

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1811RSU010-U1 Report Version: V01 Issue Date: 11-06-2018

MEASUREMENT REPORT

FCC PART 15.231(e)

FCC ID: 2AJ9O-FGT433A2

APPLICANT: LIDL US LLC.

Application Type:	Certification
Product:	Wireless digital thermometer
Model No.:	FGT433A2, WDJ7060, WDJ7011, WDJ7050,
	WDJ7051, WDJ7052, WDJ7053, WDJ7055, WDJ7056,
	WDJ7057, WDJ7058, WDJ7059
FCC Classification:	FCC Part 15 Security/Remote Control Transmitter
	(DSC)
FCC Rule Part(s):	Part 15.231(e)
Test Procedure(s):	ANSI C63.10-2013
Test Date:	December 21, 2017 ~ February 01, 2018

(Sunny Sun (Sunny Sun) Robin Wu Reviewed By : Approved By (Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1811RSU010-U1	Rev. 01	Initial Report	11-06-2018	Valid

Note: This report is based on report (1712RSU03401) from MRT to change FCC ID and model name.

CONTENTS

Des	scriptior	n Page	е
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	
2.	PROD	UCT INFORMATION	7
	0.4	Equipment Depariation	7
	2.1. 2.2.	Equipment Description Test Standards	
	2.2.	Test Methodology	
	2.3.	EUT Setup and Test Mode	
-			
3.	ANTE	NNA REQUIREMENTS	8
4.	TEST	EQUIPMENT CALIBRATION DATA	9
5.	MEAS	UREMENT UNCERTAINTY 1	0
6.	TEST	RESULT1	1
	6.1.	Summary1	1
	6.2.	Radiated Emissions	
	6.2.1.	Standard Applicable	
	6.2.2.	Test Procedure	2
	6.2.3.	Test Setup1	3
	6.2.4.	Test Results	4
	6.3.	20dB Bandwidth 2	0
	6.3.1.	Standard Applicable 2	0
	6.3.2.	Test Procedure 2	0
	6.3.3.	Test Setup2	0
	6.3.4.	Test Result2	1
	6.4.	Transmission Time	2
	6.4.1.	Standard Applicable	2
	6.4.2.	Test Procedure	
	6.4.3.	Test Setup 2	
	6.4.4.	Test Result	
	6.5.	Duty Cycle	
	6.5.1.	Standard Applicable	
	6.5.2.	Test Procedure	
	6.5.3.	Test Setup	
	6.5.4.	Test Result	
	6.6.	AC Conducted Emissions Measurement	о

7.	CONCLU	JSION	27
	6.6.3.	Test Result	26
	6.6.2.	Test Setup	26
	6.6.1.	Test Limit	26

Applicant:	LIDL US LLC.			
Applicant Address:	3500 S. Clark St, Arlington, VA 22202 USA			
Manufacturer:	Zhejiang Shunkang Technology Industry Co., Ltd.			
Manufacturer Address:	No.2, 3 Lane Fuxiang North Road Yuyao, Zhejiang, 315400 P.R.China			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development			
	Zone, Suzhou, China			
FCC Registration No.:	893164			
Test Device Serial No.:	N/A Production Pre-Production Engineering			

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

T The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Wireless digital thermometer
Model No.	FGT433A2, WDJ7060, WDJ7011, WDJ7050, WDJ7051, WDJ7052,
	WDJ7053, WDJ7055, WDJ7056, WDJ7057, WDJ7058, WDJ7059
Frequency Range	433.92 MHz
Type of modulation	ASK
Antenna Type	Integral Antenna
Device Category	Portable Device

2.2. Test Standards

The following report is prepared on behalf of the LIDL US LLC. in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commission rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

2.3. Test Methodology

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013).

