

FCC / IC Test Report

FOR:

Pratt & Whitney Engine Services

Model Number:

FAST / FAST-A-010-3 RevF, FAST / FAST-A-010-4 RevF

Product Description:

Data Collection and Transmission Unit

FCC ID: 2AJ6A-FAST34F IC ID: 22451-FAST34F

Applied Rules and Standards:

47 CFR Part 15.247 (DTS) RSS-247 Issue 2 (DTS) & RSS-Gen Issue 5

REPORT #: EMC_ PRATT_005_19001_15.247_WLAN_Rev1

DATE: 2019-11-13

A2LA Accredited

IC recognized # 3462B-1

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

Test Report #: EMC_PRATT-005-19001_15.247_WLAN

Date of Report 2019-11-13

FCC ID: 2AJ6A-FAST34F IC ID: 22451-FAST34F

TABLE OF CONTENTS

1		ASSESSMENT	3
2		ADMINISTRATIVE DATA	4
	2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	4 4
3		EQUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5 3.6	EUT SAMPLE DETAILS	6 6 6
4		SUBJECT OF INVESTIGATION	7
5		MEASUREMENT RESULTS SUMMARY	7
6		MEASUREMENT UNCERTAINTY	
	6.1 6.2		
7		MEASUREMENT PROCEDURES	9
	7.1 7.2		
8		TEST RESULT DATA	12
	8.1	RADIATED TRANSMITTER SPURIOUS EMISSIONS AND RESTRICTED BANDS	12
9		TEST SETUP PHOTOS	26
10		TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	26
11		REVISION HISTORY	27

FCC ID: 2AJ6A-FAST34F

Test Report #: EMC_PRATT-005-19001_15.247_WLAN

Date of Report 2019-11-13 IC ID: 22451-FAST34F

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247 Issue 2.

No deviations were ascertained.

Description	Model #
Pata Collection and Transmission Unit	FAST / FAST-A-010-3_RevF, FAST / FAST-A-010-4 RevF
	Data Collection and Transmission Unit

Responsible for Testing Laboratory:

O: 1		1
Cindy	ı	
Oiliuy	ᆫ	

2019-11-13	Compliance	(EMC Lab Manager)	
Date	Section	Name	Signature

Responsible for the Report:

\/.	ا	
Υl	uchar	ı Lu

2019	-11-13	Compliance	(Test Engineer)	
D	ate	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

FCC ID: 2AJ6A-FAST34F

Test Report #: EMC_PRATT-005-19001_15.247_WLAN

Date of Report 2019-11-13 IC ID: 22451-FAST34F

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
EMC Lab Manager:	Cindy Li
Responsible Project Leader:	Cathy Palacios

2.2 Identification of the Client

Client's Name:	Pratt & Whitney Engine Services
Street Address:	249 Vanderbilt Avenue
City/Zip Code:	Norwood, MA 02062
Country:	USA

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as Client
City/Zip Code	Same as Olleni
Country	

Test Report #: EMC_PRATT-005-19001_15.247_WLAN

FCC ID: 2AJ6A-FAST34F Date of Report 2019-11-13 IC ID: 22451-FAST34F

3 **Equipment under Test (EUT)**

3.1 EUT Specifications

Model No:	FAST / FAST-A-010-3_RevF, FAST / FAST-A-010-4_RevF	
HW Version :	Rev F	
SW Version :	3.0.0	
FCC-ID:	2AJ6A-FAST34F	
IC-ID:	22451-FAST34F	
HVIN:	FAST / FAST-A-010-3_RevF, FAST / FAST-A-010-4_RevF	
PMN:	Flight-data Acquistion Storage & Transmisasion	
Product Description:	Data Collection and Transmission Unit	
Frequency Range / number of channels:	Module name: Ti-Wi BLE Module number: TFB-TIWI1-01 / 5969A-TIWI101 Nominal band: 2400 MHz – 2483.5 MHz; Center to center: 2412 MHz (ch 1) – 2462 MHz (ch 11), 11 channels	
Type(s) of Modulation:	BPSK, QPSK, 16-QAM, 64QAM	
Modes of Operation:	802.11b/g/n, 20MHz	
Antenna and Cable Information as declared:	Larsen, P/N:W5001 FSMAF, 1.5 dBi	
Max. Average Output Power:	Conducted Power 0.093 W	
Power Supply/ Rated Operating Voltage Range:	Battery / Vmin: 22 VDC/ Vnom: 28 VDC / Vmax: 32.2 VDC	
Operating Temperature Range:	-40 °C to +70 °C	
Other Radios included in the device:	 GSM, WCDMA, LTE Module name: Gemalto Model number: PLS62-W FCC/IC ID: QIPPLS62-W / 7830A-PLS62W 	
Sample Revision:	□Prototype Unit; □Production Unit; ■Pre-Production	

