

Report No.: SZEM161201070001 Page: 1 of 85

FCC REPORT

Application No.:	SZEM1612010700CR
Applicant:	LidI US Trading, LLC
Manufacturer:	SHENZHEN KINGREE ELECTRONIC CO., LTD .
Factory:	SHENZHEN KINGREE ELECTRONIC CO., LTD .
Product Name:	BLUETOOH MUSHROOM SPEAKER
Model No.(EUT):	SBPL 15 A1
Add Model No.:	BT2398
Trade Mark:	SILVERCREST
FCC ID:	2AJ9O-SBPL15A1
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-12-15
Date of Test:	2016-12-15 to 2017-03-10
Date of Issue:	2017-03-13
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

CHEN Jian-feng, Jeffrey

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions aspx and, for electronic formal documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions of the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document to sconcerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
01		2017-03-13		Original			

Authorized for issue by:			
Tested By	(Bill Chen) /Project Engineer	20 	17-03-10
Checked By	Eric Fu (Eric Fu)/Reviewer	20 	17-03-13

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's solid responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

4 Contents

Page

	~		-
1		OVER PAGE	
2	VE	ERSION	2
3	TE	EST SUMMARY	
4	CC	ONTENTS	4
5	GE	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	DEVIATION FROM STANDARDS	
	5.7	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.9	EQUIPMENT LIST	
6	TE	EST RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT	
	6.2	Conducted Emissions	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	Dwell Time	
	6.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.9	SPURIOUS RF CONDUCTED EMISSIONS	
	6.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
	6.11	RADIATED SPURIOUS EMISSION	
		11.1 Radiated Emission below 1GHz	
	6.1	11.2 Transmitter Emission above 1GHz	75
	6.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	78
7	PH	IOTOGRAPHS - EUT TEST SETUP	84
	7.1	Conducted Emission	
	7.2	RADIATED EMISSION	
	7.3	RADIATED SPURIOUS EMISSION	
8	PH	IOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

5 General Information

5.1 Client Information

Applicant:	LidI US Trading, LLC
Address of Applicant:	3500 S. Clark Street, Arlington, Virginia, United States
Manufacturer:	SHENZHEN KINGREE ELECTRONIC CO., LTD.
Address of Manufacturer:	3F & 6F BUILDING 70 BOHUA TECH. PARK GUANLAN STREET, SHENZHEN CITY, CHIAN, 518110
Factory:	SHENZHEN KINGREE ELECTRONIC CO., LTD.
Address of Factory:	3F & 6F BUILDING 70 BOHUA TECH. PARK GUANLAN STREET, SHENZHEN CITY, CHIAN, 518110

5.2 General Description of EUT

Product Name:	BLUETOOH MUSHROOM SPEAKER
Model No.:	SBPL 15 A1
Trade Mark:	SILVERCREST
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	Bluetooth 4.1 with EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply	Rechargeable battery: DC 3.7V 200mAh 0.74Wh (Charge by USB)

Remark:

Model No.: BT2398, SBPL 15 A1

Only the model SBPL 15 A1 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, only different on the silicone color.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-end-Conditions/Terms-

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1015 mbar	

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
Laptop	Lenovo	T430u
Test board	Supply to SGS	FT232

5.5 Test Location

All tests were subcontracted to Shenzhen EMC Lab:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

5.8 Other Information Requested by the Customer

None.

5.9 Equipment List

	Conducted Emission	on				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8- 02	EMC0120	2016-09-28	2017-09-28
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4- 02	EMC0121	2016-09-28	2017-09-28
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2- 02	EMC0122	2016-09-28	2017-09-28
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09

	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)		
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09		
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25		
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09		

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions/Terms-end-Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention obly and within the limits of Client's instructions, if any. The Company's solic esponsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions/Terms-end-Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention obly and within the limits of Client's instructions, if any. The Company's solic esponsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

6 Test results and Measurement Data

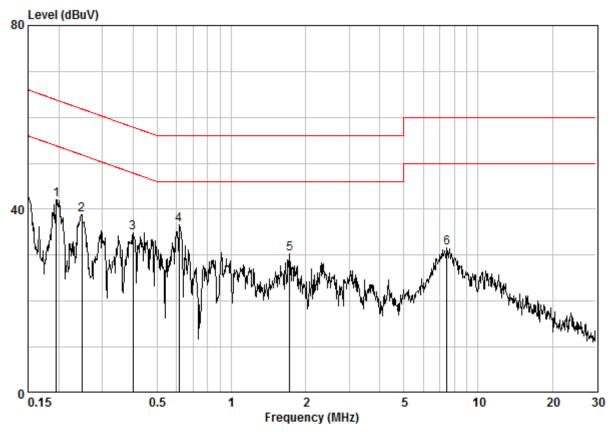
6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)			
	+/ 01111 at 100 0601011 10.200 /24/(0)			
15.203 requirement: An intentional radiator shall	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the			
	sed with the device. The use of a permanently attached antenna or of an			
	coupling to the intentional radiator, the manufacturer may design the unit			
so that a broken antenna ca	n be replaced by the user, but the use of a standard antenna jack or			
electrical connector is prohil	pited.			
15.247(b) (4) requirement:				
	r limit specified in paragraph (b) of this section is based on the use of			
-	ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this			
_	nas of directional gain greater than 6 dBi are used, the conducted output			
-	adiator shall be reduced below the stated values in paragraphs $(b)(1)$,			
antenna exceeds 6 dBi.	tion, as appropriate, by the amount in dB that the directional gain of the			
EUT Antenna:				
The antenna is integrated of of the antenna is 0dBi.	n the main PCB and no consideration of replacement. The best case gain			

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:		Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test Procedure:	 The mains terminal disturbution of the EUT was connected to a second LIS reference plane. The power calls connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal grief the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated equipment and all of the im ANSI C63.10: 2013 on context on the context of the formation. 	AC power source thro etwork) which provides oles of all other units of SN 2, which was bonde in way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metalling and for floor-standing ar round reference plane, th a vertical ground ref from the vertical ground plane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. The of the LISN 1 and the quipment was at least (in emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line if the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was d reference plane. The read d reference plane. The read d reference plane. The read d reference plane the EUT was environtal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2 re positions of	e was ar e ne	

6.2 Conducted Emissions

Test Setup:	Shielding Room Test Receiver Test			
Exploratory Test Mode:	 Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode. 			
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation at the lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

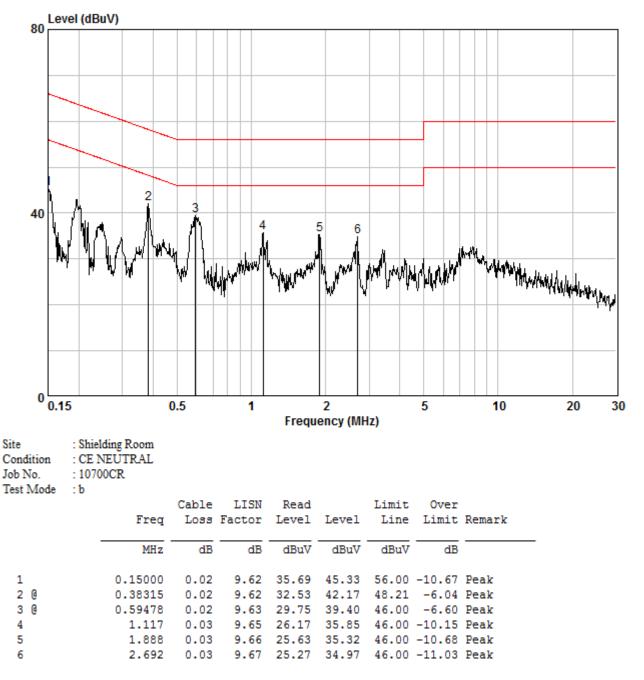

Report No.: SZEM161201070001 Page: 13 of 85

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:



Site : Shielding Room Condition : CE LINE Job No. : 10700CR Test Mode : b

	Freq		LISN Factor		Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19550	0.02	9.60	32.47	42.09	53.80	-11.71	Peak
2	0.24814	0.02	9.60	29.29	38.91	51.82	-12.91	Peak
3	0.39974	0.02	9.60	25.30	34.92	47.86	-12.94	Peak
40	0.61400	0.02	9.61	26.95	36.59	46.00	-9.41	Peak
5	1.725	0.03	9.61	20.60	30.23	46.00	-15.77	Peak
6	7.486	0.09	9.69	21.76	31.54	50.00	-18.46	Peak

Neutral line:

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.5		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	20.97dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.73	20.97	Pass		
Middle	-1.78	20.97	Pass		
Highest	-4.69	20.97	Pass		
	π/4DQPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.36	20.97	Pass		
Middle	1.65	20.97	Pass		
Highest	-1.33	20.97	Pass		
	8DPSK mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.33	20.97	Pass		
Middle	-1.85	20.97	Pass		
Highest	-4.81 20.97 Pass		Pass		

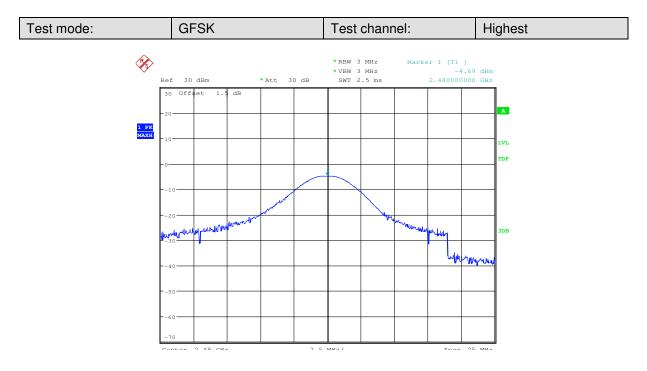
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions/Terms-end-Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention obly and within the limits of Client's instructions, if any. The Company's solic esponsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

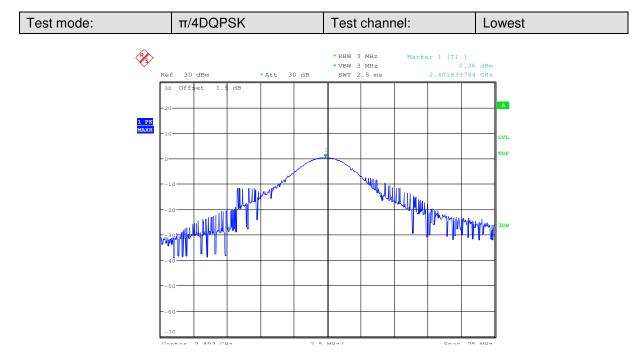
25 MH-

Test plot as follows: GFSK Test mode: Test channel: Lowest × *RBW 3 MHz Marker 1 [T1] *VBW 3 MHz SWT 2.5 ms 0.73 dBm 2.401919872 GHz Ref 30 dBm * Att 30 dB 30 Offset 1.5 dB 1 PK MAXH VT. 2 /02 00-MU -> Test mode: GFSK Test channel: Middle Ø *RBW 3 MHz Marker 1 [T1] *VBW 3 MHz SWT 2.5 ms -1.78 dBm 2.440679487 GHz Rof 30 dBm * Att 30 dB 3.0 Offset dB A 1 PK .vт. WANLEY MUNICIPAL WILLIAM Martin Martin Martin Martin

