RF Exposure Compliance Requirement

1. Standard requirement

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.
(a) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|E\|^{2},\|H\|^{2} \text { or } S$ (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500	--	--	F/300	6
1500-100000	--	--	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S)(mW/cm ${ }^{2}$)	Averaging Times $\|E\|^{2},\|H\|^{2}$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	--	--	F/1500	30
1500-100000	--	--	1.0	30

Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density

2. MPE Calculation Method

$$
\begin{aligned}
& E(V / m)=\left(30^{*} P^{*} G\right)^{0.5} / d \quad \text { Power Density: } \mathrm{Pd}\left(\mathrm{~W} / \mathrm{m}^{2}\right)=\mathrm{E}^{2} / 377 \\
& E=\text { Electric Field }(\mathrm{V} / \mathrm{m}) \\
& \mathrm{P}=\mathrm{RF} \text { output Power }(\mathrm{W}) \\
& G=E U T \text { Antenna numeric gain (numeric) } \\
& d=\text { Separation distance between radiator and human body }(\mathrm{m}) \\
& \text { The formula can be changed to } \\
& P d=\left(30^{*} P^{*} G\right) /\left(377^{*} d^{2}\right)
\end{aligned}
$$

From the EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

3. Calculated Result and Limit

Frequency (MHz)	Antenna Gain (Numeric)	Average Output Power (dBm)	Average Output Power (mW)	Limit of Power Density $\left(\mathbf{S W W} \mathbf{m}^{2}\right)$	Power Density (S) $\left.(\mathbf{m W / c m})^{2}\right)$	Test Result
2405	1.995	21.54	142.561	0.05659	1	Complies
2445	1.995	21.51	141.579	0.05620	1	Complies
2480	1.995	21.58	143.880	0.05711	1	Complies