Test Report #: EMC_PRATT-005-19001_15.247_WLAN

FCC ID: 2AJ6A-FAST34F Date of Report 2019-11-13 IC ID: 22451-FAST34F

EUT Sample details 3.2

EUT#	IMEI Number	HW Version	SW Version	Notes/Comments
1	35824408050399001	Rev F	3.0.0	Radiated Emissions

Accessary Equipment 3.3

AE#	Comments		
1	Power Cable		
2	External Antenna: Larsen, P/N:W5001 FSMAF, 1.5 dBi Coaxial cable consisting of: Straight SMA Plug, Amphenol-RF P/N: 901-9511-1 Right Angle RP-SMA connector; Amphenol-RF P/N 132194RP Coaxial Cable, RG400; 10 Ft. A separate Cinch "plug to plug" adapter (142-0901-801) permits the RP-SMA antenna Plug to connect to the straight SMA plug of the cable assembly above.		

3.4 **Support Equipment**

SE#	Comments					
1	Communication USB Cable					
2	Communication Ethernet Cable					

3.5 **Test Sample Configuration**

EUT Set-up #	Combination of SE used for test set up	Comments
1	EUT#1 + AE#1 + AE#2 + SE#1 + SE#2	Special commands through command window used to configure the WLAN radio to 802.11b low, mid and high channels at maximum output power provided by the client that will not be available to the end user. For radiated measurements, the external antenna was connected.

3.6 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on 802.11b low, mid and high channels with the maximum output power and the customer declared highest possible duty cycle. For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 of ISED Canada.

Testing procedures are based on 558074 D01 DTS Meas Guidance v04 – "GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER SECTION 15.247" - April 5, 2017, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

5 Measurement Results Summary

Test Specification	Test Case Temperature and Voltage Conditions		Mode	Pass	NA	NP	Result
§15.247(a)(1) RSS-247 5.2(1)	Emission Bandwidth	Nominal	-			•	Note1 Note2
§15.247(e) RSS-247 5.2(2)	Power Spectral Density	Nominal	-			•	Note1 Note2
§15.247(b)(1) RSS-247 5.4(4)	Maximum Conducted Output Power and EIRP	Nominal	-			•	Note1 Note2
§15.247(d) RSS-247 5.5	Band edge compliance Unrestricted Band Edges	Nominal	-			•	Note1 Note2
§15.247; 15.209; 15.205 RSS-Gen 8.9; 8.10	Band edge compliance Restricted Band Edges	Nominal	-			•	Note1 Note2
§15.247(d); §15.209 RSS-Gen 6.13	TX Spurious emissions- Radiated	Nominal	802.11b				Complies
§15.207(a) RSS Gen 8.8	AC Conducted Emissions	Nominal	-				Note1 Note3

Note1: NA= Not Applicable; NP= Not Performed.

Note2: Leveraged from module certification FCC ID: TFB-TIWI1-01

Note3: EUT is powered by 28VDC battery

Test Report #: EMC_PRATT-005-19001_15.247_WLAN FCC ID: 2AJ6A-FAST34F

Date of Report 2019-11-13 IC ID: 22451-FAST34F

6 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30 MHz ±2.5 dB (Magnetic Loop Antenna) 30 MHz to 1000 MHz ±2.0 dB (Biconilog Antenna) 1 GHz to 40 GHz ±2.3 dB (Horn Antenna)

Conducted measurement

150 kHz to 30 MHz ± 0.7 dB (LISN)

RF conducted measurement ±0.5 dB

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3 dB to the limit.