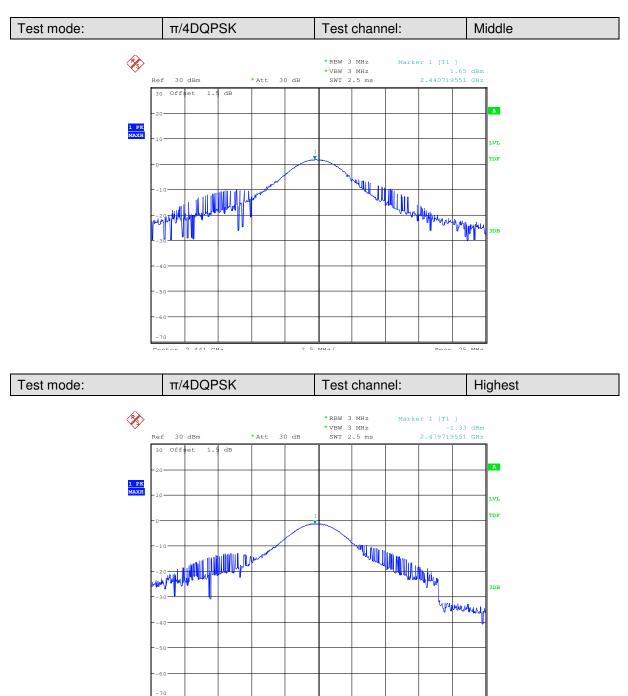
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-end-Conditions/Terms-

M⊔ ->


70


optor

2 441 CH

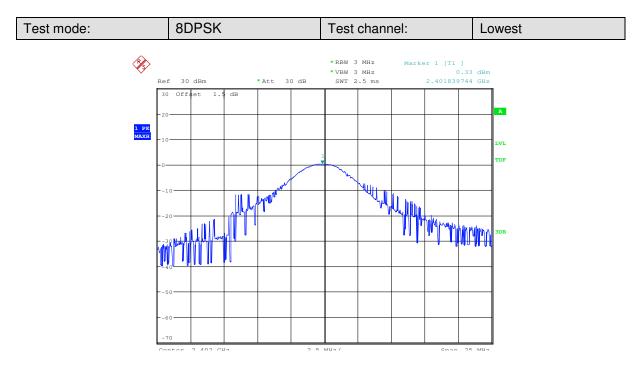

Report No.: SZEM161201070001 Page: 18 of 85

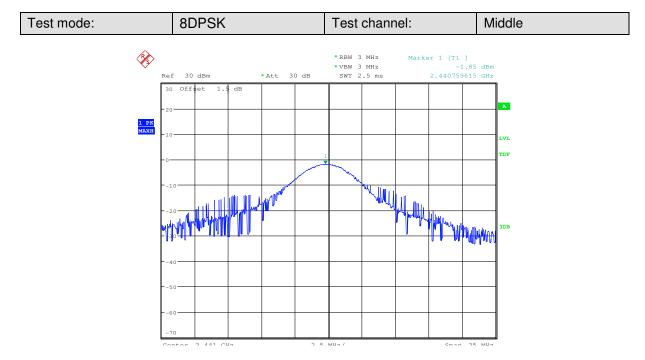
Report No.: SZEM161201070001 Page: 19 of 85

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-end-Conditions/Terms-

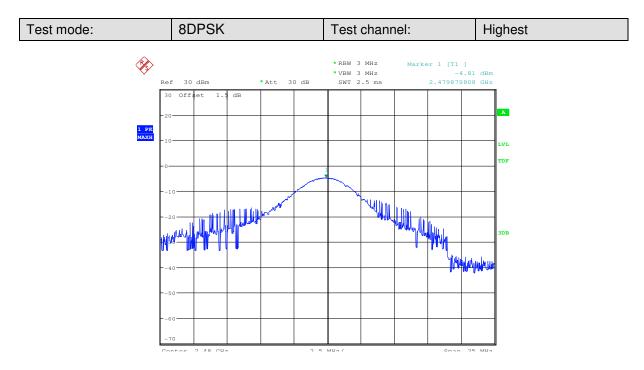
MH 7

2 48 CH-


ontor

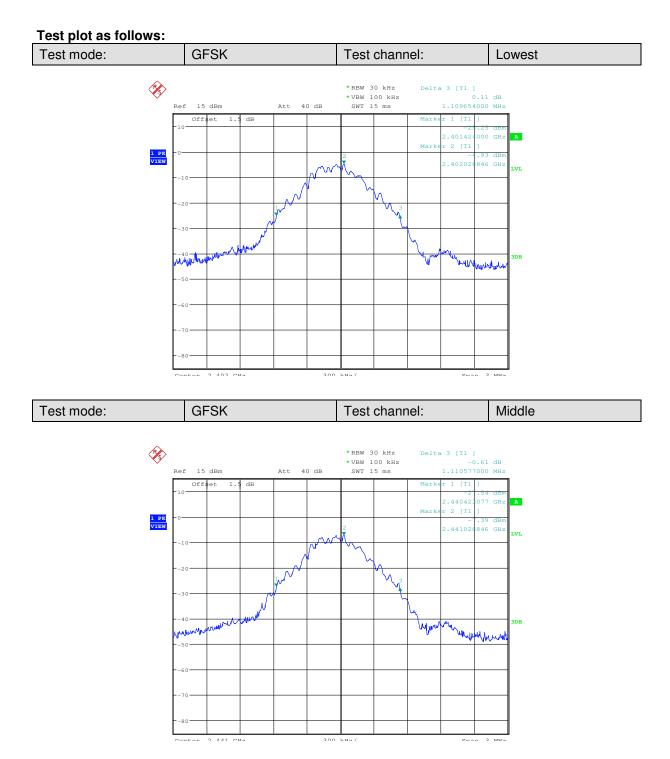

Snan

25 MH


Report No.: SZEM161201070001 Page: 20 of 85

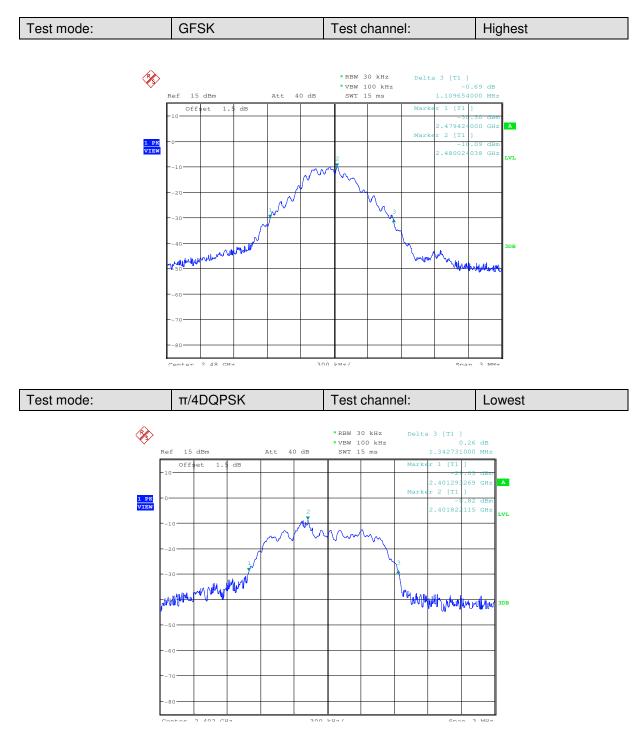
Report No.: SZEM161201070001 Page: 21 of 85

6.4 20dB Occupy Bandwidth

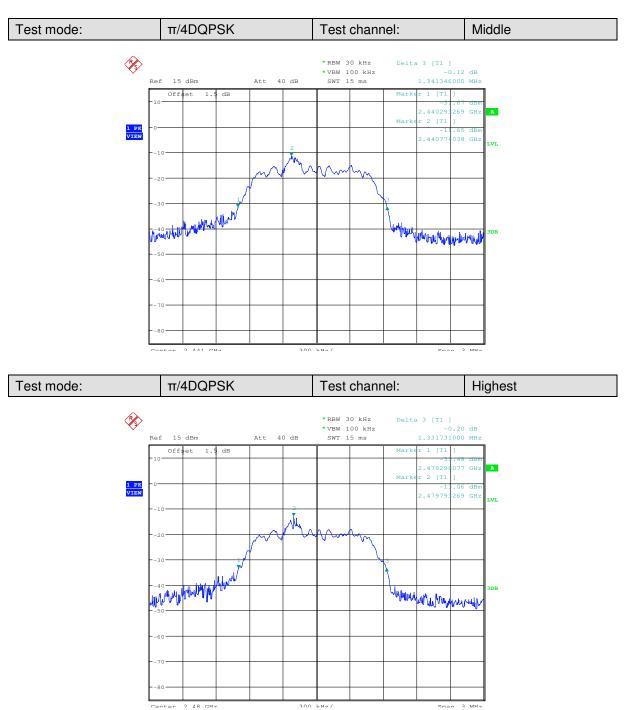

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.7		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

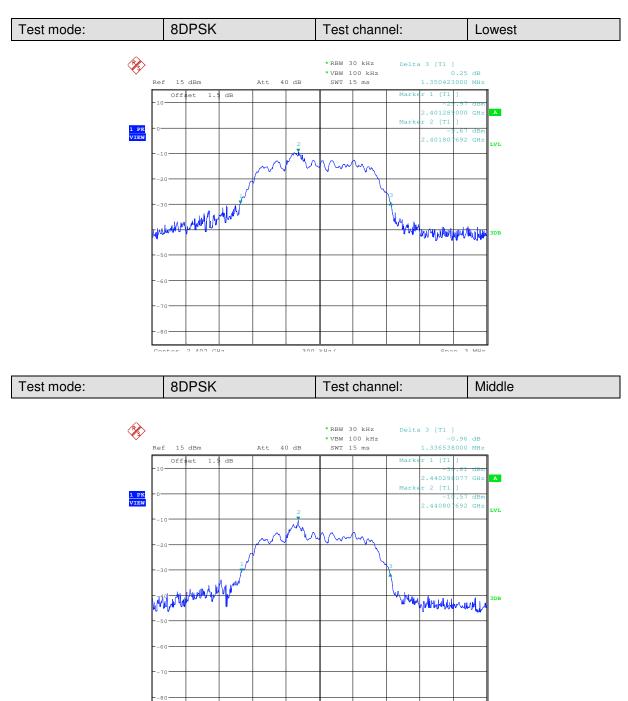
	20dB Occupy Bandwidth (kHz)				
Test channel	GFSK	π/4DQPSK	8DPSK		
Lowest	1109.654	1342.731	1350.423		
Middle	1110.577	1341.346	1336.538		
Highest	1109.654	1331.731	1334.808		



