BELOW 1G


HORIZONTAL

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	32.9100	28.27	-14.68	13.59	40.00	-26.41	peak
2	177.4400	27.32	-12.94	14.38	43.50	-29.12	peak
3	598.4200	27.65	-6.09	21.56	46.00	-24.44	peak
4	821.5200	1.82	24.93	26.75	46.00	-19.25	peak
5	868.0800	4.17	24.34	28.51	46.00	-17.49	peak
6	952.4700	3.65	26.20	29.85	46.00	-16.15	peak

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

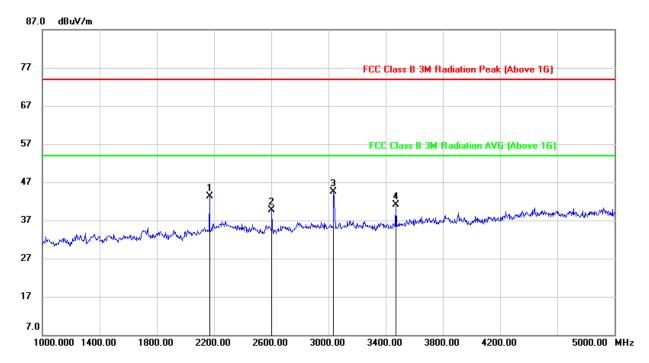


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	83.3500	33.34	-17.88	15.46	40.00	-24.54	peak
2	180.3500	28.48	-12.93	15.55	43.50	-27.95	peak
3	268.6200	28.30	-12.74	15.56	46.00	-30.44	peak
4	598.4200	28.20	-6.08	22.12	46.00	-23.88	peak
5	820.5500	1.03	24.90	25.93	46.00	-20.07	peak
6	952.4700	3.13	26.20	29.33	46.00	-16.67	peak

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

6.4.3. SPURIOUS EMISSIONS ABOVE 1G HORIZONTAL



No.	Frequency	Reading	Correct	P-Result	A-Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	dBuV/m)	(dBuV/m)	(dB)	
5 th harmonic	2168.000	59.28	-9.30	49.98		80.8	-24.02	peak
					38.83	60.8	-21.97	average
6 th harmonic	2604.000	46.03	-8.76	37.27		80.8	-36.73	peak
					26.12	60.8	-34.68	average
7 th harmonic	3036.000	56.79	-7.04	49.75		80.8	-24.25	peak
					38.60	60.8	-22.20	average
8 th harmonic	3472.000	49.05	-6.07	42.98		80.8	-31.02	peak
					31.83	60.8	-28.97	average

Note: 1.Peak Result = Reading Level + Correct Factor.

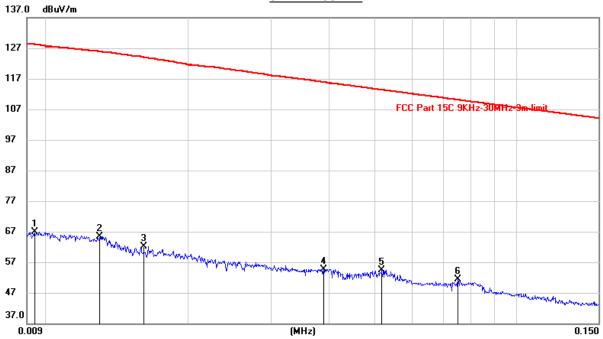
- 2. Average Result = Peak Result + Duty Correction Factor.
- 3. No burst found in Restricted bands.

VERTICAL

No.	Frequency	Reading	Correct	P-Result	A-Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	dBuV/m)	(dBuV/m)	(dB)	
5 th harmonic	2168.000	52.72	-9.37	43.35		80.8	-30.65	peak
					32.20	60.8	-21.05	average
6 th harmonic	2604.000	48.46	-8.77	39.69		80.8	-34.31	peak
					28.54	60.8	-32.26	average
7 th harmonic	3036.000	51.62	-7.04	44.58		80.8	-29.42	peak
					33.43	60.8	-27.37	average
8 th harmonic	3472.000	47.22	-6.03	41.19		80.8	-32.81	peak
					30.04	60.8	-30.76	average

Note: 1.Peak Result = Reading Level + Correct Factor.

- 2. Average Result = Peak Result + Duty Correction Factor.
- 3. No burst found in Restricted bands.


