

FCC - TEST REPORT

Report Number	:	60.792.22.002.02R01	Date of Issue	: <u>May 18, 2022</u>
Model	:	HG06608A-US, HG0660	8B-US	
Product Type	:	Ear muffs with Bluetoo	th PKB 5 A1	
Applicant	:	Lidl US, LLC		
Address	:	3500 S Clark Street, ARI	LINGTON VA 22202	, USA
Production Facility	:	Foshan Shunde JunYe E	electronic Co., Ltd.	
Address	:	Zhenghe South Road, Le	eliu Shunde, Foshan	, Guang Dong, China.
Test Result	:	nPositive	○Negative	
Total pages including Appendices	:	71		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents2
2 Description of Equipment Under Test
3 Summary of Test Standards 4
4 Details about the Test Laboratory5
4.1 Test Equipment Site List6
4.2 Measurement System Uncertainty7
5 Summary of Test Results
6 General Remarks9
7 Test Setups10
7.1 Radiated test setups Below 1GHz10
7.2 Radiated test setups Above 1GHz10
7.3 AC Power Line Conducted Emission test setups11
7.4 Conducted RF test setups11
8 Emission Test Results
8.1 Spurious Radiated Emission
8.2 Conducted Emission at AC Power line19
8.3 20dB & 99% Bandwidth21
8.4 Peak Output Power27
8.5 Spurious Emissions at Antenna Terminals
8.6 100kHz Bandwidth of band edges45
8.7 Minimum. Number of Hopping Frequencies49
8.8 Minimum Hopping Channel Carrier Frequency Separation
8.9 Average Channel Occupancy Time53
8.10 Antenna Requirement
9 Test setup procedure
10 Appendix A - General Product Information70
11 Appendix B – DECLARATION

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product:	Ear muffs with Bluetooth PKB 5 A1
Model no.:	HG06608A-US, HG06608B-US
FCC ID:	2AJ9O-HG6608
Rating:	5.0 VDC form USB port or 3.7 VDC, 500 mAh rechargeable Li-ion battery
Frequency:	2402MHz-2480MHz (Tx and Rx)
Antenna gain:	0 dBi
Number of operated channel:	79
Modulation:	GFSK, π/4DQPSK

Auxiliary Equipment and Software Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Adaptor	Apple	A1357	EMC-126
Smart Phone	Apple	iPhone 11	/

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
RF Test Mode Software			Provided by applicant

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition Federal Communications Commission, PART 15 — Radio Frequency Devices,

Subpart C —Intentional Radiators

All the test methods were according to ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13 Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests				
Test Item	Test Site			
FCC Part 15 Subpart C				
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	Site 1			
FCC Title 47 Part 15.207(a) AC Line Conducted Emission	Site 1			
FCC Title 47 Part 15.247(a)(1) 20dB & 99% Bandwidth	Site 1			
FCC Title 47 Part 15.247(b) Peak Output Power	Site 1			
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	Site 1			
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	Site 1			
FCC Title 47 Part 15.247(a)(1) Minimum Number of Hopping Frequencies	Site 1			
FCC Title 47 Part 15.247(a)(1) Minimum Hopping Channel Carrier Frequency Separation	Site 1			
FCC Title 47 Part 15.247(a)(1) Average Time of Occupancy	Site 1			
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	Site 1			

4.1 Test Equipment Site List

Radiated emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2022-6-4
Signal Analyzer	Rohde & Schwarz	FSV40	101031	2022-6-3
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2022-8-25
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2022-7-23
Horn Antenna	Rohde & Schwarz	HF907	102294	2022-6-23
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2022-7-21
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2022-6-6
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2022-7-27
Attenuator	Mini-circuits	UNAT-6+	15542	2022-8-23
3m Semi-anechoic chamber	TDK	9X6X6		2023-5-28
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2022-6-4
LISN	Rohde & Schwarz	ENV4200	100249	2022-6-5
LISN	Rohde & Schwarz	ENV432	101318	2022-6-5
LISN	Rohde & Schwarz	ENV216	100326	2022-6-5
ISN	Rohde & Schwarz	ENY81	100177	2022-6-5
ISN	Rohde & Schwarz	ENY81-CA6	101664	2022-6-5
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2022-6-5
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2022-6-5
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2022-6-3
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2022-11-07

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, hopping items – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2022-6-3
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2022-6-3

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty				
Items Extended Uncertainty				
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB			
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;			
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;			
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.21dB			
Uncertainty for conducted power test	1.16dB			
Uncertainty for frequency test	0.6×10 ⁻⁷			

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.

5 Summary of Test Results

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	es Test Result		ult
		Pass	Fail	N/A
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	12-18	\square		
FCC Title 47 Part 15.207(a) AC Line Conducted Emission	19-20	\boxtimes		
FCC Title 47 Part 15.247(a)(2) 20dB & 99% Bandwidth	21-26	\boxtimes		
FCC Title 47 Part 15.247(b) Peak Output Power	27-32	\square		
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	33-44	\square		
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	45-48	\square		
FCC Title 47 Part 15.247(a)(1) Min. No. of Hopping Frequencies	49-50	\boxtimes		
FCC Title 47 Part 15.247(a)(1) Min. of Hopping Channel Carrier Frequency Separation	51-52	\square		
FCC Title 47 Part 15.247(a)(1) Average Time of Occupancy	53-58	\square		
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	59	\square		

6 General Remarks

Remarks

Client informs that the **HG06608A-US** has the same technical construction including circuit diagram and electrical construction, with the product **Ear muffs with Bluetooth PKB 5 A1**, model **HG06608B-US**, The difference lies only in color of different models. (Client's conformation letter shown at Appendix B)

All tests were performed on model: **HG06608B-US**. All data packet type modes have been tested, only the worst case is shown on the report.

This submittal(s) (test report) is intended for **FCC ID: 2AJ9O-HG6608**, complies with Section 15.203, 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules for the DSS grant.

The TX and RX range is 2402MHz-2480MHz.

SUMMARY:

- All tests according to the regulations cited on page 8 were

- n Performed
- O Not Performed

- The Equipment Under Test

n - Fulfills the general approval requirements.

• - **Does not** fulfill the general approval requirements.

Sample Received Date: March 03, 2022

Testing Start Date:

March 03, 2022

Testing End Date:

April 02, 2022

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

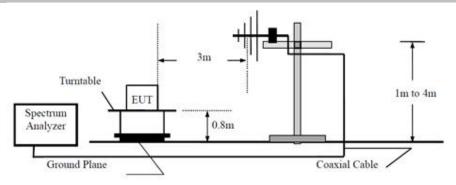
Prepared by:

Tested by:

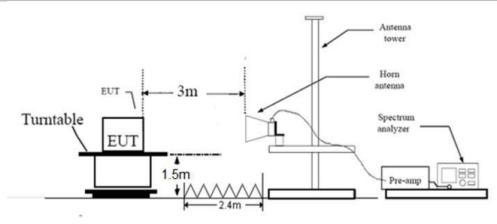
Eric LI EMC Project Manager

since Lie

Hosea CHAN EMC Project Engineer

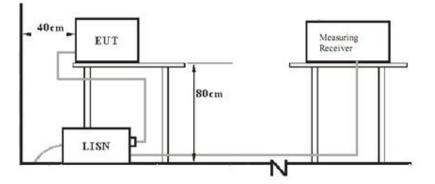

Louise Liu EMC Test Engineer

Page 9 of 71

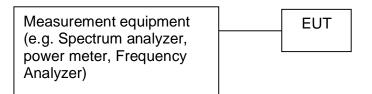


7 Test Setups

7.1 Radiated test setups Below 1GHz



7.2 Radiated test setups Above 1GHz



7.3 AC Power Line Conducted Emission test setups

7.4 Conducted RF test setups

8 Emission Test Results

8.1 Spurious Radiated Emission

EUT:	
Op Condition:	

Comment:

Remark:

Test Specification:

HG06608A-US Operated, TX Mode (2DH5) (Highest channel is the worst case) FCC15.205, 15.209 & 15.247(d) DC 5V Below 1GHz Test Result ⊠ Passed