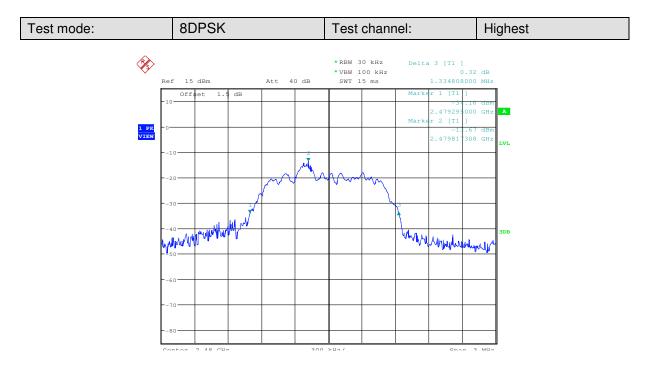
Report No.: SZEM161201070001 Page: 23 of 85



Report No.: SZEM161201070001 Page: 24 of 85



Report No.: SZEM161201070001 Page: 25 of 85



Report No.: SZEM161201070001 Page: 26 of 85

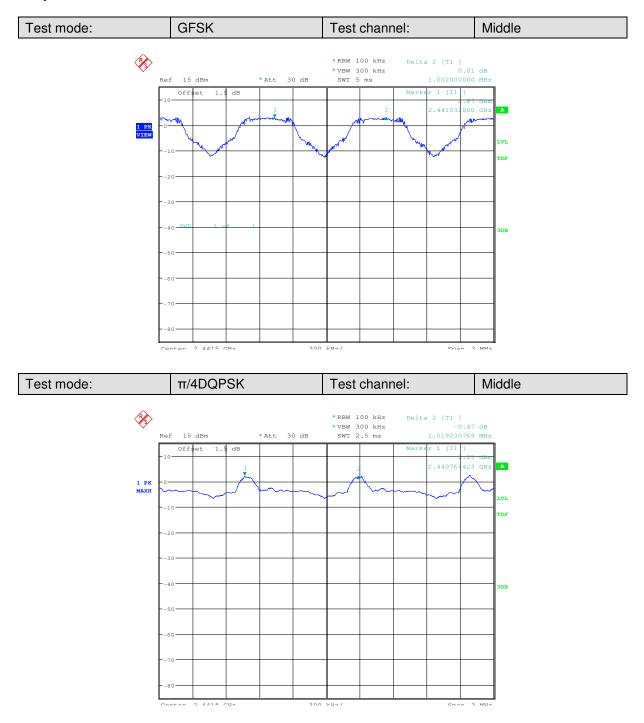
Report No.: SZEM161201070001 Page: 27 of 85

6.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 Section 7.8.2			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Limit:	2/3 of the 20dB bandwidth			
	Remark: the transmission power is less than 0.125W.			
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.			
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

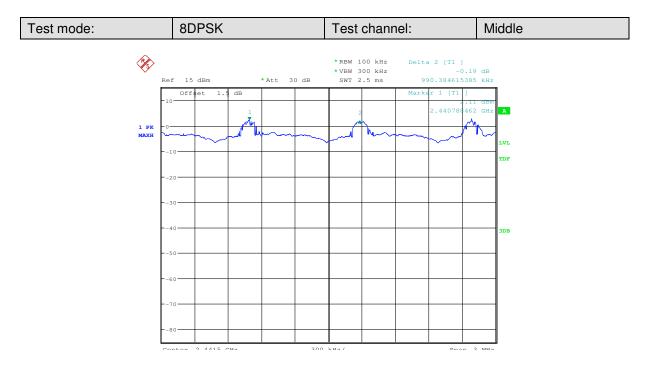
Report No.: SZEM161201070001 Page: 29 of 85

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	1002	740.38	Pass
π/4DQPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	1019.231	895.15	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	990.385	900.28	Pass


Note: According to section 6.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)	
	(worse case)	(Carrier Frequencies Separation)	
GFSK	1110.577	740.38	
π/4DQPSK	1342.731	895.15	
8DPSK	1350.423	900.28	

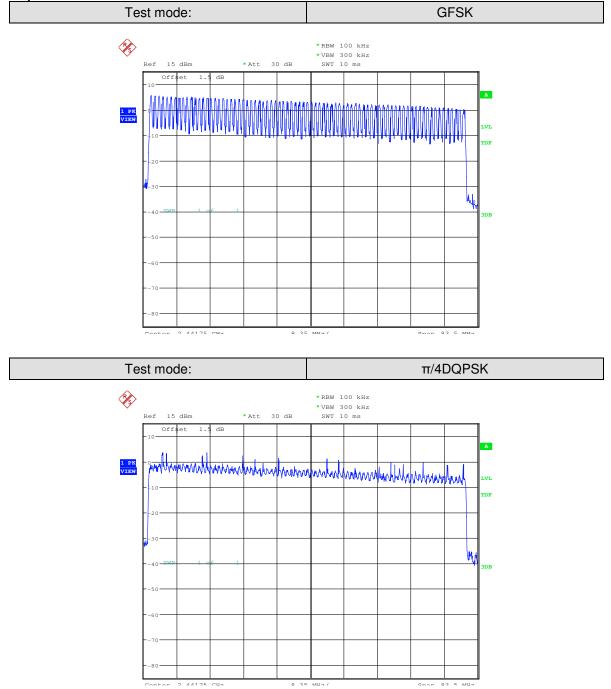
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Conditions/Terms-en-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Test plot as follows:

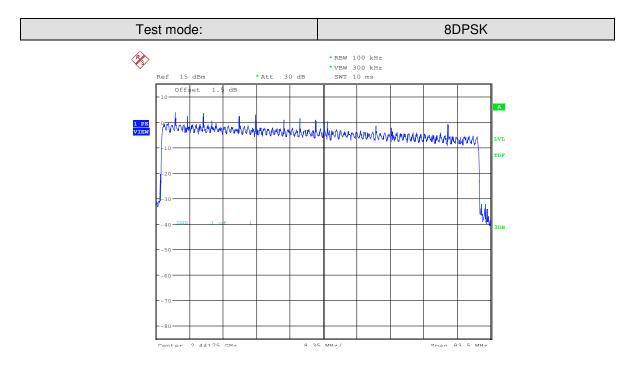
Report No.: SZEM161201070001 Page: 31 of 85

6.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.3	
Test Setup:	ANSI C63.10.2013 Section 7.8.3	
Limit:	At least 15 channels	
Test Mode:	Hopping transmitting with all kind of modulation	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15



Test plot as follows

Report No.: SZEM161201070001 Page: 34 of 85

6.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.4		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Instruments Used:	Refer to section 5.10 for details		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Limit:	0.4 Second		
Test Results:	Pass		

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.148	≤0.4
	DH3	0.265	≤0.4
	DH5	0.291	≤0.4
π/4DQPSK	2-DH1	0.129	≤0.4
	2-DH3	0.265	≤0.4
	2-DH5	0.291	≤0.4
8DPSK	3-DH1	0.148	≤0.4
	3-DH3	0.274	≤0.4
	3-DH5	0.297	≤0.4

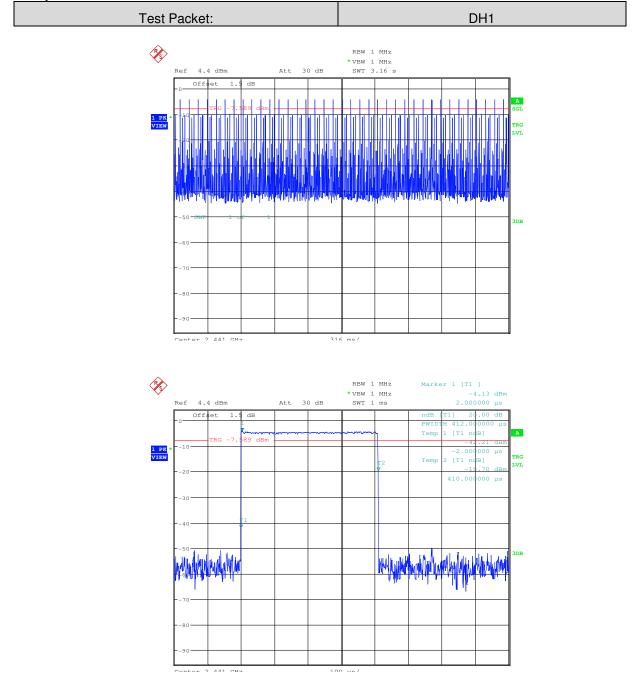
Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s On (ms)*total number=dwell time (ms) The lowest channel (2441MHz), as below: DH1 time slot=0.412 (ms)*total number=148.32 (ms) DH3 time slot=1.659 (ms)* total number = 265.44 (ms) DH5 time slot=2.908 (ms)* total number = 290.80 (ms) 2-DH1 time slot=0.358 (ms)*total number=128.88 (ms)

2-DH3 time slot= $1.659(ms)^*$ total number = 265.44(ms)

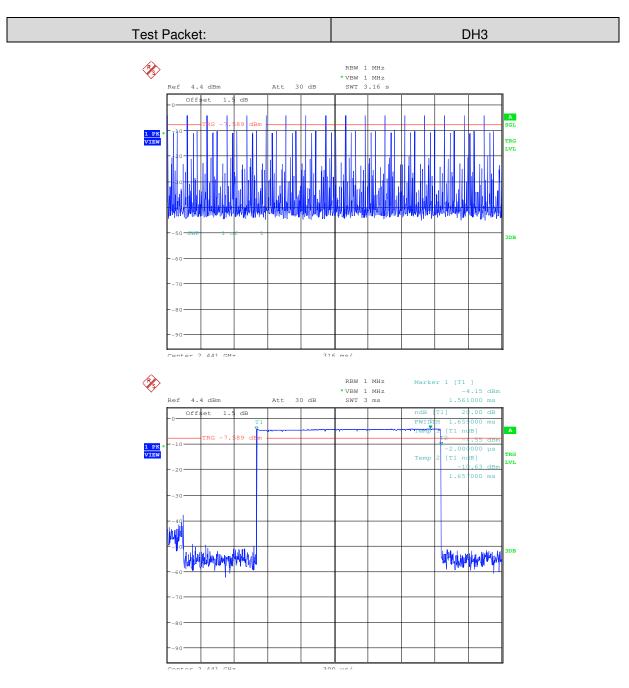
2-DH5 time slot=2.912 (ms)* total number = 291.20 (ms)