Deviation from measurement procedure.....None

2.4. EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode	Description	Remark
Mode 1	Transmitting	With modulation

3. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the **Wireless digital thermometer** is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

4. TEST EQUIPMENT CALIBRATION DATA

Radiated Disturbance - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
MXE EMI Receiver	Agilent	N9038A	MRTSUE06125	1 year	2018/08/18
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2018/11/17
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06171	1 year	2018/11/18
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2018/11/20
RF Cable	HUBER+SUHNER	Cable 01	N/A	1 year	2018/12/09
Digitial Thermometer & Hygrometer	Minggao	ETH529	MRTSUE06170	1 year	2018/12/12
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2018/05/09

20dB Bandwidth, Release Time, Duty Cycle - AC2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cali. Due Date
MXE EMI Receiver	Agilent	N9038A	MRTSUE06125	1 year	2018/08/18
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
RF Cable	HUBER+SUHNER	Cable 01	N/A	1 year	2018/12/09
Digitial Thermometer & Hygrometer	Minggao	ETH529	MRTSUE06170	1 year	2018/12/12
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2018/05/09

Software	Version	Function
e3	V8.3.5	EMI Test Software

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement - AC2

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 9kHz ~ 1GHz: 4.18dB 1GHz ~ 18GHz: 4.76dB

6. TEST RESULT

6.1. Summary

Company Name:	Wireless digital thermometer
FCC ID:	<u>2AJ9O-FGT433A2</u>

FCC Part Section(s)	Test Description	Test Condition	Test Result
15.205, 15.231(e)	Radiated Spurious Emissions		Pass
15.231(c)	20dB Bandwidth / 99% Bandwidth		Pass
15.231(e)	Transmission Time	Radiated	Pass
15.231(e)	Duty Cycle		Pass
15 207	Conducted Emissions	Conducted	N/A
15.207	Measurement	Conducted	IN/A

Notes:

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

3) The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

6.2. Radiated Emissions

6.2.1.Standard Applicable

According to §15.231(e), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

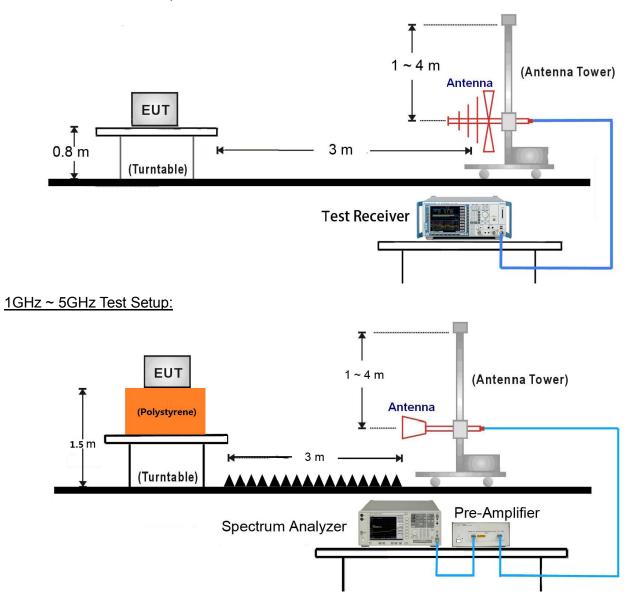
Fundamental Frequency	Field Strength of Fundamental	Field Strength of Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	1000	100
70 - 130	500	50
130 - 174	500 to1500 ¹	50 to 150 ¹
174 - 260	1500	150
260 - 470	1500 to 5000 ¹	150 to 500 ¹
Above 470	5000	500

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements start below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

6.2.2.Test Procedure


The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.231(e) and FCC Part 15.209 Limit.

6.2.3.Test Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.231(e) and FCC Part 15.209 Limit.