6.1 Environmental Conditions during Testing:

The following environmental conditions were maintained during the course of testing:

• Ambient Temperature: 20-25° C

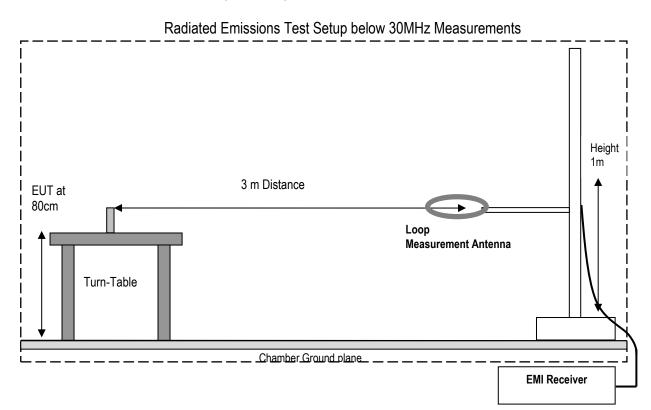
• Relative humidity: 40-60%

6.2 Dates of Testing:

09/16/2019 - 09/25/2019

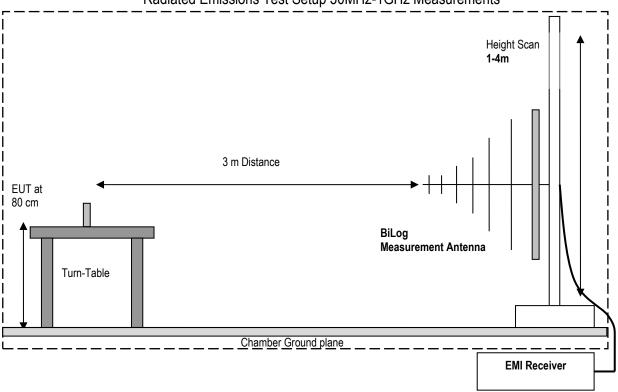
FCC ID: 2AJ6A-FAST34F

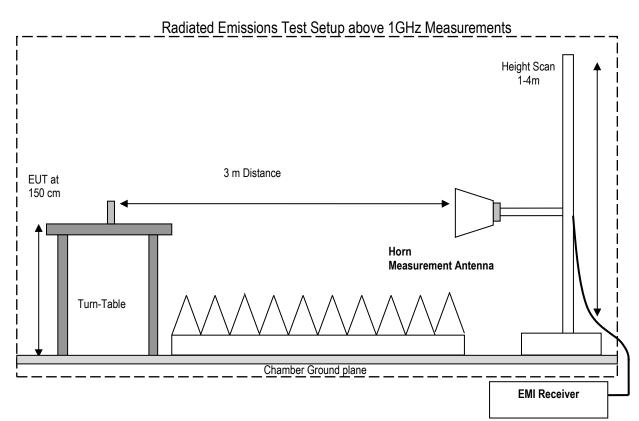
Test Report #: EMC_PRATT-005-19001_15.247_WLAN


Date of Report 2019-11-13 IC ID: 22451-FAST34F

7 <u>Measurement Procedures</u>

7.1 Radiated Measurement


The radiated measurement is performed according to ANSI C63.10 (2013)


- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop
 is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn
 antennas are used to cover frequencies up to 40 GHz.