3-DH1 time slot=0.411 (ms)*total number=147.96 (ms)

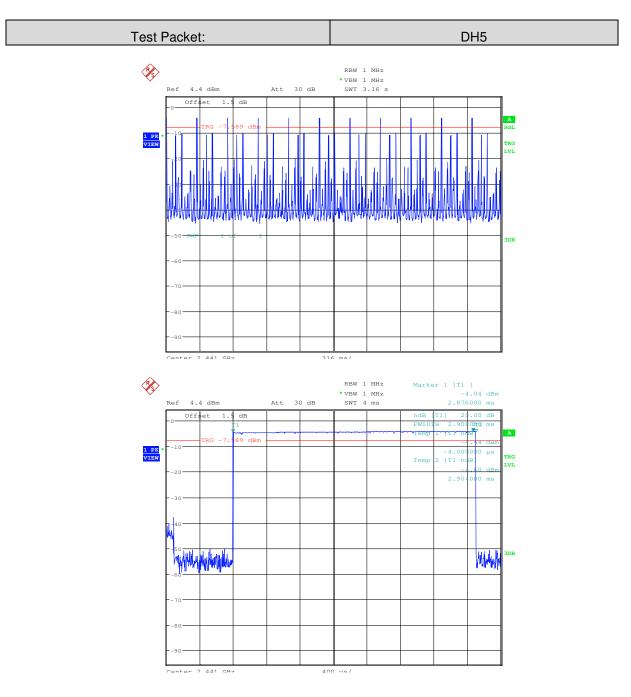

3-DH3 time slot=1.710 (ms)* total number = 273.60 (ms)

3-DH5 time slot=2.968(ms)* total number = 296.80 (ms)

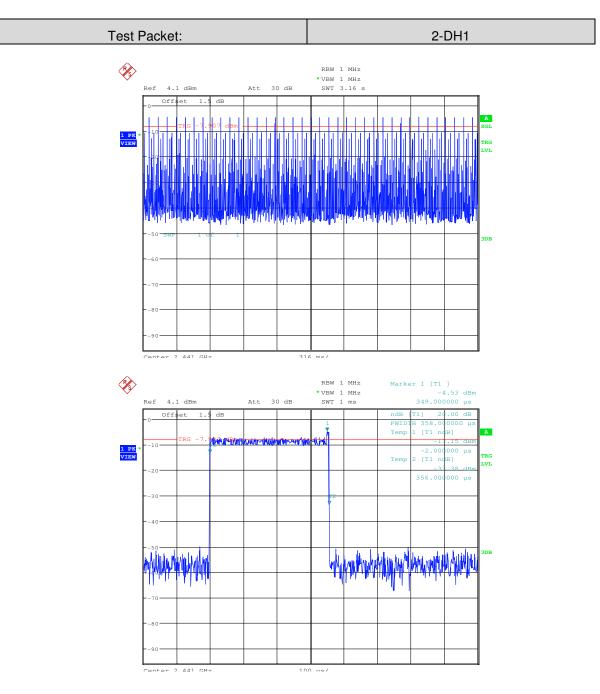
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fulle, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Test plot as follows:

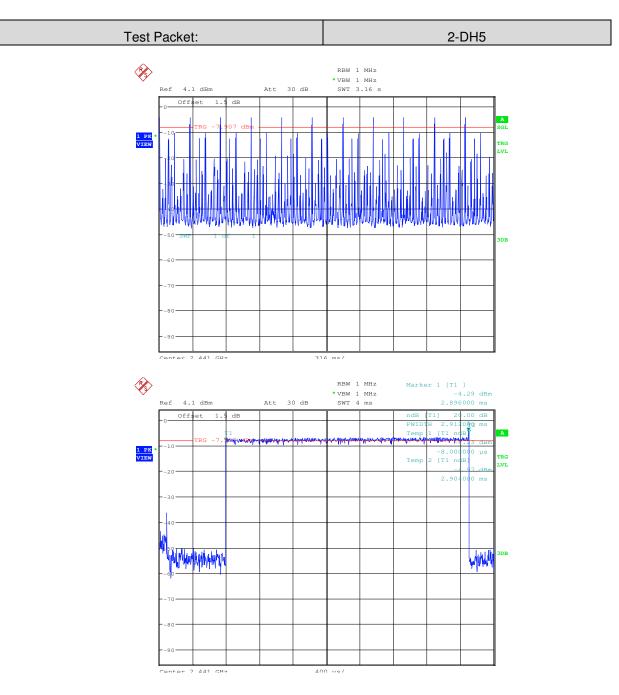


Report No.: SZEM161201070001 Page: 38 of 85

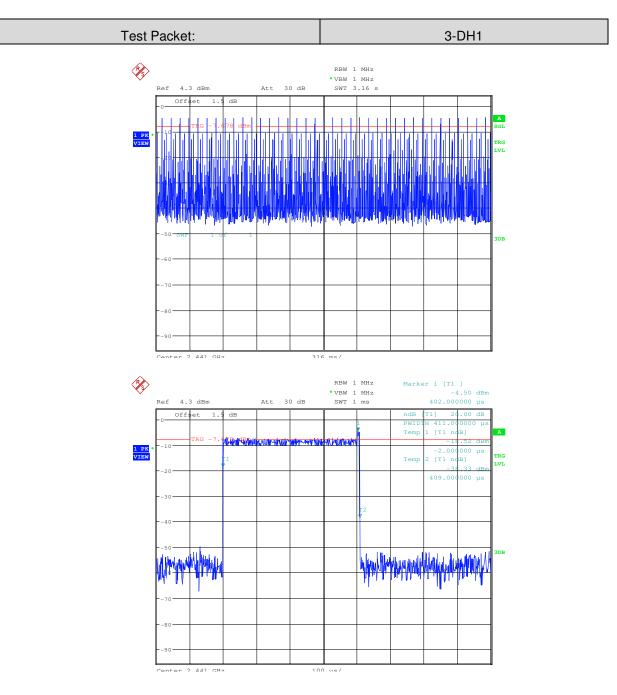


Report No.: SZEM161201070001 Page: 39 of 85

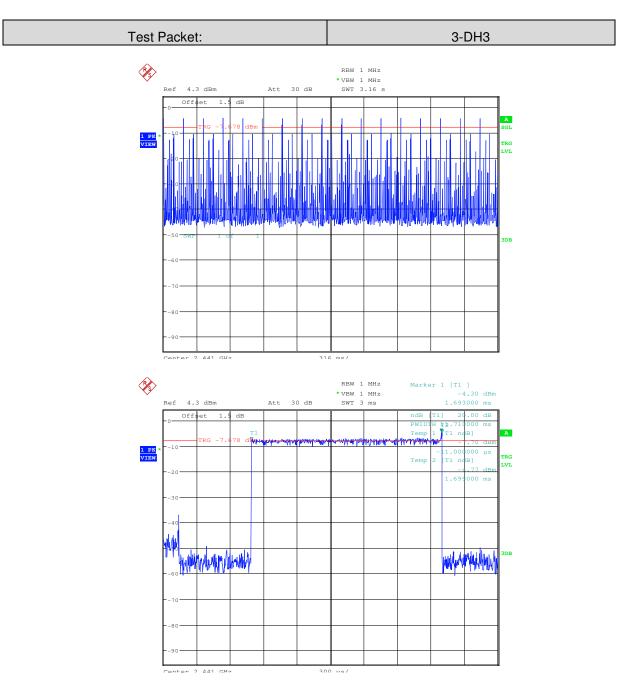
Report No.: SZEM161201070001 Page: 40 of 85



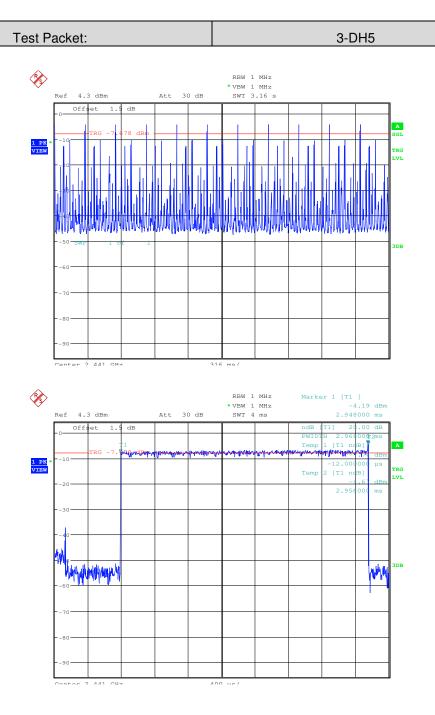
Report No.: SZEM161201070001 Page: 41 of 85



Report No.: SZEM161201070001 Page: 42 of 85

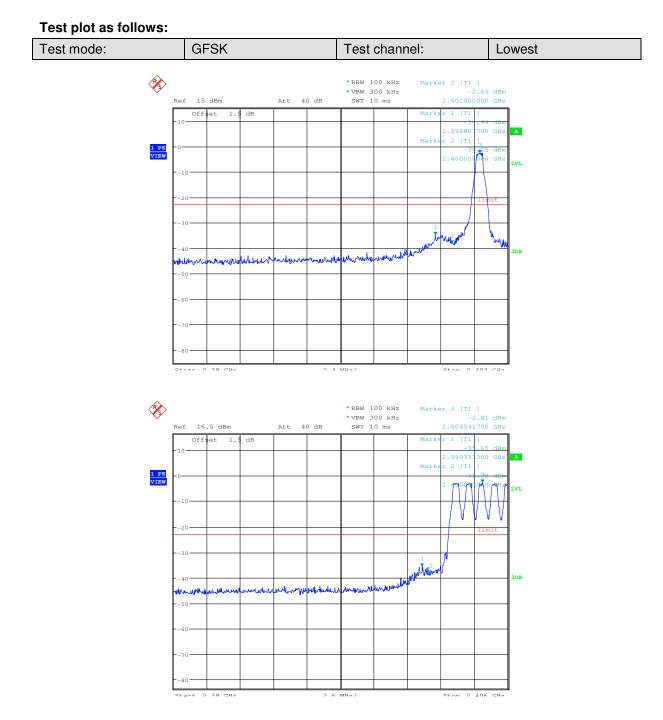


Report No.: SZEM161201070001 Page: 43 of 85



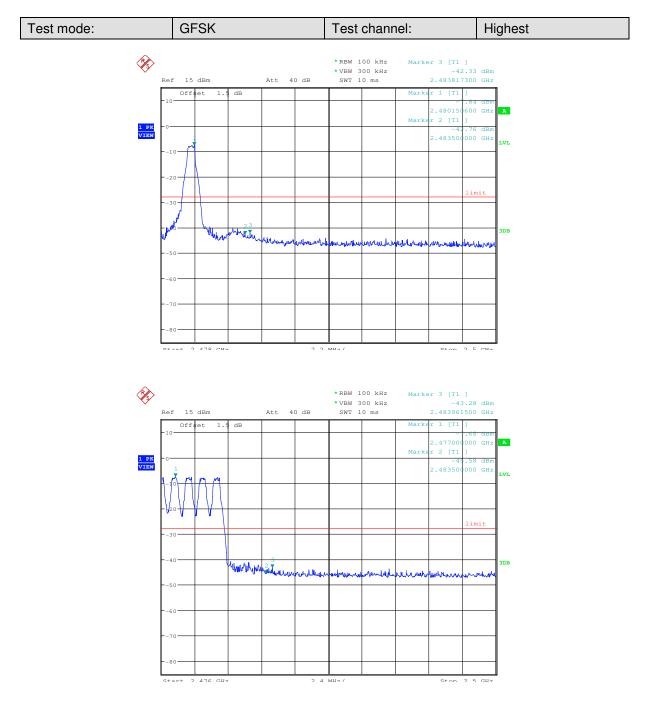
Report No.: SZEM161201070001 Page: 44 of 85