30MHz ~ 1GHz Test Setup:

6.2.4.Test Results

Site:	AC2				Time: 2017/12/23 - 16:40			
Limit	Limit: FCC_Part15.209_RE(3m)			Engineer: Jone Zhang				
Prob	e: VULB9162_0.03-8GHz Polarity: Horizontal							
EUT:	Wireless digita	al thermome	eter		Power: By Bat	ery		
Test	Mode: Transm	it						
	100					1		
	80					*		
	70							
(m/)	60			1 7				
Level(dBuV/m)	50			-				
Leve	40					2		3
	30			7				*
	20	n-mm	mmmmm	wander have been	Unerometer alough the of	and the second and the first	and a state of the	
	0							
2	30		t	100 Freq	uency(MHz)			1000
No	Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Over	Туре
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit	
		(dBuV)		(dB)	(dBuV/m)		(dB)	
1	434.005	72.194	17.515	N/A	89.709	92.866	-3.157	PK

	434.005	72.194	17.515	17.230	72.479	72.866	-0.387	AV
2	447.100	14.067	17.707	N/A	31.774	46.000	-14.226	PK
3	867.595	8.681	24.267	N/A	32.948	72.866	-39.918	PK
	867.595	8.681	24.267	17.230	15.718	52.866	-37.148	AV
Nata	1. Taating is a					ander Theres		•

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz \sim 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB).

AV Measure Level = Peak Measure Level + Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site:	AC2				Time: 2017/12/	23 - 16:50			
Limit	: FCC_Part15.	209_RE(3m)		Engineer: Jone Zhang				
Prob	e: VULB9162_	0.03-8GHz			Polarity: Vertical				
EUT:	Wireless digita	al thermome	ter		Power: By Batt	ery			
Test	Mode: Transm	it							
	100	in the		7					
	80					2			
	70			2			_		
(u	60								
Level(dBuV/m)	50							4	
P)	50								
eve	10								
Leve	40							3	
Leve	40 30 1						معليه المعالم	3	
Leve		m		anum de la	en marten and and an and and and and and and and	n. Johnson and the state of the second	مىملىغىدىغىنى مىمىيى مىلىدىدى.	3	
Leve	30 1	m		man and and	w.m.Muntaharahanata	n destances and a state of the second	مىمىلىغە ئىلىغانىيە مەلىكىيە مەلىكىيە مە	3	
Leve	30 20 10 0	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	amunana had	w.m.M.whilendonenta, with	u destantes and a second base	a and a second secon		
Leve	30 1 20 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	100 Frequ	anovalite and a star of the st	u.Jug.maga.aug.aug.aug.aug.aug.aug.aug	A Sale Barrison and B		
Peve	30 20 10 0	Reading	Factor			Limit	Over	3 100 Type	
	30 20 10 0 30	Reading	1	Frequ	ency(MHz)		Over Limit	100	
	30 20 10 0 30 Frequency	-	Factor	Frequ Duty Cycle	ency(MHz)	Limit		100	
	30 20 10 0 30 Frequency	Level	Factor	Frequ Duty Cycle Factor	ency(MHz) Measure Level	Limit	Limit	100	
No 1	30 20 10 0 30 Frequency (MHz)	Level (dBuV)	Factor (dB)	Frequ Duty Cycle Factor (dB)	ency(MHz) Measure Level (dBuV/m)	Limit (dBuV/m)	Limit (dB)	100 Type	
No 1	30 20 10 0 30 Frequency (MHz) 40.670	Level (dBuV) 10.592	Factor (dB) 14.098	Frequ Duty Cycle Factor (dB) N/A	ency(MHz) Measure Level (dBuV/m) 24.690	Limit (dBuV/m) 40.000	Limit (dB) -15.310	Type PK	
No	30 20 10 0 30 Frequency (MHz) 40.670 434.005	Level (dBuV) 10.592 62.122	Factor (dB) 14.098 17.515	Frequ Duty Cycle Factor (dB) N/A N/A	ency(MHz) Measure Level (dBuV/m) 24.690 79.637	Limit (dBuV/m) 40.000 92.866	Limit (dB) -15.310 -13.229	Type PK PK	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz ~ 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB).