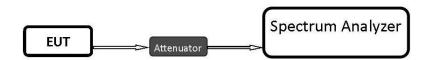
Radiated Emissions Test Setup 30MHz-1GHz Measurements

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:


FS $(dB\mu V/m)$ = Measured Value on SA $(dB\mu V)$ - Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency (MHz)	Measured SA (dBµV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)	
1000	80.5	3.5	14	98.0	

7.2 RF Conducted Measurement Procedure

Testing procedures are based on 558074 D01 DTS Meas Guidance v04 – "GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER SECTION 15.247" - April 5, 2017, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

- Connect the equipment as shown in the above diagram.
- Adjust the settings of the SA (Rohde-Schwarz Spectrum Analyzer) to connect the EUT at the required mode
 of test.
- Measurements are to be performed with the EUT set to the low, middle and high channels and for worst case modulation schemes.
- Calculate the conducted power by taking into account attenuation of the cable and the attenuator

Test Report #: EMC_PRATT-005-19001_15.247_WLAN FCC ID: 2AJ6A-FAST34F

Date of Report 2019-11-13 IC ID: 22451-FAST34F

8 Test Result Data

8.1 Radiated Transmitter Spurious Emissions and Restricted Bands

8.1.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector: Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW= 120 KHz (<1GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1 MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate
 for the lowest, middle and highest channel in each frequency band of operation and for the highest gain
 antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation factor as follow: Conversion factor (CF) = 40 log (D/d) = 40 log (300m / 3m) = 80dB

8.1.2 Limits:

FCC §15.247

• In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

• Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency of emission (MHz)	Field strength (μV/m)	Measurement Distance (m)	Field strength @ 3m (dBµV/m)
0.009-0.490	2400/F(kHz) /	300	-
0.490–1.705	24000/F(kHz) /	30	-
1.705–30.0	30 / (29.5)	30	-
30–88	100	3	40 dBμV/m
88–216	150	3	43.5 dBµV/m
216–960	200	3	46 dBμV/m
Above 960	500	3	54 dBμV/m

FCC §15.205 & RSS-Gen 8.10

• Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

*PEAK LIMIT= 74 dBµV/m

*AVG. LIMIT= 54 dBµV/m

Test Report #: EMC_PRATT-005-19001_15.247_WLAN FCC ID: 2AJ6A-FAST34F

Date of Report 2019-11-13 IC ID: 22451-FAST34F

8.1.3 Test conditions and setup:

Ambient Temperature	Ambient Temperature EUT Set-Up #		Power Input
23° C	1	802.11b	28 VDC

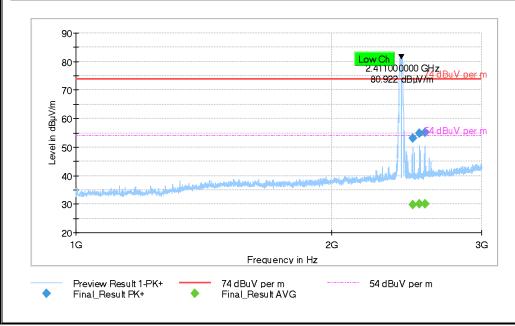
8.1.4 Measurement result:

Plot #	Channel #	Scan Frequency	Limit	Result
1-3	Low	30 MHz – 18 GHz	See section 8.1.2	Pass
4-8	Mid	9 kHz – 26 GHz	See section 8.1.2	Pass
9-11	High	30 MHz – 18 GHz	See section 8.1.2	Pass

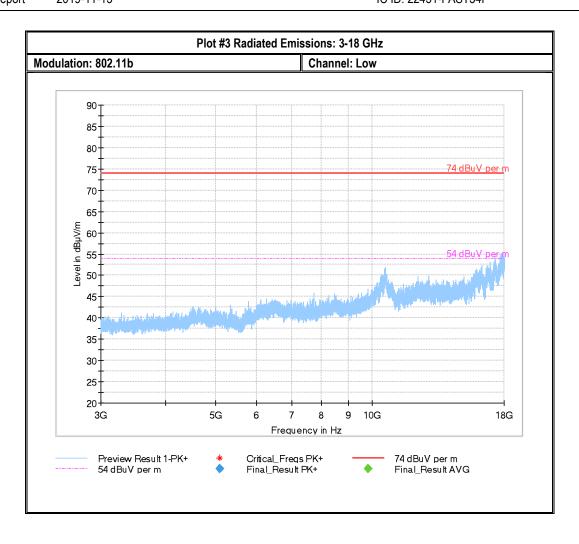
8.1.5 Measurement Plots:

Plot #1 Radiated Emissions: 30 MHz – 1GHz Odulation: 802.11b Channel: Low									
JI.									
nal_Res									
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Cor (dB/
59.988362	36.15	40.00	3.85	200.0	100.000	325.0	Н	198.0	1
179.988075	39.38	43.52	4.14	200.0	100.000	167.0	Н	93.0	2
203.996295	40.69	43.52	2.83	200.0	100.000	140.0	Н	253.0	2
206.817144	40.28	43.52	3.25	200.0	100.000	152.0	Н	249.0	2
209.994716	40.96	43.52	2.57	200.0	100.000	152.0	Н	256.0	2
359.994406	41.22	46.02	4.80	200.0	100.000	140.0	Н	211.0	2
ntinuation of th	_		om column	16)					
Frequency (MHz)	Com	nment							
59.988362	5:24:55 PM	- 9/24/2019	7						
179.988075	5:23:01 PM		7						
203.996295	5:40:01 PM	- 9/24/2019							
206.817144	5:30:53 PM								
209.994716	5:32:50 PM								
359.994406	5:26:57 PM	- 9/24/2019							
70									
60								FOC.1	
60						•			5
60 50						1		FCC 1	
60									and an advantage of the continued of the
60 50 50 40 40 30 30 30 30 30 30 30 30 30 30 30 30 30									
60 50 40 30 30 20	50	Lucia Luci	- L ₁ - dl ^{dl}	20 Frequency i		400 5			G T

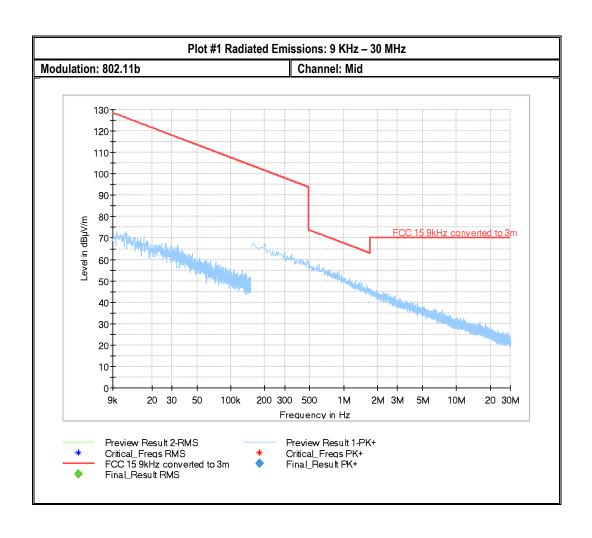
Plot #2	Radiated	Emissions:	1-3 GHz
---------	----------	-------------------	---------


Modulation: 802.11b Channel: Low

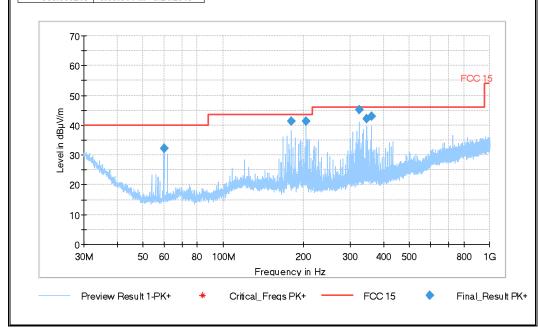
Final Result


Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
2491.301500		29.73	54.00	24.27	200.0	1000.000	229.0	Н
2491.301500	53.09		74.00	20.91	200.0	1000.000	229.0	Н
2533.564000		29.96	54.00	24.04	200.0	1000.000	177.0	Н
2533.564000	54.78		74.00	19.22	200.0	1000.000	177.0	Н
2574.464250		30.12	54.00	23.88	200.0	1000.000	151.0	Н
2574.464250	55.04		74.00	18.96	200.0	1000.000	151.0	Н

(continuation of the "Final_Result" table from column 14 ...)