Not Passed

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
168.009444	34.28	43.50	9.22	PK	Н	15.85
179.972778	30.93	43.50	12.57	PK	Н	16.60
263.985556	35.73	46.00	10.27	PK	Н	20.07
276.003978	43.59	46.00	2.41	QP	Н	20.22
287.966111	39.35	46.00	6.65	PK	Н	20.57
299.983333	36.93	46.00	9.07	PK	Н	20.85
168.009444	25.86	43.50	17.64	PK	V	15.85
195.708333	21.42	43.50	22.08	PK	V	18.75
263.985556	27.95	46.00	18.05	PK	V	20.07
275.948889	33.81	46.00	12.19	PK	V	20.22
287.966111	29.51	46.00	16.49	PK	V	20.57
612.000000	34.10	46.00	11.90	PK	V	27.69

Remark:

1. As the measured peak value not exceeded the Quasi-peak limit, Quasi-peak value no need to be measured.

 Result Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Δnt

Spurious Radiated Emission

EUT:	HG06608B-US	Test Result
Op Condition:	Operated, TX Mode (2402MHz, 2DH5)	☐ Passed
Test Specification:	FCC15.205, 15.209 & 15.247(d)	☐ Not Passed
Comment: Remark:	DC 5V 1GHz to 25GHz	

Frequency	Result	Limit	Margin	Detector	Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1872.000000	42.45	74.00	31.55	PK	Н	-4.51
2384.000000	45.76	74.00	28.24	PK	Н	-2.25
3964.500000	47.47	74.00	26.53	PK	Н	1.86
4596.000000	49.72	74.00	24.28	PK	Н	3.90
7643.000000	42.25	74.00	31.75	PK	Н	9.52
9602.000000	46.02	74.00	27.98	PK	Н	12.19
1360.000000	38.19	74.00	35.81	PK	V	-8.20
1999.500000	43.84	74.00	30.16	PK	V	-3.78
2577.000000	44.84	74.00	29.16	PK	V	-1.54
3911.000000	46.82	74.00	27.18	PK	V	1.55
7194.000000	41.75	74.00	32.25	PK	V	8.38
9951.500000	45.23	74.00	28.77	PK	V	12.27

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

EUT:HG06608B-USOp Condition:Operated, TX Mode (2441MHz, 2DH5)Test Specification:FCC15.205, 15.209 & 15.247(d)Comment:DC 5VRemark:1GHz to 25GHz	Test Result
--	-------------

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1880.500000	42.08	74.00	31.92	PK	Н	-4.42
3111.500000	46.11	74.00	27.89	PK	Н	0.16
4131.000000	47.26	74.00	26.74	PK	Н	2.43
4821.000000	48.05	74.00	25.95	PK	Н	4.39
7917.500000	42.58	74.00	31.42	PK	Н	9.45
9758.000000	50.35	74.00	23.65	PK	Н	12.53
1672.500000	40.18	74.00	33.82	PK	Н	-7.01
2354.000000	44.31	74.00	29.69	PK	V	-2.38
3164.000000	45.91	74.00	28.09	PK	V	0.32
5063.000000	50.36	74.00	23.64	PK	V	4.72
9758.000000	46.45	74.00	27.55	PK	V	12.53
17092.500000	51.34	74.00	22.66	PK	V	22.13

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

EUT: Op Condition: Test Specification: Comment: Remark: HG06608B-US Operated, TX Mode (2480MHz, 2DH5) FCC15.205, 15.209 & 15.247(d) DC 5V 1GHz to 25GHz

Test Result	
🛛 Passed	
Not Passed	

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1388.500000	36.56	74.00	37.44	PK	Н	-8.37
2505.500000	43.24	74.00	30.76	PK	Н	-1.80
3684.000000	45.30	74.00	28.70	PK	Н	0.92
4960.500000	49.88	74.00	24.12	PK	Н	4.54
6604.500000	43.14	74.00	30.86	PK	Н	9.27
9914.000000	51.02	74.00	22.98	PK	Н	12.21
1340.500000	37.51	74.00	36.49	PK	Н	-8.02
1669.500000	42.70	74.00	31.30	PK	V	-7.04
2496.500000	44.09	74.00	29.91	PK	V	-1.82
3647.500000	46.57	74.00	27.43	PK	V	0.77
5748.500000	50.85	74.00	23.15	PK	V	6.36
9914.000000	49.36	74.00	24.64	PK	V	12.21

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Δnt

Spurious Radiated Emission

EUT:	HG06608B-US	Test Result
Op Condition:	Operated, TX Mode (2402MHz, DH5)	☐ Passed
Test Specification:	FCC15.205, 15.209 & 15.247(d)	☐ Not Passed
Comment: Remark:	DC 5V 1GHz to 25GHz	

Frequency	Result	Limit	Margin	Detector	Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1462.000000	38.30	74.00	35.70	PK	Н	-8.50
2381.500000	45.95	74.00	28.05	PK	Н	-2.26
3161.500000	46.14	74.00	27.86	PK	Н	0.30
6655.000000	42.62	74.00	31.38	PK	Н	9.13
9602.500000	46.22	74.00	27.78	PK	Н	12.19
12877.500000	48.71	74.00	25.29	PK	Н	15.71
1891.000000	42.59	74.00	31.41	PK	V	-4.30
2320.000000	43.63	74.00	30.37	PK	V	-2.34
2783.500000	45.07	74.00	28.93	PK	V	-1.22
4169.000000	47.89	74.00	26.11	PK	V	2.48
7965.000000	42.44	74.00	31.56	PK	V	9.89
10222.500000	44.72	74.00	29.28	PK	V	12.79

- 3. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Δnt

Spurious Radiated Emission

EUT:HG06608B-USOp Condition:Operated, TX ModeTest Specification:FCC15.205, 15.209 & 7Comment:DC 5VRemark:1GHz to 25GHz	
--	--

Frequency	Result	Limit	Margin	Detector	Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1779.000000	40.23	74.00	33.77	PK	Н	-5.56
2387.500000	43.51	74.00	30.49	PK	Н	-2.24
3183.000000	46.57	74.00	27.43	PK	Н	0.29
5008.000000	48.91	74.00	25.09	PK	Н	4.76
7174.500000	42.23	74.00	31.77	PK	Н	8.20
9758.000000	48.49	74.00	25.51	PK	Н	12.53
1901.500000	41.39	74.00	32.61	PK	Н	-4.18
2440.000000	48.24	74.00	25.76	PK	V	-2.15
3544.500000	44.53	74.00	29.47	PK	V	0.54
4921.500000	49.38	74.00	24.62	PK	V	4.55
6946.500000	41.80	74.00	32.20	PK	V	8.86
8821.500000	44.31	74.00	29.69	PK	V	11.76

- 3. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

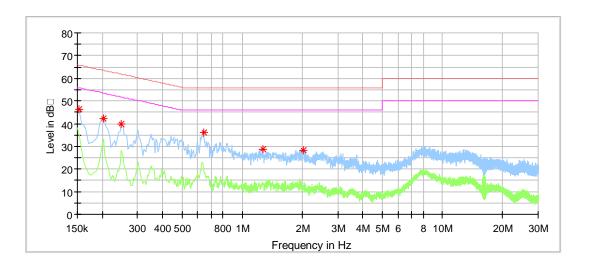
Spurious Radiated Emission

EUT: Op Condition: Test Specification: Comment: Remark: HG06608B-US Operated, TX Mode (2480MHz, DH5) FCC15.205, 15.209 & 15.247(d) DC 5V 1GHz to 25GHz