Report No.: SZEM161201070001 Page: 45 of 85

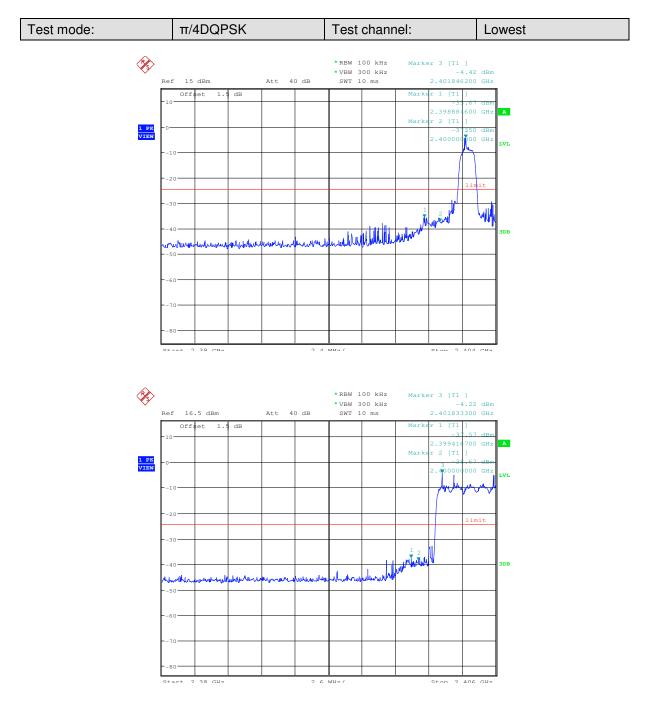


Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 Section 7.8.6					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
	Remark:					
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

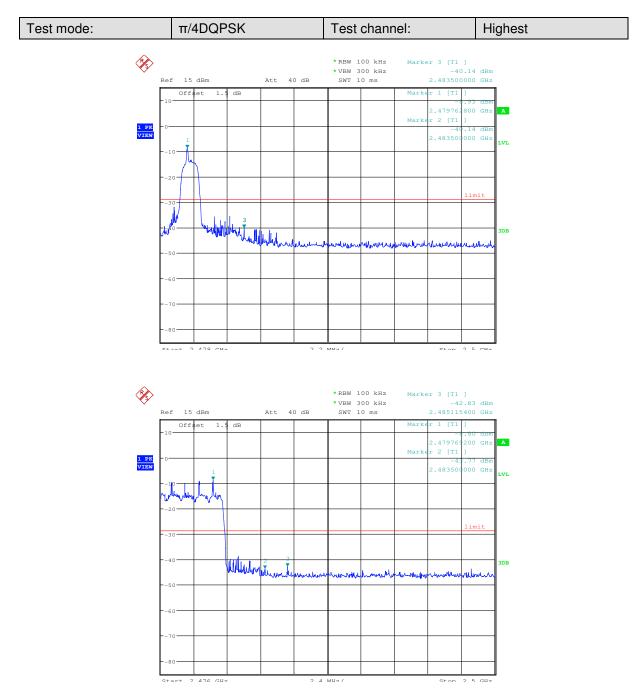
6.8 Band-edge for RF Conducted Emissions



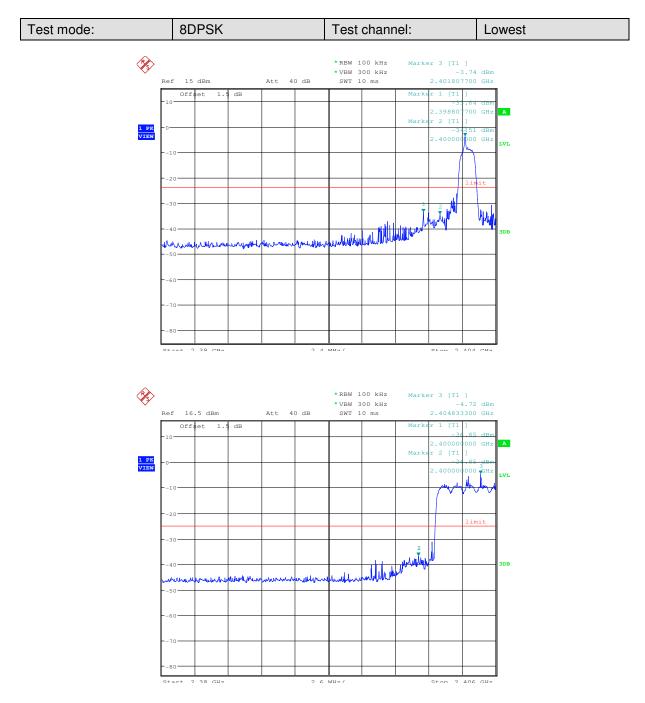
Report No.: SZEM161201070001 Page: 47 of 85



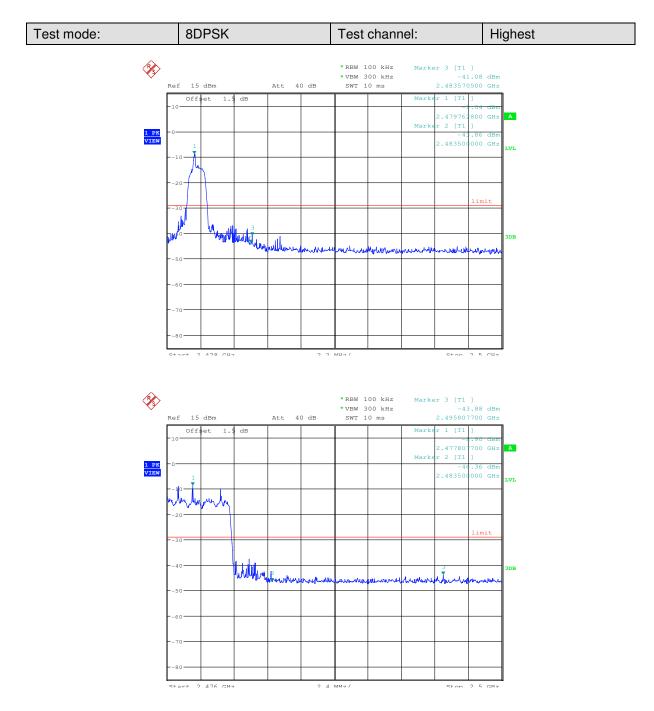
Report No.: SZEM161201070001 Page: 48 of 85



Report No.: SZEM161201070001 Page: 49 of 85

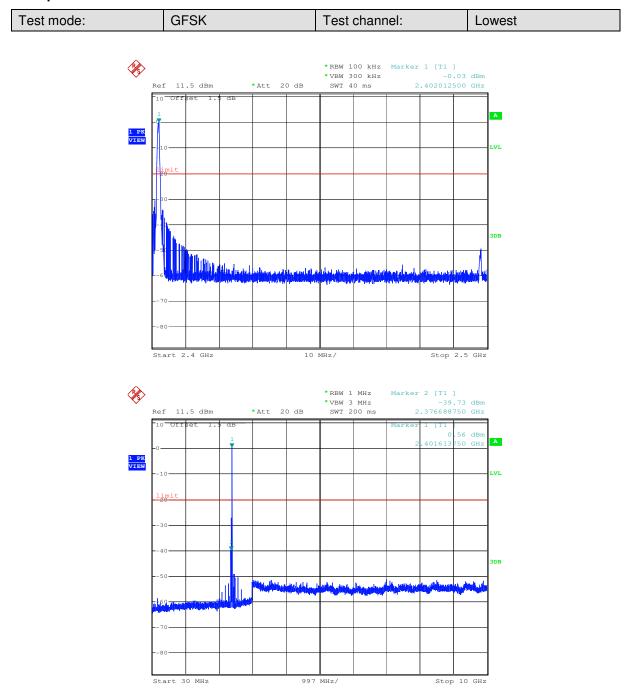


Report No.: SZEM161201070001 Page: 50 of 85

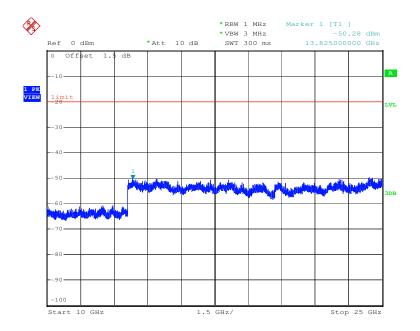


Report No.: SZEM161201070001 Page: 51 of 85

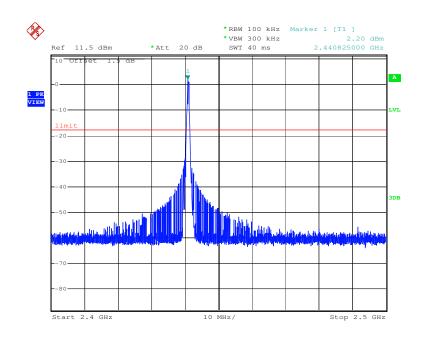
Report No.: SZEM161201070001 Page: 52 of 85


6.9 Spurious RF Conducted Emissions

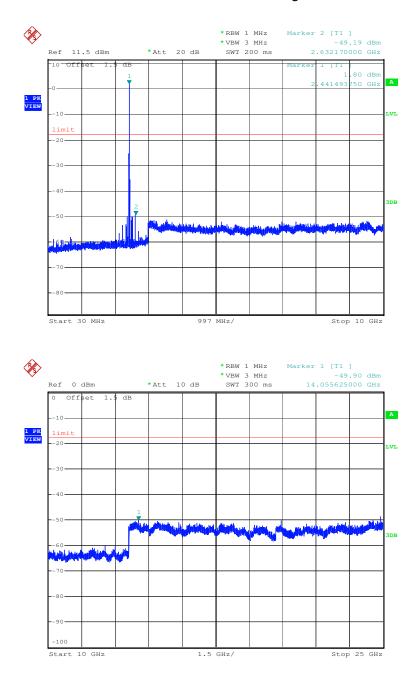
Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 Section 7.8.8				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				