Frequency	Azimuth	Corr.	Sig Path	Preamp	Trd Corr.	Raw Rec	Comment
(MHz)	(deg)	(dB/m)	(dB)	(dB)	(dB/m)	(dBµV)	
2491.301500	173.0	1.6	-28.7	0.0	30.3	28.1	3:11:03 PM - 9/20/2019
2491.301500	173.0	1.6	-28.7	0.0	30.3	51.5	3:11:03 PM - 9/20/2019
2533.564000	21.0	1.8	-28.6	0.0	30.4	28.2	3:13:21 PM - 9/20/2019
2533.564000	21.0	1.8	-28.6	0.0	30.4	53.0	3:13:20 PM - 9/20/2019
2574.464250	3.0	1.9	-28.6	0.0	30.5	28.2	3:15:27 PM - 9/20/2019
2574.464250	3.0	1.9	-28.6	0.0	30.5	53.2	3:15:26 PM - 9/20/2019

Plot #5 Radiated E	Emissions: 30	MHz - 1GHz
--------------------	---------------	------------


Modulation: 802.11b Channel: Mid

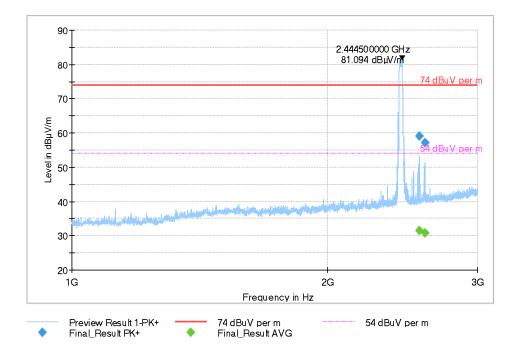
Final_Result

Frequency	MaxPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
59.870267	32.11	40.00	7.89	200.0	100.000	275.0	Н	126.0	16.3
179.994531	41.36	43.52	2.16	200.0	100.000	185.0	Н	83.0	21.1
203.998885	41.27	43.52	2.25	200.0	100.000	152.0	Н	257.0	21.4
323.988449	45.16	46.02	0.86	200.0	100.000	183.0	Н	200.0	23.4
344.823459	42.21	46.02	3.81	200.0	100.000	151.0	Н	206.0	23.5
360.000213	43.10	46.02	2.92	200.0	100.000	157.0	Н	197.0	23.8

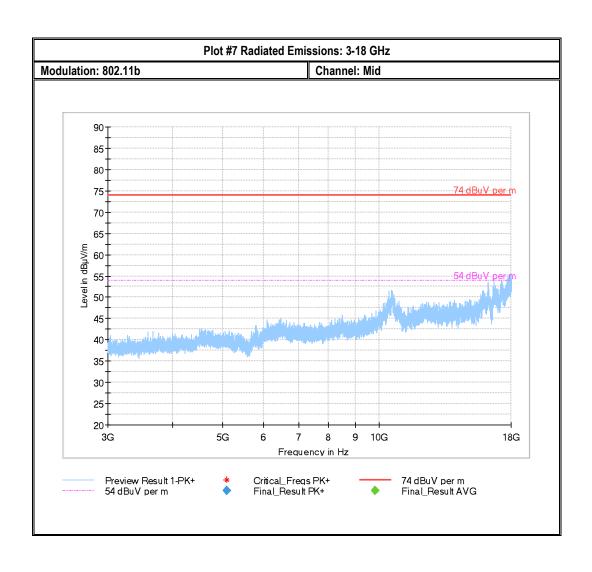
(continuation of the "Final_Result" table from column 16 ...)

Frequency (MHz)	Comment
59.870267	4:52:55 PM - 9/24/2019
179.994531	4:54:58 PM - 9/24/2019
203.998885	5:02:52 PM - 9/24/2019
323.988449	4:58:56 PM - 9/24/2019
344.823459	4:57:03 PM - 9/24/2019
360.000213	5:00:51 PM - 9/24/2019