Test Result	
🛛 Passed	
Not Passed	

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1337.000000	38.67	74.00	35.33	PK	Н	-7.99
1875.000000	41.43	74.00	32.57	PK	Н	-4.48
2575.500000	46.21	74.00	27.79	PK	Н	-1.54
4720.500000	50.39	74.00	23.61	PK	Н	4.33
6593.000000	44.08	74.00	29.92	PK	Н	9.16
9914.000000	49.39	74.00	24.61	PK	Н	12.21
1750.000000	44.90	74.00	29.10	PK	Н	-6.04
2501.500000	44.31	74.00	29.69	PK	V	-1.81
3819.000000	45.32	74.00	28.68	PK	V	1.25
7837.500000	42.91	74.00	31.09	PK	V	9.27
9914.000000	49.80	74.00	24.20	PK	V	12.21
12835.000000	48.01	74.00	25.99	PK	V	15.49

- 3. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- 4. Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)


Test Result

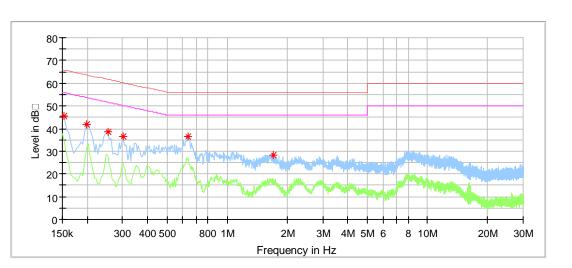
 \boxtimes Passed

Not Passed

8.2 Conducted Emission at AC Power line

EUT: Op Condition: Test Specification: Comment: HG06608B-US BT Link AC Mains, L Line 120V AC, 60Hz (supporting adapter input)

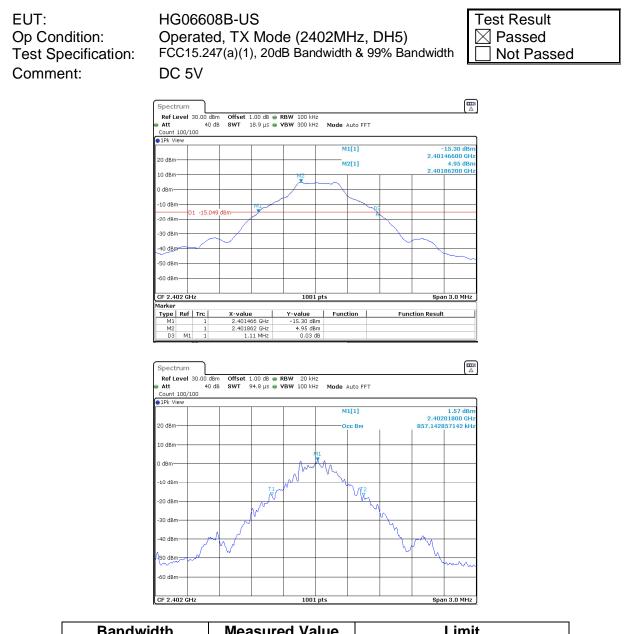
Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)
0.154000	46.54		65.78	19.24
0.202000	42.43		63.53	21.10
0.250000	39.76		61.76	22.00
0.642000	36.10		56.00	19.90
1.266000	28.83		56.00	27.17
2.018000	28.43		56.00	27.57


Test Result

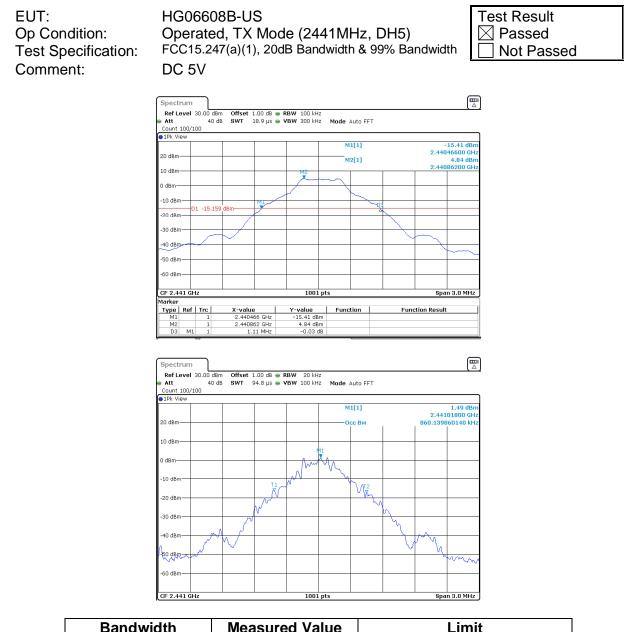
 \boxtimes Passed

Not Passed

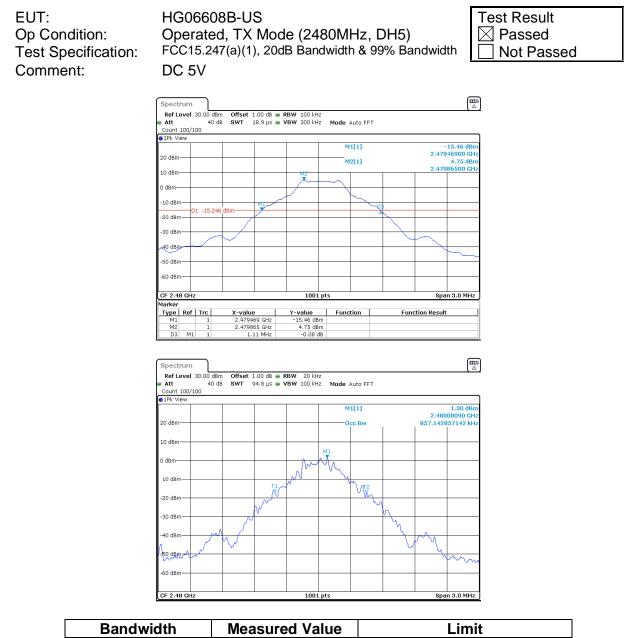
Conducted Emission Test

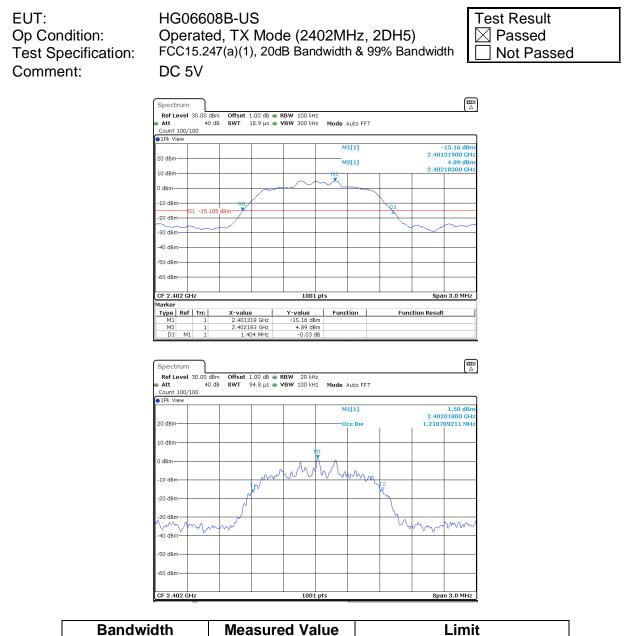

EUT: Op Condition: Test Specification: Comment: HG06608B-US BT Link AC Mains, N Line 120V AC, 60Hz (supporting adapter input)

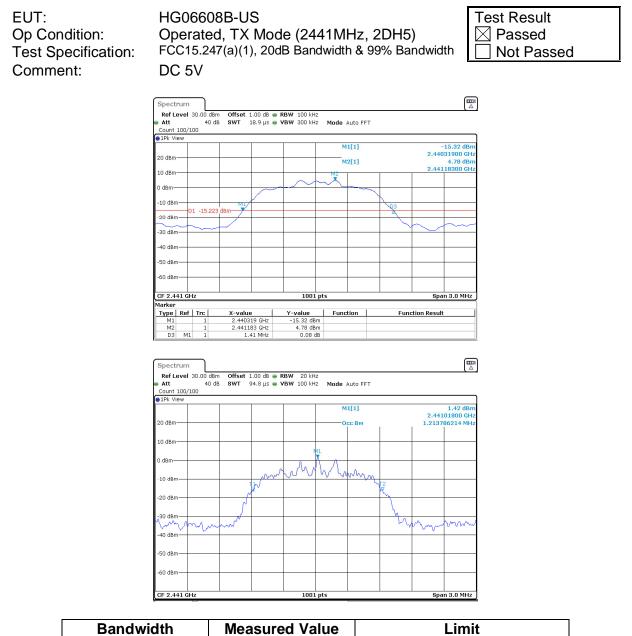
Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)
0.154000	45.65		65.78	20.14
0.198000	41.96		63.69	21.73
0.254000	38.47		61.63	23.16
0.302000	36.49		60.19	23.70
0.634000	36.53		56.00	19.47
1.702000	28.25		56.00	27.75