AV Measure Level = Peak Measure Level + Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site:	AC2				Time: 2017/12/23 - 16:11				
Limit	t: FCC_Part15.	209_RE(3m)		Engineer: Jone Zhang				
Prob	e: BBHA9120E	0_1-18GHz			Polarity: Horizontal				
EUT: Wireless digital thermometer					Power: By Batte	ery			
Test	Mode: Transm	it							
Level(dBuV/m)	90 80 70 60 50 40 30 20 10 0 10		Mayor March March 19	montmethy	2 * 3 * * *	4	5	6 Č	
	-10	<i>i</i> .]		Frequ	uency(MHz)		boul.	500	
No	Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Over	Туре	
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit		
		(dBuV)		(dB)					
		(abav)			(dBuV/m)		(dB)		
1	1302.000	48.958	-2.966	N/A	(dBuV/m) 45.992	72.866	(dB) -26.874	PK	
1	1302.000 1302.000	. ,	-2.966 -2.966	N/A 17.230	,	72.866 52.866	. ,	PK AV	
1 2		48.958	-		45.992		-26.874		
	1302.000	48.958 48.958	-2.966	17.230	45.992 28.762	52.866	-26.874 -24.104	AV	
	1302.000 2170.000	48.958 48.958 48.145	-2.966 -0.325	17.230 N/A	45.992 28.762 47.820	52.866 72.866	-26.874 -24.104 -25.046	AV PK	
2	1302.000 2170.000 2170.000	48.958 48.958 48.145 48.145	-2.966 -0.325 -0.325	17.230 N/A 17.230	45.992 28.762 47.820 30.590	52.866 72.866 52.866	-26.874 -24.104 -25.046 -22.276	AV PK AV	
2	1302.000 2170.000 2170.000 2604.000	48.958 48.958 48.145 48.145 39.925	-2.966 -0.325 -0.325 -0.235	17.230 N/A 17.230 N/A	45.992 28.762 47.820 30.590 39.690	52.866 72.866 52.866 72.866 72.866	-26.874 -24.104 -25.046 -22.276 -33.176	AV PK AV PK	
2	1302.000 2170.000 2170.000 2604.000 2604.000	48.958 48.958 48.145 48.145 39.925 39.925	-2.966 -0.325 -0.325 -0.235 -0.235	17.230 N/A 17.230 N/A 17.230	45.992 28.762 47.820 30.590 39.690 22.460	52.866 72.866 52.866 72.866 52.866 52.866	-26.874 -24.104 -25.046 -22.276 -33.176 -30.406	AV PK AV PK AV	
2	1302.000 2170.000 2170.000 2604.000 2604.000 3038.000	48.958 48.958 48.145 48.145 39.925 39.925 49.321	-2.966 -0.325 -0.325 -0.235 -0.235 0.104	17.230 N/A 17.230 N/A 17.230 N/A	45.992 28.762 47.820 30.590 39.690 22.460 49.425	52.866 72.866 52.866 72.866 52.866 72.866 72.866	-26.874 -24.104 -25.046 -22.276 -33.176 -30.406 -23.441	AV PK AV PK AV AV PK	
2 3 4	1302.000 2170.000 2170.000 2604.000 2604.000 3038.000 3038.000	48.958 48.958 48.145 48.145 39.925 39.925 49.321 49.321	-2.966 -0.325 -0.325 -0.235 -0.235 0.104 0.104	17.230 N/A 17.230 N/A 17.230 N/A 17.230	45.992 28.762 47.820 30.590 39.690 22.460 49.425 32.195	52.866 72.866 52.866 72.866 52.866 72.866 52.866 52.866	-26.874 -24.104 -25.046 -22.276 -33.176 -30.406 -23.441 -20.671	AV PK AV PK AV PK AV	
2 3 4	1302.000 2170.000 2170.000 2604.000 3038.000 3038.000 3904.000	48.958 48.958 48.145 48.145 39.925 39.925 49.321 49.321 39.173	-2.966 -0.325 -0.325 -0.235 -0.235 0.104 0.104 2.415	17.230 N/A 17.230 N/A 17.230 N/A 17.230 N/A	45.992 28.762 47.820 30.590 39.690 22.460 49.425 32.195 41.588	52.866 72.866 52.866 72.866 52.866 72.866 52.866 72.866 52.866 72.866 52.866	-26.874 -24.104 -25.046 -22.276 -33.176 -30.406 -23.441 -20.671 -31.278	AV PK AV PK AV PK AV PK	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz \sim 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB).