6.4.4. SPURIOUS EMISSIONS BELOW 30M

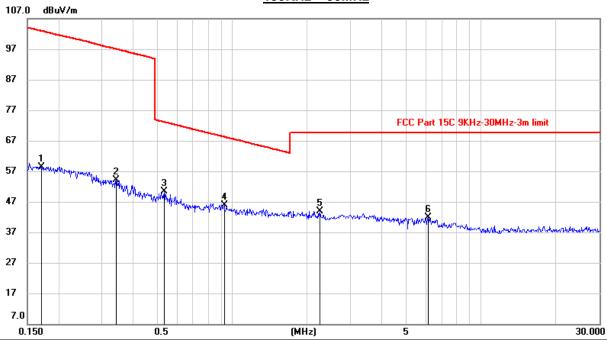
HORIZONTAL

DATE: October 25, 2017

MODEL: SFS 52 B2

9KHz~ 150KHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0094	46.50	20.26	66.76	128.06	-61.30	peak
2	0.0129	45.20	20.24	65.44	125.85	-60.41	peak
3	0.0160	41.87	20.27	62.14	123.99	-61.85	peak
4	0.0388	34.44	20.31	54.75	115.86	-61.11	peak
5	0.0516	34.16	20.31	54.47	113.37	-58.90	peak
6	0.0752	30.98	20.31	51.29	110.10	-58.81	peak


Note: 1. Measurement = Reading Level + Correct Factor.

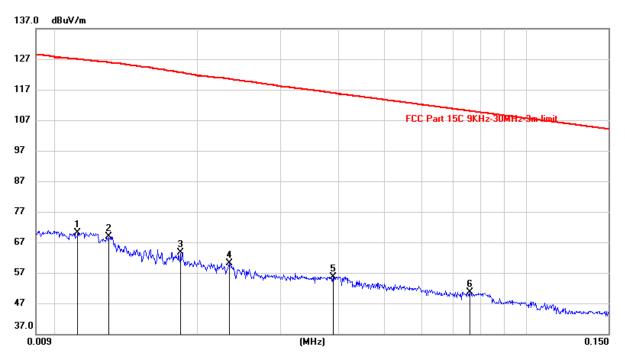
2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

150KHz ~ 30MHz

DATE: October 25, 2017

MODEL: SFS 52 B2

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1711	38.08	20.40	58.48	102.95	-44.47	peak
2	0.3410	33.95	20.29	54.24	97.03	-42.79	peak
3	0.5349	30.25	20.25	50.50	73.08	-22.58	peak
4	0.9282	25.50	20.37	45.87	68.26	-22.39	peak
5	2.2486	23.04	20.77	43.81	69.54	-25.73	peak
6	6.1859	21.13	20.87	42.00	69.54	-27.54	peak

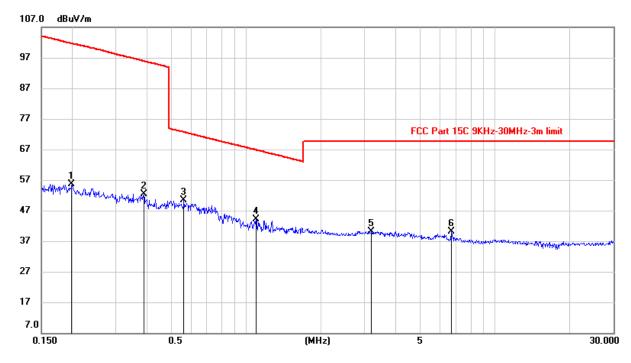

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

VERTICAL

DATE: October 25, 2017 MODEL: SFS 52 B2

9KHz~ 150KHz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0111	50.02	20.22	70.24	126.94	-56.70	peak
2	0.0129	48.70	20.24	68.94	125.85	-56.91	peak
3	0.0183	43.38	20.29	63.67	122.60	-58.93	peak
4	0.0233	39.85	20.31	60.16	120.42	-60.26	peak
5	0.0388	35.44	20.31	55.75	115.86	-60.11	peak
6	0.0758	30.25	20.31	50.56	110.03	-59.47	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

150KHz ~ 30MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1995	35.35	20.37	55.72	101.60	-45.88	peak
2	0.3870	32.15	20.27	52.42	95.89	-43.47	peak
3	0.5611	30.16	20.26	50.42	72.66	-22.24	peak
4	1.0939	23.73	20.41	44.14	66.83	-22.69	peak
5	3.1900	19.32	20.93	40.25	69.54	-29.29	peak
6	6.6977	19.21	20.90	40.11	69.54	-29.43	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

END OF REPORT