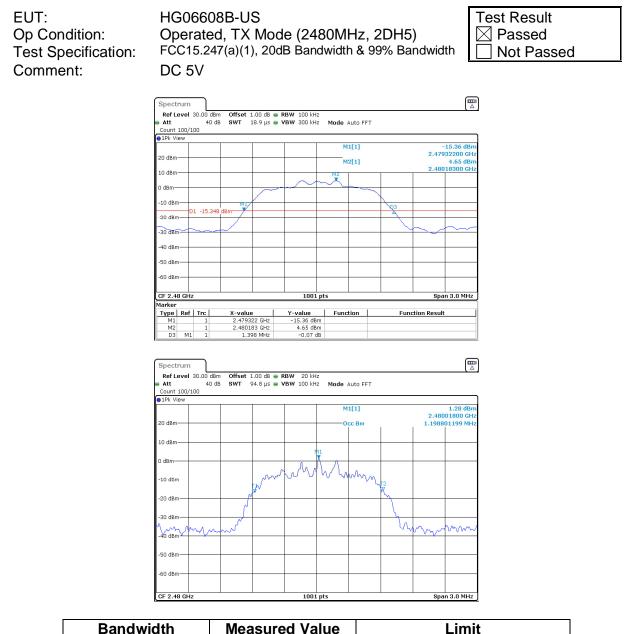


8.3 20dB & 99% Bandwidth


Bandwidth	Measured Value	Limit
20dB bandwidth	1.110 MHz	NA
99% OCB	0.857 MHz	NA


Bandwidth	Measured Value	Limit
20dB bandwidth	1.110 MHz	NA
99% OCB	0.860 MHz	NA


Bandwidth	Measured Value	Limit
20dB bandwidth	1.110 MHz	NA
99% OCB	0.857 MHz	NA


Bandwidth	Measured Value	Limit
20dB bandwidth	1.404 MHz	NA
99% OCB	1.211 MHz	NA

Bandwidth	Measured Value	Limit
20dB bandwidth	1.410 MHz	NA
99% OCB	1.214 MHz	NA

Bandwidth	Measured Value	Limit
20dB bandwidth	1.398 MHz	NA
99% OCB	1.199 MHz	NA

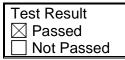
EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2402MHz, DH5) FCC15.247(b) DC 5V Test Result ⊠ Passed □ Not Passed
	RefLevel 30.00 dBm Offset 1.00 dB ● RBW 3 MHz ● Att 40 dB SWT 1 ms ● VBW 10 MHz Mode Auto Sweep
	Count 100/100 bitPk View bitPk vi
	M1[1] 5.06 dBm
	20 dBm 2,40182420 GHz
	10 dBm
	D dBm
	-10,40m
	-20 dbm
	-30 dBm
	-40 dbm
	-50 dBm
	-60 dBm
	CF 2.402 GHz 1001 pts Span 8.0 MHz
	Conducted Output Power Limit
	5.06 dBm < 30dBm

EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2441MHz, DH5) FCC15.247(b) DC 5V Test Result ⊠ Passed □ Not Passed
	Spectrum 🔟
	RefLevel 30.00 dBm Offset 1.00 dB RBW 3 MHz Att 40 dB SWT 1 ms VBW 10 MHz Mode Auto Sweep
	Count 100/100 B 1PK View
	HA VIEW M1[1] 4.96 dBm
	20 dBm
	10 dBm M1
	0 dBm
	19.48m
	-20 dBm
	-30 dBm-
	-40 dBm
	-50 dBm
	-60 dBm
	CF 2.441 GHz 1001 pts Span 8.0 MHz
	Conducted Output Power Limit
	4.96 dBm < 30dBm

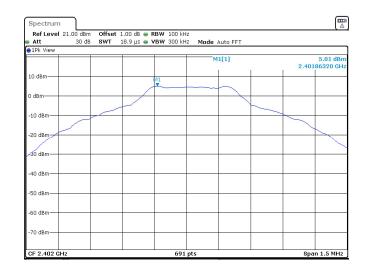
EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2480MHz, DH5) FCC15.247(b) DC 5V Test Result □ Passed □ Not Passed
	Spectrum 🔛
	RefLevel 30.00 dBm Offset 1.00 dB RBW 3 MHz Att 40 dB SWT 1 ms VBW 10 MHz
	Count 100/100
	1Pk View 111 4.85 dBm
	20 dBm
	10 dBm M1
	D dBm
	-10.46m
	-20 dBm
	-30 dBm
	-50 doin
	-40 dBm
	-50 dBm
	-60 dBm
	CF 2.48 GHz 1001 pts Span 8.0 MHz
	Conducted Output Power Limit
	4.85 dBm < 30dBm

EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2402MHz, 2DH5) FCC15.247(b) DC 5V Test Result □ Passed □ Not Passed
	Spectrum 🚨
	RefLevel 30.00 dBm Offset 1.00 dB RBW 3 MHz Att 40 dB SWF 1 ms VBW 10 MHz
	Count 100/100
	●1Pk View M1[1] 5.41 dBm
	20 dBm 2.40216780 GHz
	0 dBm
	-10 d8m
	-20 dBm
	-30 dBm
	-40 dBm
	-50 dBm
	-60 dBm
	CF 2.402 GHz 1001 pts Span 8.0 MHz
	Conducted Output Power Limit
	5.41 dBm < 30dBm

EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2441MHz, 2DH5) FCC15.247(b) DC 5V Test Result ⊠ Passed □ Not Passed
	Spectrum 🛄
	RefLevel 30.00 dBm Offset 1.00 dB RBW 3 MHz
	Att 40 dB SWT 1 ms VBW 10 MHz Mode Auto Sweep Count 100/100
	●1Pk View M1[1] 5.27 dBm
	20 dBm 20 dBm
	10 dBm
	0 dBm
	-10.0Bm
	-20 dBm-
	-30 dBm
	-40 dBm
	-50 dBm-
	-60 dBm-
	CF 2.441 GHz 1001 pts Span 8.0 MHz
	GF 2.441 GHz 1001 pts Span 8.0 MHz
	Conducted Output Dower Limit
	Conducted Output Power Limit
	5.27 dBm < 30dBm



EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2480MHz, 2DH5) FCC15.247(b) DC 5V Test Result ⊠ Passed □ Not Passed
	Spectrum 🛄
	RefLevel 30.00 dBm Offset 1.00 dB B RBW 3 MHz Att 40 dB SWT 1 ms VBW 10 MHz Mode Auto Sweep
	Count 100/100
	Irk View M1[1] 5.31 dBm
	20.dbm
	10 dBm
	D dBm
	-10-d0m
	-20 dBm
	-30 dBm
	-40 dBm
	-50 dBm
	-60 dBm
	CF 2.48 GHz 1001 pts Span 8.0 MHz
	Conducted Output Power Limit
	5.31 dBm < 30dBm



8.5 Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2402MHz, DH5) FCC2.1051 & 15.247(d) DC 5V

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2402	2402	5.01	5.01		PASS
2402	30~1000	5.01	-66.75	<=-14.99	PASS
2402	1000~26500	5.01	-35.26	<=-14.99	PASS

Test Result

 \boxtimes Passed

Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2402MHz, DH5) FCC2.1051 & 15.247(d) DC 5V