AV Measure Level = Peak Measure Level - Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Site: AC2					Time: 2017/12/23 - 16:18				
Limit	: FCC_Part15.	209_RE(3m	ı)		Engineer: Jone Zhang				
Prob	Probe: BBHA9120D_1-18GHz				Polarity: Vertical				
EUT:	EUT: Wireless digital thermometer				Power: By Batte	ery			
Test	Mode: Transm	it		·					
Level(dBuV/m)	80 70 60 50 40 30 20 10 0		p ^{al} ny, management		2 	4	5	6 ***********	
	-10 ¹ 1000	1	T	Frequ	ency(MHz)		I	50	
	-								
No	Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Over	Туре	
No	Frequency (MHz)	Level	Factor (dB)	Factor	Level	Limit (dBuV/m)	Limit	Туре	
	(MHz)	Level (dBuV)	(dB)	Factor (dB)	Level (dBuV/m)	(dBuV/m)	Limit (dB)		
No 1	(MHz) 1302.000	Level (dBuV) 41.087	(dB) -2.966	Factor (dB) N/A	Level (dBuV/m) 38.121	(dBuV/m) 72.866	Limit (dB) -34.745	PK	
	(MHz) 1302.000 1302.000	Level (dBuV) 41.087 41.087	(dB) -2.966 -2.966	Factor (dB) N/A 17.230	Level (dBuV/m) 38.121 20.891	(dBuV/m) 72.866 52.866	Limit (dB) -34.745 -31.975	PK AV	
	(MHz) 1302.000 1302.000 2170.000	Level (dBuV) 41.087 41.087 42.871	(dB) -2.966 -2.966 -0.325	Factor (dB) N/A 17.230 N/A	Level (dBuV/m) 38.121 20.891 42.546	(dBuV/m) 72.866 52.866 72.866	Limit (dB) -34.745 -31.975 -30.320	PK AV PK	
1	(MHz) 1302.000 1302.000 2170.000 2170.000	Level (dBuV) 41.087 41.087 42.871 42.871	(dB) -2.966 -2.966 -0.325 -0.325	Factor (dB) N/A 17.230 N/A 17.230	Level (dBuV/m) 38.121 20.891 42.546 25.316	(dBuV/m) 72.866 52.866 72.866 52.866	Limit (dB) -34.745 -31.975 -30.320 -27.550	PK AV PK AV	
1	(MHz) 1302.000 1302.000 2170.000 2170.000 2578.000	Level (dBuV) 41.087 41.087 42.871 42.871 39.668	(dB) -2.966 -2.966 -0.325 -0.325 -0.357	Factor (dB) N/A 17.230 N/A 17.230 N/A	Level (dBuV/m) 38.121 20.891 42.546 25.316 39.311	(dBuV/m) 72.866 52.866 72.866 52.866 72.866	Limit (dB) -34.745 -31.975 -30.320 -27.550 -33.555	PK AV PK AV PK	
1 2 3	(MHz) 1302.000 1302.000 2170.000 2170.000 2578.000 2578.000	Level (dBuV) 41.087 41.087 42.871 42.871 39.668 39.668	(dB) -2.966 -0.325 -0.325 -0.357 -0.357	Factor (dB) N/A 17.230 N/A 17.230 N/A 17.230	Level (dBuV/m) 38.121 20.891 42.546 25.316 39.311 22.081	(dBuV/m) 72.866 52.866 72.866 52.866 72.866 52.866	Limit (dB) -34.745 -31.975 -30.320 -27.550 -33.555 -30.785	PK AV PK AV PK AV	
