

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC175149 Page: 1 of 33

FCC Radio Test Report FCC ID: 2AJ5B-BT93

Original Grant

Report No. TB-FCC175149

Applicant SAGE HUMAN ELECTRONICS INTERNATIONAL CO.,LTD.

Equipment Under Test (EUT)

EUT Name Bluetooth FM Transmitter for Car

BT93 Model No.

Serial Model No.

Brand Name : BT93

Sample ID TBBJ-20200804-09-1#& TBBJ-20200804-09-2#

Receipt Date : 2020-08-24

: 2020-08-25 to 2020-09-05 **Test Date**

Issue Date : 2020-09-05

: FCC Part 15, Subpart C 15.239 **Standards**

: ANSI C63.10:2013 **Test Method**

Conclusions PASS

> In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should

TB-RF-074-1.0

Tel: +86 75526509301

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC175149

Page: 2 of 33

ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	11EN15	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	10
5.	CONDUCTED EMISSION TEST	11
	5.1 Test Standard and Limit	11
	5.2 Test Setup	11
	5.3 Test Procedure	12
	5.4 Deviation From Test Standard	12
	5.5 Test Data	12
6.	RADIATED EMISSION TEST	13
	6.1 Test Standard and Limit	13
	6.2 Test Setup	14
	6.3 Test Procedure	15
	6.4 EUT Operating Condition	15
	6.5 Deviation From Test Standard	15
	6.6 Test Data	15
7.	FUNDAMENTAL AND BAND EDGE TEST	16
	7.1 Test Standard and Limit	16
	7.2 Test Setup	16
		TB-RF-074-1. 0

Report No.: TB-FCC175149 Page: 3 of 33

	7.3 Test Procedure	17
	7.4 EUT Operating Condition	17
	7.5 Deviation From Test Standard	17
	7.6 Test Data	17
8.	BANDWIDTH	18
	8.1 Test Standard and Limit	18
	8.2 Test Setup	18
	8.3 Test Procedure	18
	8.4 EUT Operating Condition	
	8.5 Deviation From Test Standard	18
	8.6 Test Data	18
9.	ANTENNA REQUIREMENT	
	9.1 Standard Requirement	19
	9.2 Antenna Connected Construction	19
АТТ	FACHMENT A RADIATED EMISSION TEST DATA	20
АТТ	ACHMENT BFUNDAMENTAL AND BAND EDGE TEST DATA	26
	FACHMENT C BANDWIDTH DATA	

Report No.: TB-FCC175149 Page: 4 of 33

Revision History

Report No.	Version	Description	Issued Date
TB-FCC175149	Rev.01	Initial issue of report	2020-09-05
200	1000		W 377
3 100			
TORY	11 6 10 10 10 10 10 10 10 10 10 10 10 10 10	TOPE TOPE	TOBI
	(103)		
MOR	0		NOR
ORI	THE STATE OF THE S	3 6000	WIND WA
THE PROPERTY OF		MODE.	
mile!	W. W.		TO THE
	329		
	Jan Billian		4000