Spectrur					_				E Z
Ref Leve Att Count 10/	el 11.00 dBn 20 dE /10		1.00 dB 👄 🛿 30.1 ms 👄 🎙			Auto Sweep			
●1Pk Max	1					1[1]			
						-66.75 dB 960.0210 M			
0 dBm									
-10 dBm									
-20 dBm-	D1 -14.990	dBm							
-20 UBIII-									
-30 dBm-									
-40 dBm—									
-50 dBm									
55 4511									
-60 dBm—									
									M1
	a cover protonol	يستغيبنا والمستعاص	And the second second second	Charle and a state of the	an the second second	and the second second	dilitida para de	hinner frieder	la Ulugʻini kuda Matarika basa
-80 dBm-	n alexadin de la Carpo	a substant days	a na ana ana ana ana ana ana ana ana an	and a sub-location	and an all and	and the second of	and the second	dive solution of 1	
oo abiii									
Start 30.0) MHz		1	3000	1 pts			Sto	p 1.0 GH;

Att	0.00 dBm: 30 dB			RBW 100 kHz VBW 300 kHz					
Att Count 9/10	30 dB	SWI	255 ms 🖷	VBW 300 KH2	Mode /	Auto Sweep			
1Pk Max									
					M	1[1]			35.26 dE 99100 G
0 dBm								2.3	99100 G
0									
dBm									
10 dBm									
20 dBm	-14.990	dBm							
20 asm									
30 d 6 m									
₩1									
40 dBm	-								
			1.1						
50 dBm					d de const	1			
	أستعليا عدرر	in politica app	بالقرم ويغتلى	dutte indiad		"A "holes defined". Define	endido" yalanga	with the part	and a straight
50 di mətəliri İstəradini	and the set of the set of	and the provest	ng dan samb da	-	Part P		and the second se	1	and the second second
70 dBm									
/o ubiii									

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, DH5) FCC2.1051 & 15.247(d) DC 5V

Test Result	
🛛 Passed	
Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2441	2441	4.76	4.76		PASS
2441	30~1000	4.76	-66.3	<=-15.24	PASS
2441	1000~26500	4.76	-38.02	<=-15.24	PASS

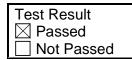
Test Result

Passed

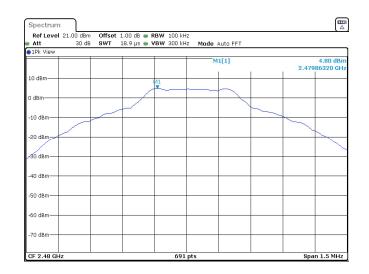
Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, DH5) FCC2.1051 & 15.247(d) DC 5V


Ref Leve	el 11.00 dBm 20 dB		1.00 dB 👄 H 30.1 ms 👄 🞙		Auto Sweep				
Count 10/				 - Mode	Auto Sweep				
1Pk Max			-	 M	1[1]			-66.30 dB	
					-1-1		960.0210 Mi		
) dBm									
10 dBm—									
-10 UBIII—	D1 -15.240	dBm							
20 dBm—	01 10.210								
-30 dBm—							<u> </u>	<u> </u>	
-40 dBm									
-50 dBm—								-	
-60 dBm							· .		
-60 asm—								M1	
70 dBm	and the state of states	L. Landerson	demonstales in	 	-	-	allicontemptar	L. Martin	
-		and the second second					-telperist-social	and shared a state	
80 dBm—	+						+	+	

1Pk Max				_							
							N N	11[1]			8.02 dE 1950 G
LO dBm					-				+		
) dBm											
10 dBm					 +						
	D1 -1	5.240	dBm-		-						
20 dBm											
30 dBm—					 					_	
	M	1									
40 dBm					-						
50 dBm											
00 020				 1		ين ار اه	يا ير مىرىمى	A Sharen as beer	الم المراجع الم	يعاسمون	 الاستعمادة
						1.00.00					



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2480MHz, DH5) FCC2.1051 & 15.247(d) DC 5V

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2480	2480	4.80	4.80	4.80	PASS
2480	30~1000	4.80	-67.56	-67.56	PASS
2480	1000~26500	4.80	-37.19	-37.19	PASS

 \boxtimes Passed

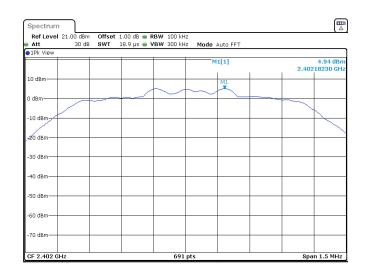
Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2480MHz, DH5) FCC2.1051 & 15.247(d) DC 5V

Ref Lev Att	el 11.00 dBm 20 dB		1.00 dB 👄 🛙 30.1 ms 👄 🎙			Auto Sweep			
Count 10,		3 9 9 1	50.1 ms 🖶 י	NDW SUUKH	2 Moue	Auto Sweep			
⊖1Pk Max									
					м	1[1]			66.40 dBn
0 dBm									
-10 dBm—									
	D1 -15.200	dBm							
-20 dBm—									
-30 dBm-									
-30 ubiii—									
-40 dBm—									
-50 dBm—									
-60 dBm—									M1
-70 dBm-	a second sector	1			la la		and the second	S. and M. A.	
	անվերությունը հերթարու Դերեսությունը էրու	and disard units of	(Jacobie e dis Addie Generalie (M) (M)	lenelagoilengelenel Obtonu die erfender	d assessment in	levery service and provide pro-	pullips of public balance	and a provide state of the	in a state of the
-80 dBm—			- ···						
Start 30.	0 MHz	I	1	3000	1 pts	I	I	Sto	p 1.0 GHz

Att	a 20.	00 dBn 30 dB					BW 100		Mode	Auto Sweep				
Count 8/1	0	00 at					511 000		Mode	Addo officep				
1Pk Max	1							-		1[1]			07.10.40	
									IVI	1[1]		-37.19 dB 4.959300 G		
0 dBm								_						
1														
dBm													<u> </u>	
10 dBm—	-													
20 dBm—	-D1 -	15.200	dBm-											
30 dBm—														
		M1												
40 dBm—		_											<u> </u>	
50 dBm—										in in a	a kata			
	in last a	a bal	Marina.	harring	مرجع او او	(Internal	الهامين والاحدادة			la sin a sa sa sa sa	وقار الاراصاف ا		1.490 Albert	
59,dE e-t		in an	al and a star	a di pad	a state and	anistan)	and the second second					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	T													



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2402MHz, 2DH5) FCC2.1051 & 15.247(d) DC 5V

Test Result	
🛛 Passed	
Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2402	2402	4.94	4.94		PASS
2402	30~1000	4.94	-67.33	<=-15.06	PASS
2402	1000~26500	4.94	-29.8	<=-15.06	PASS

 \boxtimes Passed

Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2402MHz, DH5) FCC2.1051 & 15.247(d) DC 5V

Spectrur	n								
Att Count 10/	11.00 dBm 20 dB 10		1.00 dB 👄 🖡 30.1 ms 👄 🛛			Auto Sweep			
●1Pk Max					M	1[1]			67.33 dBm
0 dBm							L	959	.9890 MH:
-10 dBm	D1 -15.060	dBm							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									M1
	ang ng n	References and the state	and a start of the second s	and the statistical	Revenue printingen Ref Hinsteine Line.	land the the the	advection (Constrained	and the state of the	14 ja kuntangaté
-80 dBm									
Start 30.0	MHz		1	3000	1 pts		1	Sto	p 1.0 GHz

Att	l 20.00 di 30						100 kH 300 kH		Auto Sweep			
Count 9/10		ub 3	** 1	255 11	5	1011	300 KH	z Moue	karo sweeb			
1Pk Max												
								M	1[1]			29.80 dE
0 dBm											2.3	99950 G
o dom												
dBm-												
10 dBm						_						
	D1 -15.0	60 dBm				_						
20 dDm												
м1												
30 d <mark>8</mark> m				-		+						
40 dBm		-		+		+						
				1.1								
50 dBm						-				1.1		
- L	and the state	Malake	100.00	Jan J	arikina	June	Andar	Market and Andre	A Charles and	CALLER MARK	بار و منالك السبا	الإرجاليط
iq,dl <mark>frank</mark>	مى بەر يەرىپى مەربارلىرىيە بىر	and the second	unity)	فيعنعه	and she	epos.k	per provide de la competencia de la com	then here also.	a iline a sur a	رمينيل التمركاني ا	a alian di sa d	alara di Kasara
the state												
70 dBm		-		-		+						
									1			