1 2 3	(MHz) 1302.000 1302.000 2170.000 2578.000 2578.000 3038.000	Level (dBuV) 41.087 41.087 42.871 42.871 39.668 39.668 50.750	(dB) -2.966 -2.966 -0.325 -0.325 -0.357 -0.357 0.104	Factor (dB) N/A 17.230 N/A 17.230 N/A 17.230 N/A	Level (dBuV/m) 38.121 20.891 42.546 25.316 39.311 22.081 50.854	(dBuV/m) 72.866 52.866 72.866 52.866 72.866 52.866 72.866	Limit (dB) -34.745 -31.975 -30.320 -27.550 -33.555 -30.785 -22.012	PK AV PK AV PK AV PK	
1 2 3 4	(MHz) 1302.000 1302.000 2170.000 2170.000 2578.000 2578.000 3038.000 3038.000	Level (dBuV) 41.087 41.087 42.871 42.871 39.668 39.668 50.750 50.750	(dB) -2.966 -2.966 -0.325 -0.325 -0.357 -0.357 0.104 0.104	Factor (dB) N/A 17.230 N/A 17.230 N/A 17.230 N/A 17.230	Level (dBuV/m) 38.121 20.891 42.546 25.316 39.311 22.081 50.854 33.624	(dBuV/m) 72.866 52.866 72.866 52.866 72.866 52.866 72.866 52.866	Limit (dB) -34.745 -31.975 -30.320 -27.550 -33.555 -30.785 -22.012 -19.242	PK AV PK AV PK AV PK AV	
1	(MHz) 1302.000 1302.000 2170.000 2170.000 2578.000 2578.000 3038.000 3038.000 3906.000	Level (dBuV) 41.087 41.087 42.871 42.871 39.668 39.668 50.750 50.750 39.206	(dB) -2.966 -2.966 -0.325 -0.325 -0.357 -0.357 0.104 0.104 2.411	Factor (dB) N/A 17.230 N/A 17.230 N/A 17.230 N/A 17.230 N/A 17.230 N/A	Level (dBuV/m) 38.121 20.891 42.546 25.316 39.311 22.081 50.854 33.624 41.617	(dBuV/m) 72.866 52.866 72.866 52.866 72.866 52.866 72.866 52.866 72.866	Limit (dB) -34.745 -31.975 -30.320 -27.550 -33.555 -30.785 -22.012 -19.242 -31.249	PK AV PK AV PK AV PK AV PK	
1 2 3 4	(MHz) 1302.000 1302.000 2170.000 2170.000 2578.000 2578.000 3038.000 3038.000	Level (dBuV) 41.087 41.087 42.871 42.871 39.668 39.668 50.750 50.750	(dB) -2.966 -2.966 -0.325 -0.325 -0.357 -0.357 0.104 0.104	Factor (dB) N/A 17.230 N/A 17.230 N/A 17.230 N/A 17.230	Level (dBuV/m) 38.121 20.891 42.546 25.316 39.311 22.081 50.854 33.624	(dBuV/m) 72.866 52.866 72.866 52.866 72.866 52.866 72.866 52.866	Limit (dB) -34.745 -31.975 -30.320 -27.550 -33.555 -30.785 -22.012 -19.242	PK AV PK AV PK AV PK AV	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz \sim 30 MHz, the permissible value is not show in the report.