Report No.: SZEM161201070001 Page: 54 of 85

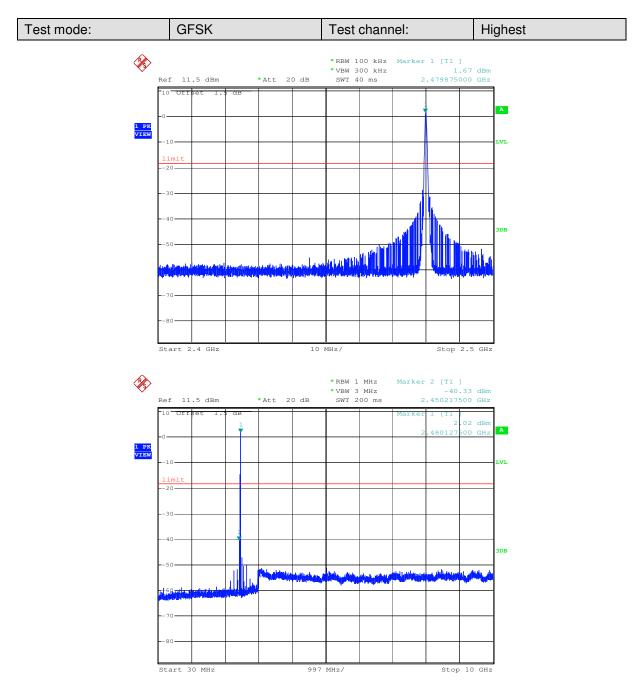
Test plot as follows:



Report No.: SZEM161201070001 Page: 55 of 85

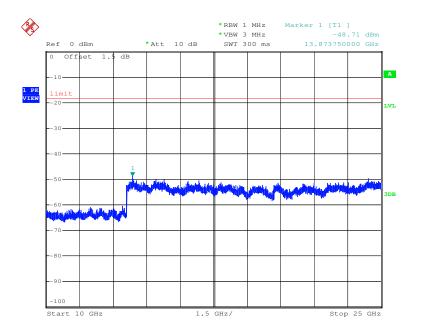


Test mode: GFSK	Test channel:	Middle
-----------------	---------------	--------



Report No.: SZEM161201070001 Page: 56 of 85

Report No.: SZEM161201070001 Page: 57 of 85

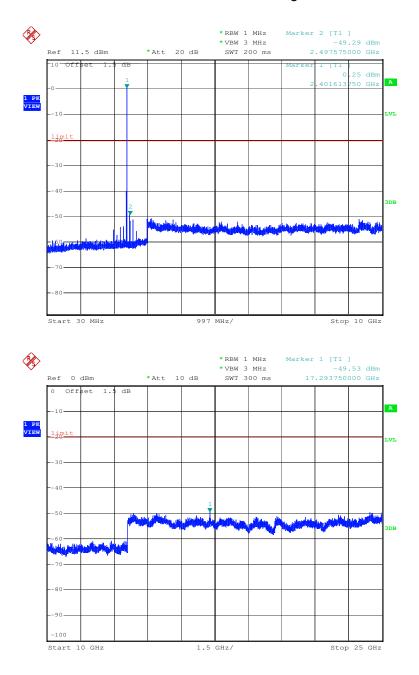


Report No.: SZEM161201070001 Page: 58 of 85

DB

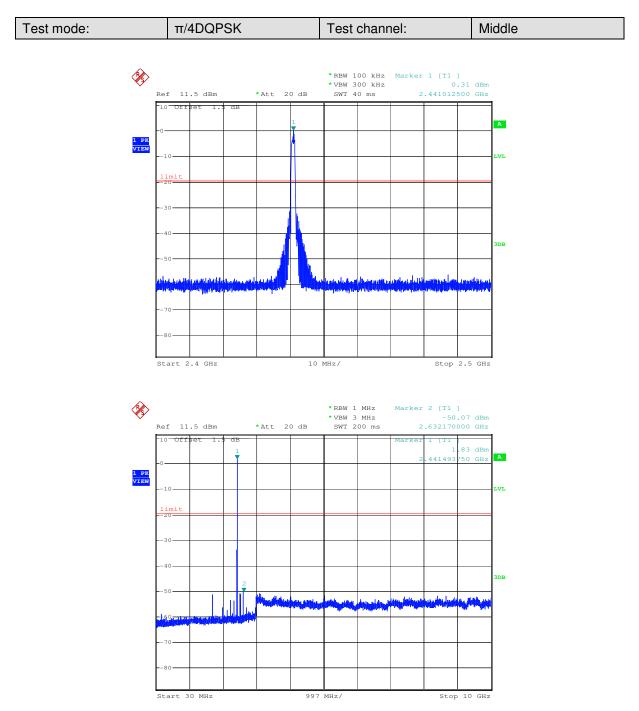
Stop 2.5 GHz

Test mode:	π/4DQPSK	٦	Test channel:	l	_owest
*	Ref 11.5 dBm *Att	•	*RBW 100 kHz Marker *VBW 300 kHz SWT 40 ms 2.	1 [T1] -0.36 dH 401975000 GH	
1 PK View	10 Offset 1.5 dB				LVL

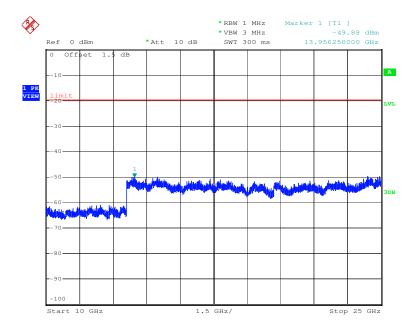

Start 2.4 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-en-Conditions/Terms-end-Conditions/Terms-

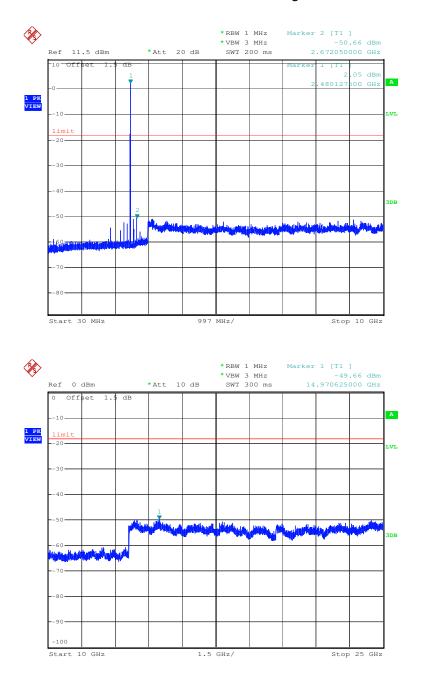
10 MHz/



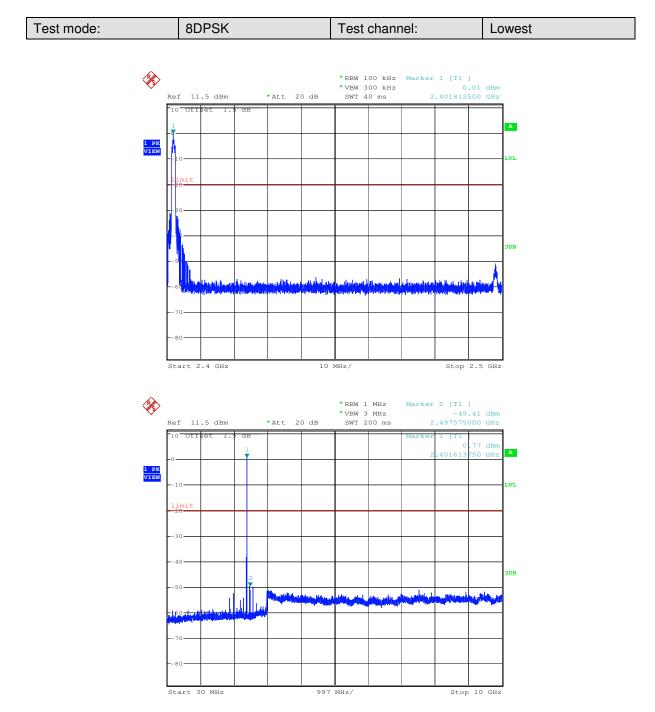
Report No.: SZEM161201070001 Page: 59 of 85



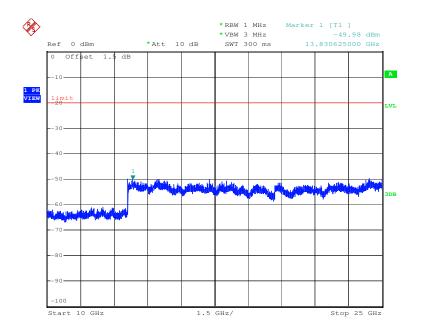
Report No.: SZEM161201070001 Page: 60 of 85


Report No.: SZEM161201070001 Page: 61 of 85

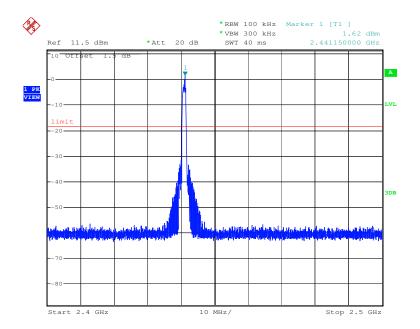
Test mode:		π/4DQF	SK		Test	chanr	nel:		Hi	ghest
					* VBW	100 kHz 300 kHz		1.	71 dBm	
		f 11.5 dBm) Offset 1.		t 20 dB	SWT	40 ms	2	.4801625	UU GHz	
	-0-							L		A
	1 PK VIEW									
		. 0								LVL
		imit 20								
		30								
		10								3DB
		0								
		an end at the data and a	A COMPANY OF THE PARTY OF THE P				اللعي		ليل ماليا م	
		and the state of the		and the state of the	and all a subsection	Provide the provide the provide the provide the providence of the	Provide State	n se talen ter be	11 manual parties	
		70								
		30								
	St	art 2.4 GHz			LO MHz/			Stop 2	2.5 GHz	-