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, 2DH5) FCC2.1051 & 15.247(d) DC 5V

Test Result	
🛛 Passed	
Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2441	2441	4.69	4.69		PASS
2441	30~1000	4.69	-66.36	<=-15.31	PASS
2441	1000~26500	4.69	-42.2	<=-15.31	PASS

Att	30 dB	SWT	18.9 µs 😑 \	/BW 300 kH	z Mode /	Auto FFT		
JIPK VIEW					М	1[1]	2.441	4.69 dBr 18230 GH
10 dBm					_	M1		
0 dBm				\sim				
-10 dBm								
-20 dBm-								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								

 \boxtimes Passed

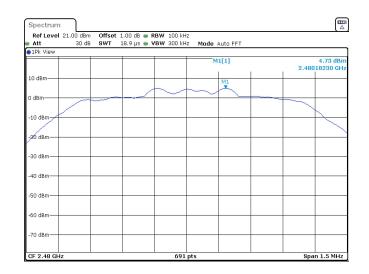
Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, 2DH5) FCC2.1051 & 15.247(d) DC 5V

Spectrum	
Reflevel 11.00 dBm Offset 1.00 dB RBW 100 kHz Att 20 dB SWT 30.1 ms VBW 300 kHz Mode Auto Sweep Count 10/10	
1Pk Max M1[1] -66.36	dBr
960.0210	
0 dBm	
-10 dBm	
-10 dBin-	
-20 dBm	
-30 dBm	
-40 dBm	
-50 dBm	
-60 dBm	
-00 0011	M1
70 gBpd rate of a second in the second state of the second se	t atta
	Sec. 50
-80 dBm	
Start 30.0 MHz 30001 pts Stop 1.0	0112

Count 9/1	30 di 0	B SWT	255 ms 👄 ۷	. DW 300 KH	2 Mode /	Auto Sweep				
1Pk Max		1	1							
					M	1[1]		-42.20 dBi 4.881950 GH		
LO dBm								1.0	01700 0	
dBm										
10 dBm—										
20 dBm-	D1 -15.310	dBm								
20 abm—										
30 dBm										
	M1									
40 dBm—	I I		1							
40 dBm—										
								يو الما لأأ أعاط لب	1. A.	
50 dBm		and the states of	الدمعين السرير	the manifest of	والقار ألحقاقيل	a second s			e na serie de la companya de la comp	
40 dBm— 50 dBm— 60 dBm—	lynni dete	and all a straight	and distant	an an an Arabatan Ann an Arabatan	and the party of the state of t	a second s	ىرىلىلەردا ئاتىرلىرى يىرىنىي <mark>ر</mark> ىسىتىر		n an	



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2480MHz, 2DH5) FCC2.1051 & 15.247(d) DC 5V

Test Result	
🛛 Passed	
Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2480	2480	4.73	4.73		PASS
2480	30~1000	4.73	-66.77	<=-15.27	PASS
2480	1000~26500	4.73	-41.52	<=-15.27	PASS

 \boxtimes Passed

Not Passed

Spurious Emissions at Antenna Terminals

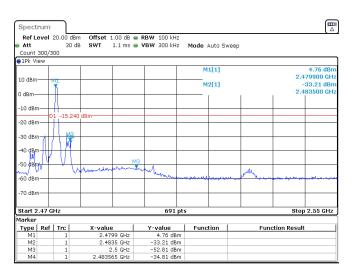
EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2480MHz, 2DH5) FCC2.1051 & 15.247(d) DC 5V

Spectrun									
Att Count 10/:	l 11.00 dBm 20 dB 10		1.00 dB 👄 🖡 30.1 ms 👄 🛛			Auto Sweep			
●1Pk Max					M	1[1]		-	66.65 dBm
0 dBm								960	.0210 MH:
o abiii									
-10 dBm		10							
-20 dBm	01 -15.270	asm-							
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									M1
-70 dBm	shironiophia	a lange the set	akana kana dala ka	<u>क्रम्स</u> ्रम् स	Description which the	n linh, dina alla	an and other states		
-80 dBm	in some state of the sec	leaded private and and the	and the second second	nterptal reality pa	upper and the second	aption of the second second	Al a church is agles aig	and a superior	h <mark>iren an hanna an hanna an /mark>
-ou ubili									
Start 30.0	MHz		1	3000	1 pts	I		Sto	p 1.0 GHz

Att	el 20.00 dBm 30 dB			RBW 100 kH VBW 300 kH				
Att Count 9/1		SWI	255 ms 🖷	ARM 300 KH	2 Mode	Auto Sweep		
1Pk Max								
					М	1[1]		41.52 dE
0 dBm								
dBm								
.0 dBm—								
io ubiii	01 -15.270	dBm						
	-D1 -15.270	dBm						
20 dBm—	-D1 -15.270	dBm						
20 dBm	D1 -15.270	dBm						
20 dBm		dBm						
20 dBm 30 dBm 40 dBm		dBm						
20 dBm		dBm		a la companya de la compa		a thatas a that		 La stal burns
20 dBm	M1	dBm				A ti natroport i la co	wind a window	Litest (Longer

8.6 100kHz Bandwidth of band edges

EUT: Op Condition: Test Specifica Comment:		
	Spectrum	
	Ref Level 20.00 dBm Offset 1.00 dB RBW 100	kHz
	Att 30 dB SWT 246.5 μs VBW 300 Count 300/300	kHz Mode Auto FFT
	1Pk View	
	10 dBm	M1[1] 4.53 dBm 2.402190 GHz
		M2[1] -45.76 dym 2.40000 0Hz
	0 dBm	2.40000 042
	-10 dBm	
	-20 dBm	
	-30 dBm	
		$\overline{7}$
	-40 dBm	
	-50 dBm	along the W
	COUNTER when we were and a second of the sec	Martin Contraction of the Contra
	-70 dBm	
		1 pts Stop 2.405 GHz
	Marker Type Ref Trc X-value Y-value	Function Function Result
	M1 1 2.40219 GHz 4.53 (M2 1 2.4 GHz -45.76 (
	M3 1 2.39 GHz -56.22 0	
	M4 1 2.399217 GHz -35.06 0	iBm
	Band edges	Limit
	-35.06 dB	> 20dB



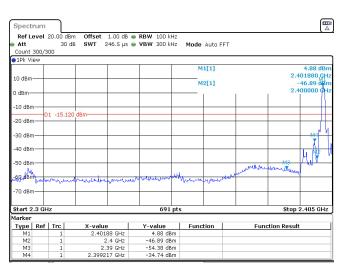
 \boxtimes Passed

Not Passed

100kHz Bandwidth of band edges

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2480MHz, DH5) FCC15.247(d), Conducted DC 5V

Band edges	Limit
34.81 dB	> 20dB


⊠ Passed

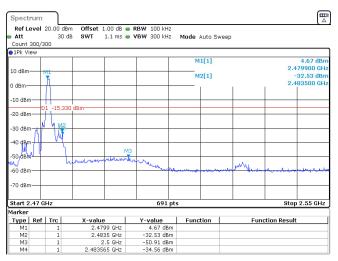
Not Passed

100kHz Bandwidth of band edges

EUT:
Op Condition:
Test Specification:
Comment:

HG06608B-US Operated, TX Mode (2402MHz, 2DH5) FCC15.247(d), Conducted DC 5V

Band edges	Limit
34.74 dB	> 20dB


⊠ Passed

Not Passed

100kHz Bandwidth of band edges

EUT:	HG0
Op Condition:	Oper
Test Specification:	FCC
Comment:	DC 5

IG06608B-US Operated, TX Mode (2480MHz, 2DH5) CC15.247(d), Conducted DC 5V

Band edges	Limit
34.56 dB	> 20dB

8.7 Minimum. Number of Hopping Frequencies

EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2402-2480MHz, DH5) FCC15.247(a)(1) DC 5V Test Result ⊠ Passed □ Not Passed
	Spectrum a
	Ref Level 30.00 dBm Offset 1.00 dB
	Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep IPk View
	20 dBm
	10 ประกา
	D dam-
	-19,992 <u>6.4117476444644447414644664466446444444444</u>
	-20 dBm
	-B0 dBm
	40 dBm
	-50 dBm
	-60 dBm-
	Start 2.4 GHz 691 pts Stop 2.4835 GHz
Γ	Hopping Channels Limit
	79 ≥ 15

 \boxtimes Passed

Not Passed

Minimum. Number of Hopping Frequencies

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2402-2480MHz, 2DH5) FCC15.247(a)(1) DC 5V

Spectrum										
Ref Level Att	30.00 dBm 40 dB		1.00 dB 👄 F	(BW 100 kH (BW 300 kH						
1Pk View	40 GB	SWI	1 ms 🖶 🕯	BW 300 KH	2 Mode	Auto Sweep				
JIPK VIEW										
20 dBm										
10 dBm										
ADAKKAA	AN MARK	ANA ANA A	UN WWW	ALANG. LA	NAMANA A	AANDAAAA	ANALANA	NANANAN	RUPY	
		11120100	. <u>8</u>	<u> </u>	11000100	ALLANDA	100809081	aaanalka	AAAAA	1
10 dBm										
to abiii										
-20 dBm										
										L
-30 dBm										<u>h</u> .
										-U
-40 dBm			-							0.
-50 dBm										
-60 dBm										
Start 2.4 G	Hz			691	pts			Stop 2.	.4835 GF	Hz

Hopping Channels	Limit
79	≥ 15

8.8 Minimum Hopping Channel Carrier Frequency Separation

EUT: Op Condition: Test Specification: Comment:	HG06608B-US Operated, TX Mode (2441MHz, DH5) FCC15.247(a)(1) ☐ Not Passed DC 5V
	Spectrum 🛄
	RefLevel 30.00 dBm Offset 1.00 dB ● RBW 100 kHz Att 40 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT Count 100/100
	IPK View
	M1[1] 4-,74 dBm 2,44096222 GHZ
	20 dBm D2[1] -0.02 dB
	10 dBm
	D dBm
	10.d8m
	-20 dBm-
	-30 dBm
	-40 dBm
	-50 dBm
	-60 dBm
	Start 2.4405 GHz 691 pts Stop 2.4425 GHz
	Chanel Separation Limit
	1003 kHz 740 kHz

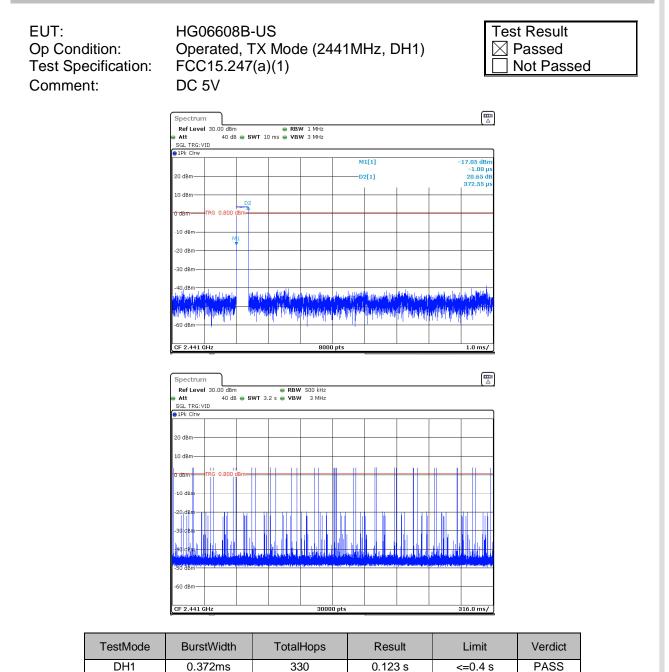
Limit: 2/3 of 20dB bandwidth of hopping channel

 \boxtimes Passed

Not Passed

Minimum Hopping Channel Carrier Frequency Separation

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, 2DH5) FCC15.247(a)(1) DC 5V


Att 40 d Count 100/100		 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT	
1Pk View				
			M1[1]	4.68 dBr 2.44118116 GH
0 dBm			D2[1]	0.03 d 1.00290 MH
0 dBm	M1			D2
dBm	$\gamma\gamma\gamma$			
10 dBm				
20 dBm				
30 dBm				
40 dBm				
50 dBm				
60 dBm				

Chanel Separation	Limit
1003 kHz	940 kHz

Limit: 2/3 of 20dB bandwidth of hopping channel

8.9 Average Channel Occupancy Time

Passed

Not Passed

Average Channel Occupancy Time

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, DH3) FCC15.247(a)(1) DC 5V

Spectrum			
Ref Level 30.00 dBm	RBW 1 MHz		· · ·
Att 40 dB SWT SGL TRG:VID	10 ms 🖷 VBW 3 MHz		
91Pk Cirw			
		M1[1]	-3.55 dBm
			-1.00 µs
20 dBm		D2[1]	7.16 dB
		1 1	1.62020 ms
10 dBm			
	D2		
0 dBm TRG 0.800 dBm	-		
The second se			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm;			
a find of the design of the	the case of a designed	ale (111) to de la basel de grades de pluj	فالمعطل البرابر الراعية والمتعادية
wate wat kiels at a	Abidi an and a		a contrast that is a state
a particular y high particular	A THE REPORT OF A THE	(institution of the second second	Although the state of the second s
-60 dBm			
CF 2.441 GHz	8000	nte	1.0 ms/
01 2.771 0112	8000	pes	1.0 ms/

1Pk Clrw										_										
:0 dBm				_															-	
.0 dBm				_															+	
dBm	TRG	0.800	dBm 					-		+		\vdash	_	-	-	+			+	
10 dBm				_											_	+				
20 dBm—							_										_			
3C d3m-																				
		Ì.			ц															
4C d Brit	1.1	Milia	aria u	J. www. I	(dharaa aantaataa	1.10	١.,	μį	1.0	I.	4	n.	vill					Щ.,		1,1

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
DH3	1.62ms	130	0.211 s	<=0.4 s	PASS

Passed

Not Passed

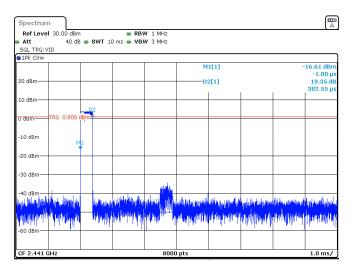
Average Channel Occupancy Time

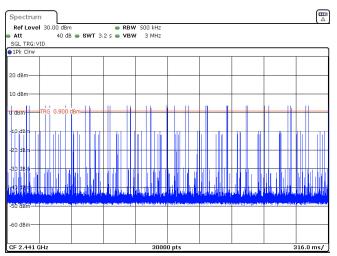
EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, DH5) FCC15.247(a)(1) DC 5V

Spectrum			
Ref Level 30.00 dBm	RBW 1 MHz		
Att 40 dB SWT 10 ms	VBW 3 MHz		
SGL TRG: VID			
●1Pk Clrw			
		M1[1]	-0.43 dBm
		1011	-1.00 µs
20 dBm		D2[1]	3.99 dB
		1 1	2.86036 ms
10 dBm			
M	D2		
0 dBm TRG 0.800 dBm	4		
-10 dBm			
-10 dbin			
-20 dBm			
-30 dBm			
-40 dBm			
all all the state and the state of the state	store in the line is the state	a statute interaction of statute and a	ell president balante block (1986)
and the second	the ye	Allapadens Astronomical Aug	ha pelanya hitika di pang kaladi ka
-60 dBm			1 1
CF 2.441 GHz	8000 pts		1.0 ms/