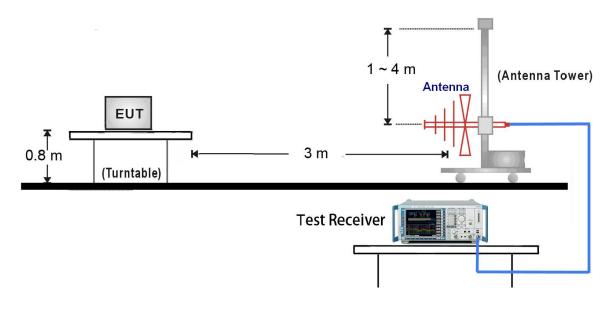
Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB).

AV Measure Level = Peak Measure Level - Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

6.3. 20dB Bandwidth

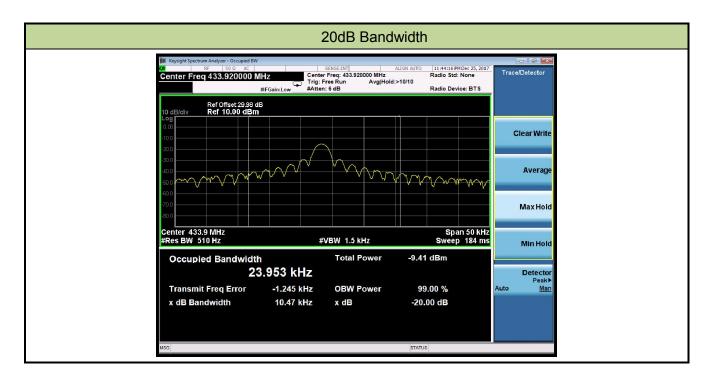

6.3.1.Standard Applicable

According to FCC Part 15.231(c), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.3.2.Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.3.3.Test Setup



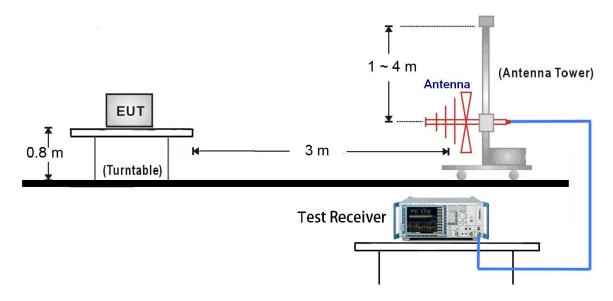
6.3.4.Test Result

Product	Wireless digital thermometer	Temperature	24°C
Test Engineer	Jone Zhang	Relative Humidity	45%
Test Site	AC2	Test Date	2017/12/25

Test Frequency	20dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
433.92	10.47	≤ 1084.80	Pass

Limit = Fundamental Frequency * 0.25% = 433.92 MHz * 0.25% = 1084.80 kHz

6.4. Transmission Time


6.4.1.Standard Applicable

According to FCC 15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.4.2.Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.4.3.Test Setup

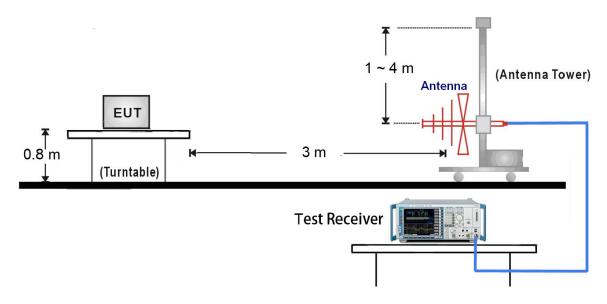
6.4.4.Test Result

Product	Wireless digital thermometer	Temperature	24°C
Test Engineer	Jone Zhang	Relative Humidity	45%
Test Site	AC2	Test Date	2017/12/25

Test Frequency (MHz)	Test Item	Measured Value	Limit	Result
	Transmission Time(T _{on})	992.5 ms	≤1s	Pass
433.92	Silent Time	49.98 s	≥ 10 s	Pass
	Silent Time/Transmission Time	50.36	≥ 30 times	Pass