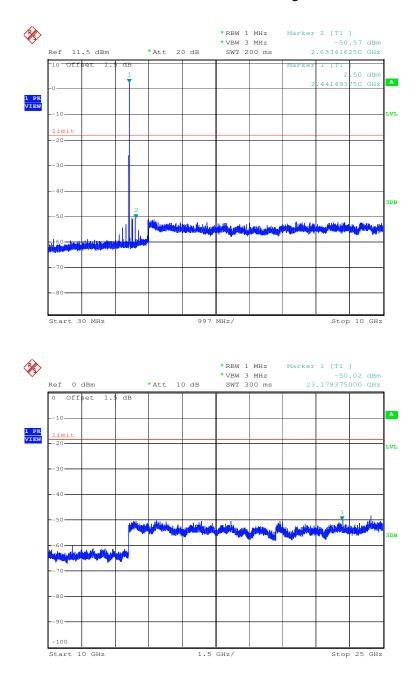
Report No.: SZEM161201070001 Page: 62 of 85



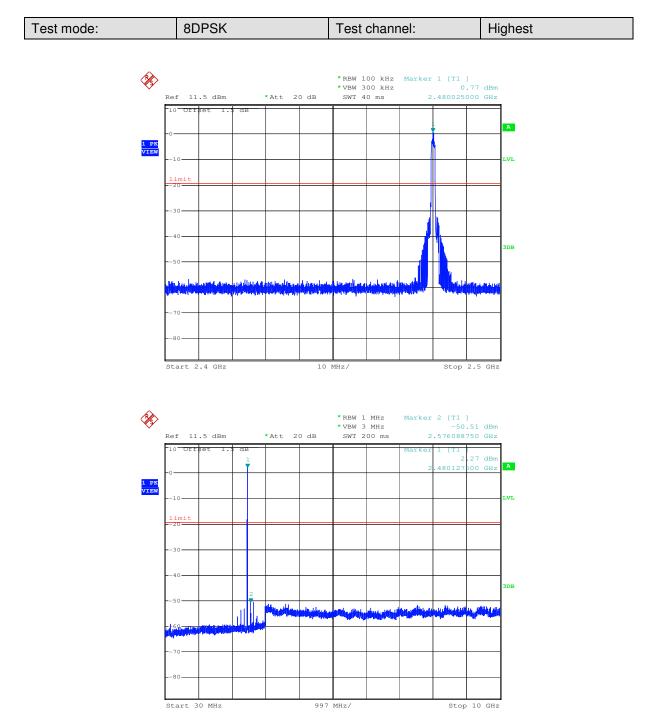
Report No.: SZEM161201070001 Page: 63 of 85



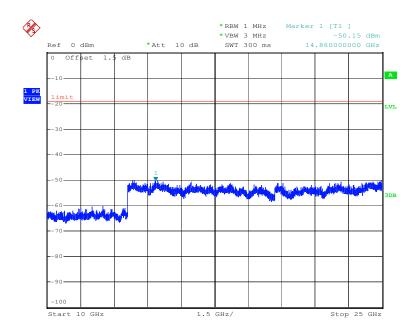
Report No.: SZEM161201070001 Page: 64 of 85



Test mode:	8DPSK	Test channel:	Middle



Report No.: SZEM161201070001 Page: 65 of 85



Report No.: SZEM161201070001 Page: 66 of 85

Report No.: SZEM161201070001 Page: 67 of 85

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

6.10 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: The system shall hop to channel frequencies that are selected at the system hopping	
rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be us on the average by each transmitter. The system receivers shall have input bandwidths that hopping channel bandwidths of their corresponding transmitters and shall shift frequencies synchronization with the transmitted signals.	match the
Frequency hopping spread spectrum systems are not required to employ all available hopp channels during each transmission. However, the system, consisting of both the transmitter receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a syste employing short transmission bursts must comply with the definition of a frequency hopping and must distribute its transmissions over the minimum number of hopping channels specif this section.	r and the em I system
The incorporation of intelligence within a frequency hopping spread spectrum system that p the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is per The coordination of frequency hopping systems in any other manner for the express purpos avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmi not permitted.	ermitted. se of
Compliance for section 15.247(a)(1)	
 stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ -1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) 	
Linear Feedback Shift Register for Generation of the PRBS sequence	_
An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1	
Each frequency used equally on the average by each transmitter.	
Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have inp bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters frequencies in synchronization with the transmitted signals.	

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Conditions/Terms-end-Conditions/Terms

Report No.: SZEM161201070001 Page: 69 of 85

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

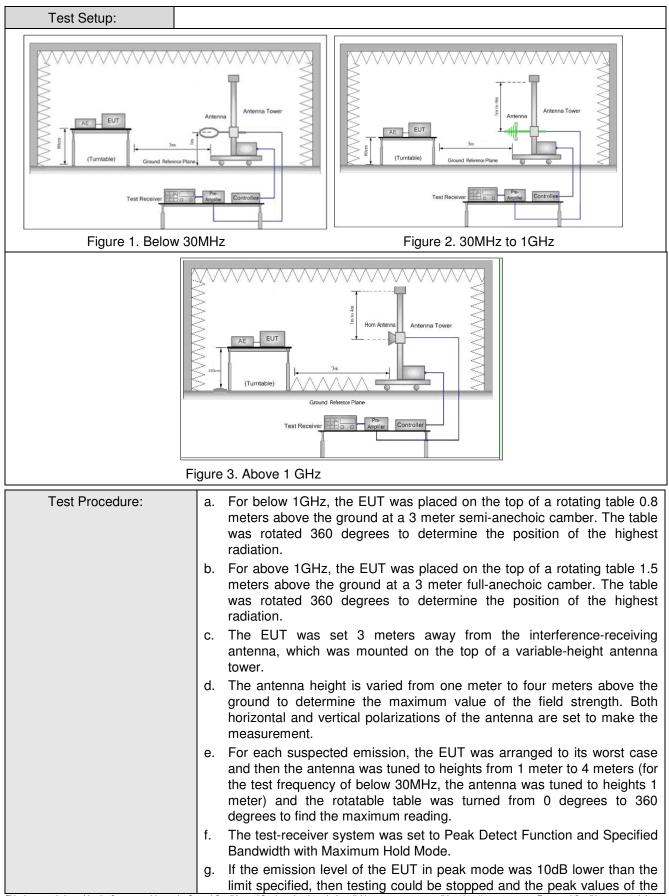
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fulle, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Remark

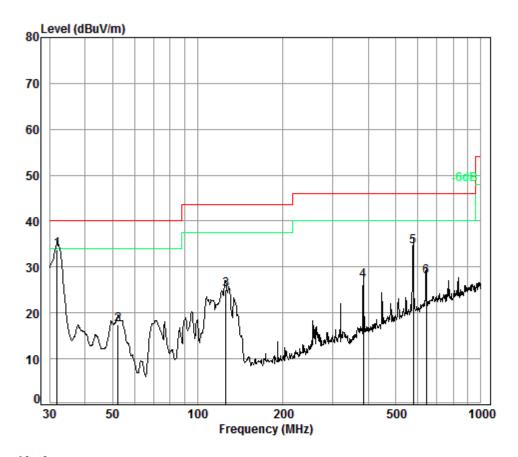

Peak

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205 Test Method: ANSI C63.10: 2013 Test Site: Below 1GHz: Measurement Distance: 3m (Semi-Anechoic Chamber) Above 1GHz: Measurement Distance: 3m (Full-Anechoic Chamber) Receiver Setup: Frequency Detector RBW VBW 0.009MHz-0.090MHz Peak 10kHz 30kHz

6.11 Radiated Spurious Emission

	0.00010112 0.00010112		1 out	TORTIZ	001112	1 Car	
	0.009MHz-0.090MHz		Average	10kHz	30kHz	Average	
	0.090MHz-0.110MH	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak	
			Peak	1MHz	3MHz	Peak	
	Above 1GHz		Peak	1MHz	10Hz	Average	
Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m	
	0.009MHz-0.490MHz	24	100/F(kHz)	-	-	300	
	0.490MHz-1.705MHz 24		000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-			
	30MHz-88MHz	30MHz-88MHz		40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peak	3	
	216MHz-960MHz			46.0	Quasi-peak	3	
	960MHz-1GHz			54.0	Quasi-peak	x 3	
	Above 1GHz 500		54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions of Electronic Documents at http://www.sqs.com/en/Terms-en-Conditions/Terms-en-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions of the time the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of this intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

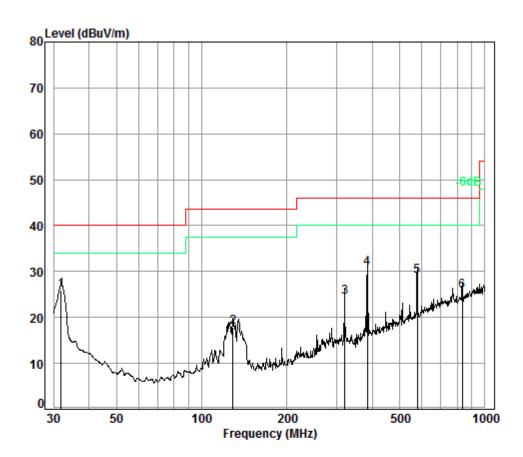

Report No.: SZEM161201070001 Page: 72 of 85

Exploratory Test Mode: Final Test Mode:	 EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode, Charge + Transmitting mode. Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case For below 1GHz part, through pre-scan, the worst case is the lowest 			
	channel. Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting mode.	Vertical

Condition: 3m VERTICAL Job No. : 10700CR


Test mode: TX + charge

rest iiio	Freq	Cable Loss		Preamp Factor		Level		Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp 2 3 4 5 6	31.95 52.39 125.89 383.93 576.64 642.86		8.34 7.78 16.11 19.15	27.35 27.28 27.03 27.03 27.57 27.49	35.67 43.06 35.75 40.17	17.53 25.08 26.99 34.43	40.00 43.50 46.00 46.00	-6.19 -22.47 -18.42 -19.01 -11.57 -18.11

Report No.: SZEM161201070001 Page: 74 of 85

Test mode:	Charge + Transmitting mode.	Horizontal
------------	-----------------------------	------------

Condit	ion: 3m	HORIZO	NTAL					
Job No). : 107	ØØCR						
Test m	ode: TX	+ char	ge					
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	31.95	0.60	17.61	27.35	35.01	25.87	40.00	-14.13
2	129.01	1.27	7.72	27.02	35.91	17.88	43.50	-25.62
3	319.94	1.97	14.62	26.56	34.45	24.48	46.00	-21.52
4	383.93	2.16	16.11	27.03	39.43	30.67	46.00	-15.33
5	576.64	2.68	19.15	27.57	34.76	29.02	46.00	-16.98
6	833, 32	3,34	22.40	27,13	27.07	25,68	46,00	-20.32