Spectrur															
Ref Leve				wт з		 RBW VBW 		00 kHz 3 MHz							
SGL TRG: \															
1Pk Clrw									Т						
20 dBm					-				+						
LO dBm									+						
dBm	TRG C	.800	dBm—	-				-							-
10 dBm-															-
20 dBm-		1					1			1	1				
30 dBm —			h	.1		<u> </u>						1	. I.		
‡⊒ iBπr —		6.11	la lui	UU.	t III,	Laine Juliu	γIJa	البولي		1 A LULI	and the mail	a political	N Dat 10 Da	ll _{est}	in the
sid dem	na la p	and given	uturiti),	Physical	110	et et en de la s	10.0	deres provide	Y	djamenta data pr	أحادر ووار المحمد والألبي	and partition of	dallin and defined.	alfopor	ul _{ta} tina
60 dBm									l						
CF 2.441 (GHz						I	300)0	pts	I	I		316.0) ms/

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
DH5	2.86ms	120	0.343 s	<=0.4 s	PASS



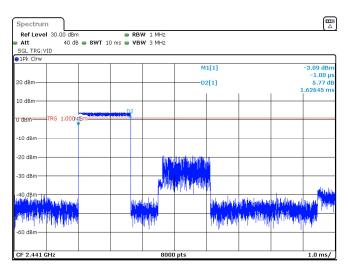

Passed

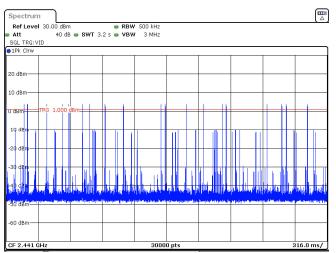
Not Passed

Average Channel Occupancy Time

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, 2DH1) FCC15.247(a)(1) DC 5V

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
2DH1	0.38ms	320	0.122 s	<=0.4 s	PASS




⊠ Passed

Not Passed

Average Channel Occupancy Time

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, 2DH3) FCC15.247(a)(1) DC 5V

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
2DH3	1.63ms	200	0.325 s	<=0.4 s	PASS

⊠ Passed

Not Passed

Average Channel Occupancy Time

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode (2441MHz, 2DH5) FCC15.247(a)(1) DC 5V

Spectrum
 Att
 40 db
 SWT
 10 ms
 VBW
 3 MHz
 9 MHz M1[1] 0.09 dBm -1.00 µs 2.57 dE 2.86661 ms 20 dBm D2[1] 10 dBrr U dBm-RG 0.900 -10 dBm -20 dBrr and the second secon -30 dBm line lacht l 40 dBm n de la cale dia del cu del al يلد بالمارة sta profiliti pi plathur protection 60 dBm-CF 2.441 GHz 8000 pts 1.0 ms/

	al 30.00 dB	m 18 🕳 S'			RB																		
Att SGL TRG:		B 🖷 S	WT 3	2 S 🖷	N AR	w	31	MHz															
1Pk Cirw	1	_				Т			_			_			_						_	_	
:0 dBm						1			T									1			F		
.0 dBm															\vdash			+			\vdash		
														n.		1				i.			
dBm-	TRG 0.900	asm=																		T			
10 dBm—								-					_			+		+		+			
20 dBm—									Π	t				Ħ	\top	T		T		T	\square		
30 dBm—					11.					+			_	₩								-	
				. 1	Ш			П.,		Ι.				H.		Ш							
HI, HED T		1.14	np I	140					М	ų,		1,4	21. 115				a lla				4	r.	J.
50 dBm	n a para da	Section and	het flas	an America	hybild.	da ya	ann a	daaraa	44	u) er	ыдыя	puber	PUIA	ushi	le prim	as la	a digi	444	and the	-line p	plage.	(pedd)	Ab-
50 dBm—						-			+			-			-			+			+		

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
2DH5	2.87ms	100	0.287 s	<=0.4 s	PASS

8.10 Antenna Requirement

EUT: Op Condition: Test Specification: Comment: HG06608B-US Operated, TX Mode FCC15.203 & 15.247(b) DC 5V

Test Result	
🛛 Passed	
Not Passed	

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Title 47 Part 15.247(b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The antenna used in this product is an integrated antenna on PCB, and the maximum gain of this antenna is 0dBi.

9 Test setup procedure

9.1 Spurious Radiated Emission

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto,

Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW=10Hz, Sweep = auto, Detector function = peak, Trace = max hold. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correct factor, derived from the appropriate the duty cycle calculation.

The setting method can refer to DA00-705.

Spurious Radiated Emission

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency MHz	QP Limit dBμV	AV Limit dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

9.3 20dB & 99% Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 20 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 20 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

NA

9.4 Peak Output Power

Test Method

- 1. Connect the spectrum analyzer to the EUT
 - a) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
 - b) At all times the EUT is transmitting at its maximum power control level.
 - c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤1	≤30
For e.i r.p:			
	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤4	≤36

9.5 Spurious Emissions at Antenna Terminals

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.6 100kHz Bandwidth of band edges

Test Method

1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious $RBW = 100 \text{ kHz}, VBW \ge RBW$, Sweep = auto, Detector function = peak, Trace = max hold.

- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.7 Number of hopping frequencies

Test Method

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW \geq RBW.

d) Sweep: Auto.

e) Detector function: Peak.

f) Trace: Max hold.

g) Allow the trace to stabilize.

h) Count the number of hopping frequencies

Limit

Limit

≥ 15

9.8 Minimum Hopping Channel Carrier Frequency Separation

Test Method

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \ge RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Limit

Limit

 \geq 2/3 of 20dB bandwidth of hopping channel

9.9 Average Channel Occupancy Time

Test Method

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel.

b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this testfor each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

Limit

Limit

≤0.4s

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: 2AJ9O-HG6608

According to KDB 447498 D01v06 section 4.3.1, For frequencies between 100 MHz to 6GHz and test separation distances \leq 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR

>> The fundamental frequency of the EUT is 2402-2480MHz, the test separation distance is ≤ 50mm. (Manufacturer specified the separation distance is: 5mm) (5mm is the worst case according to the KDB)

Step b)

- >> Numeric threshold (2402MHz), mW / 5mm * $\sqrt{2.402GHz} \le 3.0$ Numeric threshold (2402MHz) $\le 9.678mW$
- >> Numeric threshold (2441MHz), mW / 5mm * $\sqrt{2.440}$ GHz \leq 3.0 Numeric threshold (2441MHz) \leq 9.602mW
- >> Numeric threshold (2480MHz), mW / 5mm * $\sqrt{2.480GHz} \le 3.0$ Numeric threshold (2480MHz) $\le 9.525mW$
- >> The power (measured + tune up tolerance) of EUT at 2402MHz is: 5.41dBm = 3.48mW The power (measured + tune up tolerance) of EUT at 2441MHz is: 5.27dBm = 3.37mW The power (measured + tune up tolerance) of EUT at 2480MHz is: 5.31dBm = 3.40mW

Which is smaller than the Numeric threshold. Therefore, the device is exempt from stand-alone SAR test requirements.

Reviewed by:

Eric LI EMC Project Manager

Prepared by:

Hosea CHAN EMC Project Engineer

11 Appendix B - DECLARATION

DECLARATION LETTER FOR MODEL DIFFERENCE

SILVER CREST

To:

TÜV SÜD Hong Kong Limited.

Attention: Eric Li From: Ben Leung Fax No: N.A.

Date: 18 May 2022 Total Page (Cover Included): 1

Declaration Letter

We: Lidi US, LLC 3500 South Clark Street, Arlington, VA 22202, US

Officially notify TÜV SÜD Hong Kong Limited. that the <<Additional Model>> have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with <<PRODUCT>>, <<Main.Test Model>>. The difference lies only in color of the different models.

<<Additional Model >>: HG06608A-US

<<Main Test Model >>: HG06608B-US

<<Product>>: Ear muffs with Bluetooth PKB 5 A1

18 May 2022 (Date)

(Applicant's authorized signature and company Chop)

Page 1 of 1