	Releas	e Time			
Marker 14 Ogen Units SPRETV SPRETV	Narker Select Marker	IFGain:L	est 🛶 Trig: Free Run	АLIGH ЛИТО 12.34:26 ЛИГРО 01, 2018 Туре: Log-Pwr ноже раз а за ие риниман ФИНИМАН АМК/1 49.98 s	Marker Select Marker
Ref Office 239 db AMKET 922.5 1 dbiddy Ref 10.00 dBm 1.30 0 cc 1.30 1.32 - 0 cc		Ref Offset 29.98 dB		-3.16 dB	Norma
	Delta	-mn - 2			Delta
200 800 Center 433.920000 MHz Res BW 1.0 MHz ≇VBW 3.0 MHz Sweep 5.000 s (2001	Fixed⊳ DHz pts) Off	40 0 Kinds - Angled graphic dig control of adaption	ny nghao téngkangkang ang angkangkang ang ang ang ang ang ang ang ang ang	na (janu) kangkadan kangkadan (kangkada)	Fixed
Vet Vet V F <td>E ▲ Properties►</td> <td>-60 0 -70 0</td> <td></td> <td></td> <td>Properties</td>	E ▲ Properties►	-60 0 -70 0			Properties
	More 1 of 2	Center 433.920000 MHz Res BW 1.0 MHz #	≇VBW 3.0 MHz	Span 0 Hz Sweep 60.00 s (2001 pts)	Moi 1 of

6.5. Duty Cycle

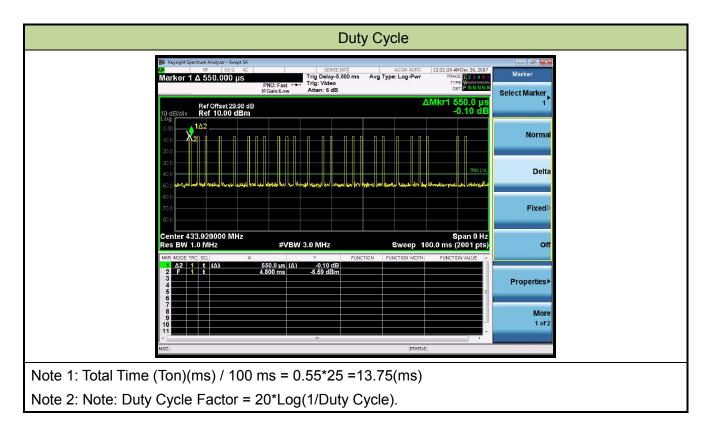

6.5.1.Standard Applicable

According to FCC Part 15.231(b) and 15.35(c), for pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

6.5.2.Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

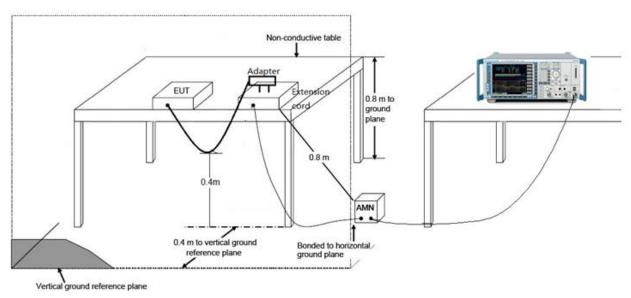
6.5.3.Test Setup



6.5.4.Test Result

Product	Wireless digital thermometer	Temperature	24°C
Test Engineer	Jone Zhang	Relative Humidity	45%
Test Site	AC2	Test Date	2017/12/25

Test Frequency	Total Time (Ton)	The duration of one	Duty Cycle	Duty Cycle Factor
(MHz)	(ms)	cycle (ms)	(%)	(dB)
433.92	13.75	100	13.75	17.23


6.6. AC Conducted Emissions Measurement

6.6.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits				
Frequency	QP	AV		
(MHz)	(dBuV)	(dBuV)		
0.15 - 0.50	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		
Note 1: The lower limit shall apply at the transition frequencies.				
Note 2: The limit decreases linearl	v with the logarithm of the freque	ency in the range 0.15MHz to		

0.5MHz.

6.6.2.Test Setup

6.6.3.Test Result

The device powered by dry cell, not applicable with this test item.

7. CONCLUSION

The data collected relate only the item(s) tested and show that the Wireless digital thermometer

FCC ID: 2AJ9O-FGT433A2 is in compliance with FCC Part 15.231 of the FCC Rules.