Plot #6 Radiated Emissions: 1-3 GHz


Modulation: 802.11b Channel: Mid

Final_Result

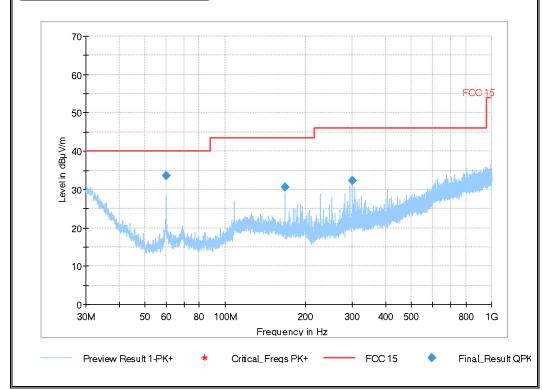

	Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
	2561.284500		31.56	54.00	22.44	200.0	1000.000	258.0	Н
Γ	2561.284500	59.08		74.00	14.92	200.0	1000.000	258.0	Н
Γ	2602.482750		30.70	54.00	23.30	200.0	1000.000	231.0	Н
ſ	2602.482750	57.26		74.00	16.74	200.0	1000.000	231.0	Н

(continuation of the "Final_Result" table from column 14 ...)

Frequency (MHz)	Azimuth (deg)	Corr. (dB/m)	Sig Path (dB)	Preamp (dB)	Trd Corr. (dB/m)	Raw Rec (dBµV)	Comment
2561.284500	-28.0	1.8	-28.6	0.0	30.5	29.7	2:27:48 PM - 9/20/2019
2561.284500	-28.0	1.8	-28.6	0.0	30.5	57.3	2:27:48 PM - 9/20/2019
2602.482750	11.0	2.5	-28.1	0.0	30.6	28.2	2:30:48 PM - 9/20/2019
2602.482750	11.0	2.5	-28.1	0.0	30.6	54.8	2:30:48 PM - 9/20/2019

Plot #8 Radiated Emissions: 18-26 GHz Modulation: 802.11b Channel: Mid 90 T 85-80-75-70-65-Level in dBµV/m 60-55-50 40 35-30 25-20+ 19 21 22 24 25 18 20 23 26 Frequency in GHz Critical_Freqs PK+ 54 dBuV per m converted to 1m Final_Result AVG Preview Result 1-PK+ 74 dBuV per m converted to 1m Final_Result PK+

DI-140 D-11-1-1	Francisco de la compania	OO BALL	4011
Plot #9 Radiated	Emissions:	30 WHZ :	– 1GHZ

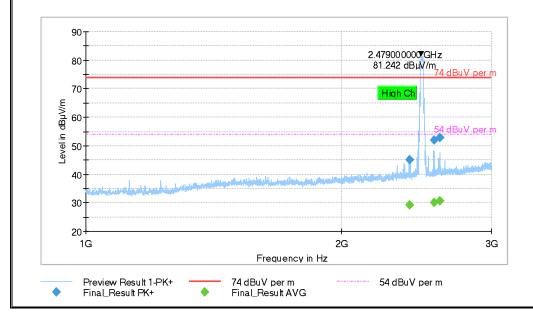

Modulation: 802.11b Channel: High

Final_Result

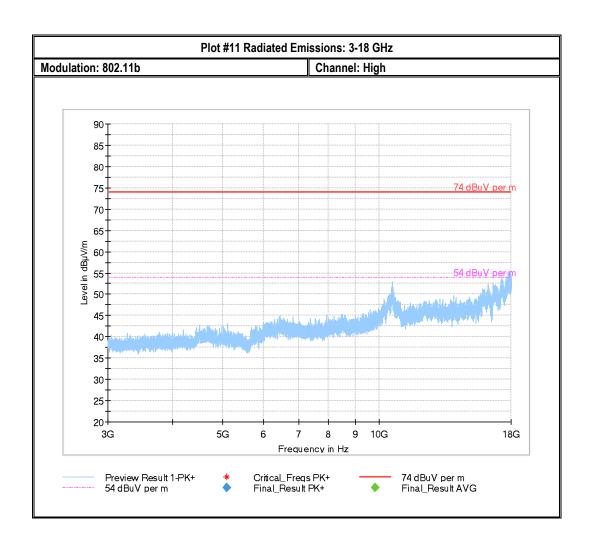
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
60.005235	33.56	40.00	6.44	200.0	100.000	325.0	Н	162.0	16.3
167.995929	30.55	43.52	12.97	200.0	100.000	221.0	Н	293.0	21.4
300.013030	32.32	46.02	13.70	200.0	100.000	154.0	Н	163.0	23.4

(continuation of the "Final_Result" table from column 16 ...)