Test mode: GFSK		GFSK(DH	1)	Test channel:		Lowest	Lowest		rk:	Peak
Frequency (MHz)	Antenn factors (dB/m	s Loss	Fa	eamp actor dB)	Read Level (dBuV)	Level (dBuV/m)		t Line ıV/m)	Over Limit (dB)	Polarization
3641.878	32.62	7.68	3	7.96	44.18	46.52	74	.00	-27.48	Vertical
4804.000	34.16	8.87	38	3.40	50.73	55.36	74	.00	-18.64	Vertical
5930.516	34.66	10.37	7 38	3.31	45.04	51.76	74	.00	-22.24	Vertical
7206.000	36.42	10.68	3 3	7.11	41.51	51.50	74	.00	-22.50	Vertical
9608.000	37.52	12.50) 3!	5.10	37.94	52.86	74	.00	-21.14	Vertical
12033.020	38.62	14.53	3 3	5.68	35.66	53.13	74	.00	-20.87	Vertical
3497.281	32.20	7.63	3	7.95	45.13	47.01	74	.00	-26.99	Horizontal
4804.000	34.16	8.87	38	8.40	49.61	54.24	74	.00	-19.76	Horizontal
5803.188	34.59	10.01	38	8.34	44.99	51.25	74	.00	-22.75	Horizontal
7206.000	36.42	10.68	3 3	7.11	41.79	51.78	74	.00	-22.22	Horizontal
9608.000	37.52	12.50) 3	5.10	37.77	52.69	74	.00	-21.31	Horizontal
12033.020	38.62	14.53	3 3	5.68	35.96	53.43	74	.00	-20.57	Horizontal

6.11.2 Transmitter Emission above 1GHz

Test mode: GFSK(DH1		GFSK(DH1)	Test	channel:	Lowest	Rema	.rk:	Average
Frequency (MHz)	Antenna factors (dB/m)	Loss	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.000	34.16	8.87	38.40	46.19	50.82	54.00	-3.18	Vertical
4804.000	34.16	8.87	38.40	45.55	50.18	54.00	-3.82	Horizontal

Test mode:	G	FSK(DH1)	Tes	st channel:	Middle	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Cable Loss (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3770.567	32.98	7.73	37.98	44.85	47.58	74.00	-26.42	Vertical
4882.000	34.30	8.98	38.44	48.69	53.53	74.00	-20.47	Vertical
6025.661	34.72	10.53	38.27	43.85	50.83	74.00	-23.17	Vertical
7323.000	36.37	10.72	37.01	41.89	51.97	74.00	-22.03	Vertical
9764.000	37.55	12.58	35.02	37.32	52.43	74.00	-21.57	Vertical
12332.670	38.80	14.29	36.40	36.89	53.58	74.00	-20.42	Vertical
3732.570	32.87	7.72	37.97	45.03	47.65	74.00	-26.35	Horizontal
4882.000	34.30	8.98	38.44	48.65	53.49	74.00	-20.51	Horizontal
6043.124	34.74	10.50	38.26	44.25	51.23	74.00	-22.77	Horizontal
7323.000	36.37	10.72	37.01	41.63	51.71	74.00	-22.29	Horizontal
9764.000	37.55	12.58	35.02	38.03	53.14	74.00	-20.86	Horizontal
12208.390	38.73	14.39	36.10	36.96	53.98	74.00	-20.02	Horizontal

Test mode:		GF	SK(DH1)		Test	channel:	Highest		Rema	rk:	Peak
Frequency (MHz)	Anteni factor (dB/m	s	Cable Loss (dB)	fac	amp ctor B)	Reading Level (dBµV)	Emission Level (dBµV/m)		mit .V/m)	Over limit (dB)	Polarization
3836.607	33.16	5	7.75	37	.98	44.92	47.85	74	.00	-26.15	Vertical
4960.000	34.43	3	9.09	38	.48	49.83	54.87	74	.00	-19.13	Vertical
6034.386	34.73	3	10.52	38	.27	44.40	51.38	74	.00	-22.62	Vertical
7443.025	36.32	2	10.77	36	.90	40.94	51.13	74	.00	-22.87	Vertical
9926.563	37.59)	12.67	34	.94	38.23	53.55	74	.00	-20.45	Vertical
12120.390	38.67	7	14.46	35	.89	36.26	53.50	74	.00	-20.50	Vertical
3548.251	32.34	1	7.65	37	.95	44.12	46.16	74	.00	-27.84	Horizontal
4960.000	34.43	3	9.09	38	.48	48.33	53.37	74	.00	-20.63	Horizontal
6060.637	34.75	5	10.48	38	.24	44.67	51.66	74	.00	-22.34	Horizontal
7440.000	36.32	2	10.77	36	.90	41.69	51.88	74	.00	-22.12	Horizontal
9920.000	37.58	3	12.67	34	.94	37.21	52.52	74	.00	-21.48	Horizontal
12243.770	38.75	5	14.36	36	5.19	36.39	53.31	74	.00	-20.69	Horizontal

Test mode: GFSK(DH1)		Test	channel:	Lowest	Rema	.rk:	Average	
Frequency (MHz)	Antenna factors (dB/m)	Loss Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.000	34.43	9.09	38.48	45.55	50.59	54.00	-3.41	Vertical

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

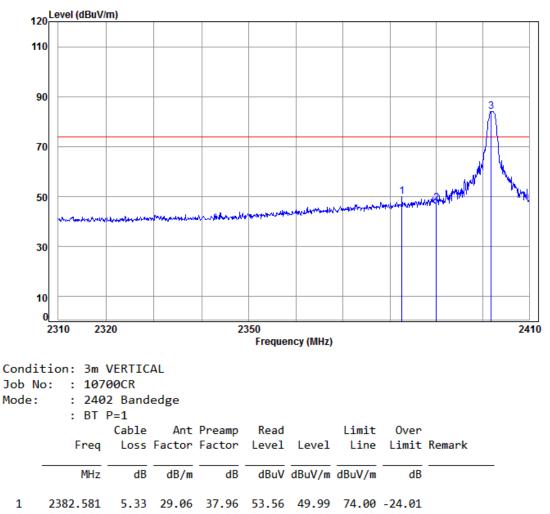
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fulle, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205				
Test Method:	ANSI C63.10: 2013					
Test Site:	Below 1GHz:					
	Measurement Distance: 3m	(Semi-Anechoic Chamber	r)			
	Above 1GHz:					
	Measurement Distance: 3m	(Full-Anechoic Chamber)				
Limit:	Frequency	Limit (dBuV/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
	Above 1GHz	54.0	Average Value			
	Above IGHZ	74.0	Peak Value			
Test Setup:						
AE EUT (Turntable) Ground Reference Test Receiver		AE EUT Internet EUT (Turntable) Ground Reference Plane Test Receiver	Antenna Tower			
Figure 1. 30MH	Iz to 1GHz	Figure 2. Above 1 GHz				

6.12 Restricted bands around fundamental frequency

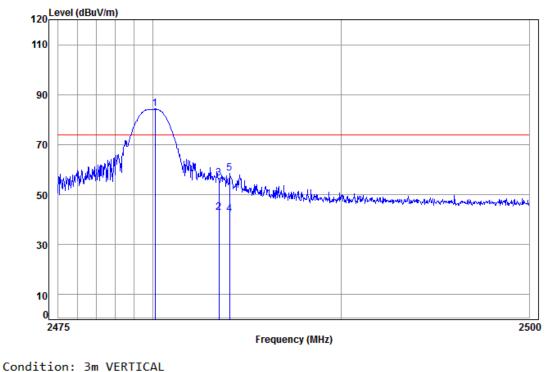


	р <u> </u>
Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type
	Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is
	the worst case.
	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Test plot as follows:

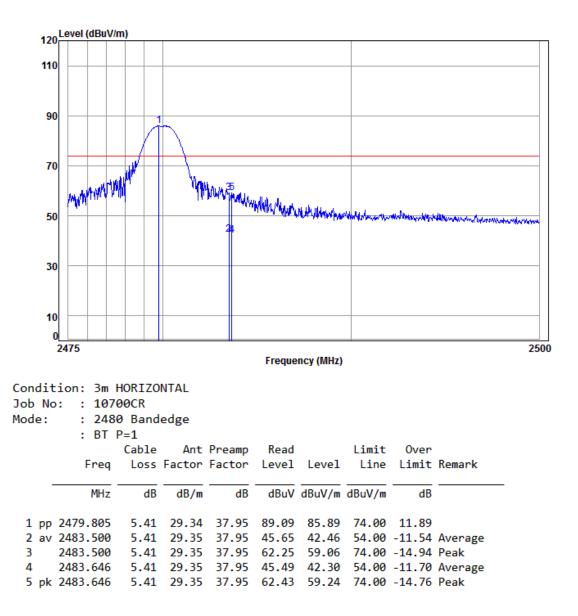
Worse case mode: 0	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Vertical
--------------------	------------	---------------	--------	---------	------	----------

2 2390.000 5.34 29.08 37.96 51.04 47.50 74.00 -26.50 3 pp 2401.843 5.35 29.11 37.96 87.60 84.10 74.00 10.10


Report No.: SZEM161201070001 Page: 81 of 85

Worse case mode: GFSK (DH5) Test channel:	Lowest	Remark:	Peak	Horizontal
---	--------	---------	------	------------

Report No.: SZEM161201070001 Page: 82 of 85


CONDITION		SIII VENIICAL
Job No:	:	10700CR

Mode:	e: : 2480 Bandedge									
	: BT P=1									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-										
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	2480.129	5.41	29.34	37.95	87.43	84.23	74.00	10.23		
2 av	2483.500	5.41	29.35	37.95	46.17	42.98	54.00	-11.02	Average	
3	2483.500	5.41	29.35	37.95	59.87	56.68	74.00	-17.32	Peak	
4	2484.071	5.41	29.35	37.95	45.38	42.19	54.00	-11.81	Average	
5 pk	2484.071	5.41	29.35	37.95	61.75	58.56	74.00	-15.44	Peak	

Report No.: SZEM161201070001 Page: 83 of 85

Worse case mode:	GFSK(DH5)	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	-----------	---------------	---------	---------	------	------------

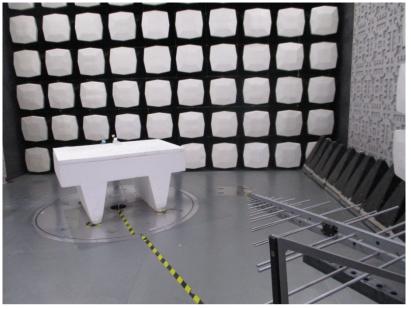
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

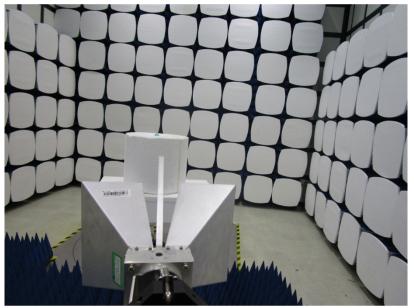
This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fulle, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201070001 Page: 84 of 85


7 Photographs - EUT Test Setup

Test Model No.: SBPL 15 A1

7.1 Conducted Emission



7.2 Radiated Emission

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1612010700CR.