Frequency (MHz)	Comment
60.005235	12:08:19 PM - 9/25/2019
167.995929	12:10:29 PM - 9/25/2019
300.013030	12:12:36 PM - 9/25/2019


Modulation: 802.11b Channel: High

Final_Result


Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
2403.155000		29.23	54.00	24.77	200.0	1000.000	155.0	Н
2403.155000	45.04		74.00	28.96	200.0	1000.000	155.0	Н
2567.386750		30.13	54.00	23.87	200.0	1000.000	175.0	Н
2567.386750	51.83		74.00	22.17	200.0	1000.000	175.0	Н
2609.124250		30.54	54.00	23.46	200.0	1000.000	175.0	Н
2609.124250	52.76		74.00	21.24	200.0	1000.000	175.0	Н

(continuation of the "Final_Result" table from column 14 ...)

Frequency	Azimuth	Corr.	Sig Path	Preamp	Trd Corr.	Raw Rec	Comment
(MHz)	(deg)	(dB/m)	(dB)	(dB)	(dB/m)	(dBµV)	
2403.155000	144.0	1.2	-28.8	0.0	30.0	28.0	3:30:43 PM - 9/20/2019
2403.155000	144.0	1.2	-28.8	0.0	30.0	43.9	3:30:42 PM - 9/20/2019
2567.386750	15.0	1.8	-28.6	0.0	30.5	28.3	3:33:00 PM - 9/20/2019
2567.386750	15.0	1.8	-28.6	0.0	30.5	50.0	3:33:00 PM - 9/20/2019
2609.124250	10.0	2.5	-28.0	0.0	30.6	28.0	3:35:05 PM - 9/20/2019
2609.124250	10.0	2.5	-28.0	0.0	30.6	50.2	3:35:04 PM - 9/20/2019

Test Report #: EMC_PRATT-005-19001_15.247_WLAN FCC ID: 2AJ6A-FAST34F

Date of Report 2019-11-13 IC ID: 22451-FAST34F

9 Test setup photos

Setup photos are included in supporting file name: "EMC_PRATT_005_19001_ISED_Setup_Photos.pdf"

10 Test Equipment and Ancillaries Used For Testing

Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
PASSIVE LOOP ANTENNA	ETS.LINDGREN	6507	00161344	3 YEARS	10/26/2017
BILOG ANTENNA	ETS.LINDGREN	3149	00063983	3 YEARS	07/07/2017
HORN ANTENNA	ETS.LINDGREN	3115	00035111	3 YEARS	04/17/2019
HORN ANTENNA	ETS.LINDGREN	3117	00215984	3 YEARS	01/26/2018
HORN ANTENNA	ETS.LINDGREN	3116	00070497	3 YEARS	10/31/2017
SIGNAL ANALYZER	R&S	FSU26	200065	3 YEARS	07/16/2019
SIGNAL ANALAYZER	R&S	FSV 40	101022	3 YEARS	07/15/2019
TEST RECEIVER	R&S	ESU.EMI	100256	3 YEARS	07/16/2019
COMPACT DIGITAL BAROMETER	CONTROL COMPANY	35519-055	91119547	3 YEARS	06/20/2017
DIGITAL THRMOMETER	CONTROL COMPANY	36934-164	181230565	2 YEARS	01/10/2019

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

Test Report #: EMC_PRATT-005-19001_15.247_WLAN FCC ID: 2AJ6A-FAST34F

Date of Report 2019-11-13 IC ID: 22451-FAST34F

11 Revision History

Date	Report Name	Changes to report	Report prepared by
2019-11-07	EMC_PRATT_005_19001_15.247_WLAN	Initial version	Yuchan Lu
2019-11-13	EMC_PRATT_005_19001_15.247_WLAN_Rev1	RSS 247 Issue 2 updated	Yuchan Lu