Page: 5 of 33

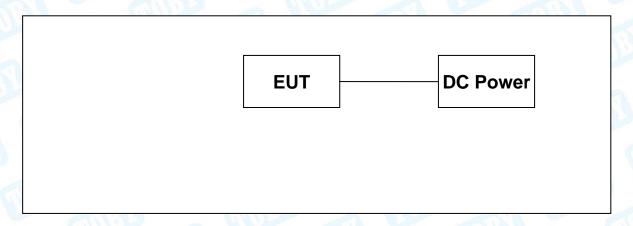
1. General Information about EUT

1.1 Client Information

Applicant	:	SAGE HUMAN ELECTRONICS INTERNATIONAL CO.,LTD.
Address		4F.,A Building,Rongli Industrial Park,No.2 Guiyuan Rd.Guihua Community,Guanlan Town,Longhua New Dist. Shenzhen, China
Manufacturer	i	SAGE HUMAN ELECTRONICS INTERNATIONAL CO.,LTD.
Address		4F.,A Building,Rongli Industrial Park,No.2 Guiyuan Rd.Guihua Community,Guanlan Town,Longhua New Dist. Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Bluetooth FM Transmitter for Car		
Models No.	:	BT93		
Model Difference		N/A	4000	
Product Description	•	Operation Frequency:	FM: 88.1-107.9 MHz	
		Antenna Gain:	Internal Antenna(1.5 dBi)	
Description		Modulation Type:	FM	
Power Rating		Input: DC 12-24V Output: QC30:DC 5V 3A, 9V2A USB:5V 1A	, 12V1.5A	
Software Version	3	CGBT1756_shijie(BT93)_[FM88.1-107.9]_SDK120-02B_CE_TEST_v 5		
Hardware Version		BT93_2819P-V1.0		
Connecting I/O Port(S)	:	Please refer to the User	s Manual	


Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 33

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	Pretest Mode
Pretest Mode	Description
Mode 1	Continuously transmitting (88.1MHz/98.1MHz/107.9MHz)
	Conducted Emission
Test Mode	Description
Mode 1	Continuously transmitting (88.1MHz)
	Radiated Emission
Test Mode	Description
Mode 1	Continuously transmitting (88.1MHz/98.1MHz/107.9MHz)
Sent I I have	ain provided by the applicant, the verified for the RF ded by TOBY test lab.

Page: 7 of 33

Note:

(1) During the testing procedure, the continuously transmitting mode was programmed by the customer.

(2) The EUT is considered a portable unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

1	Product SW/HW Version :	N/A
2	Radio SW/HW Version:	N/A
3	Test SW Version:	N/A
4	RF Power Setting in Test SW:	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 33

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 9 of 33

2. Test Summary

FCC Part 15 Subpart (15.239)				
Standard Section	Test Item	Test Sample(s)	Judgment	Remark
15.203	Antenna Requirement	TBBJ-20200804-09-2#	PASS	Albert
15.207	Conducted Emission	TBBJ-20200804-09-1#	PASS	
15.239 &15.209	Radiation Emission	TBBJ-20200804-09-1# TBBJ-20200804-09-2#	PASS	
15.239	Occupied Bandwidth	TBBJ-20200804-09-2#	PASS	2 12

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC175149 Page: 10 of 33

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission 1	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Mar.01, 2020	Feb. 28, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
W. Comment	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021
DE Davis Os	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021

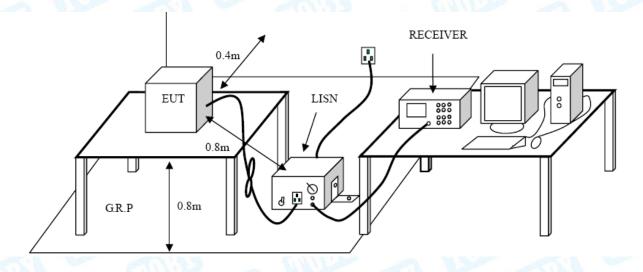
Page: 11 of 33

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Francisco	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 12 of 33

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 Test Data

Not Applicable

Page: 13 of 33

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 & 15.239

6.1.2 Test Limit

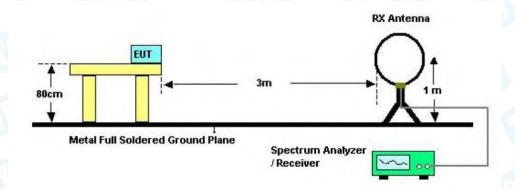
According to FCC 15.209 requirement:

In addition to the provisions of Section 15.209, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

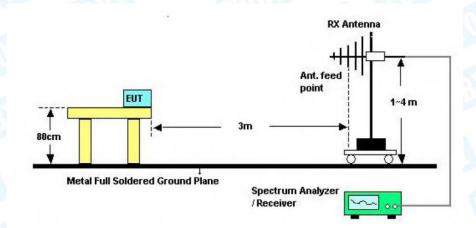
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

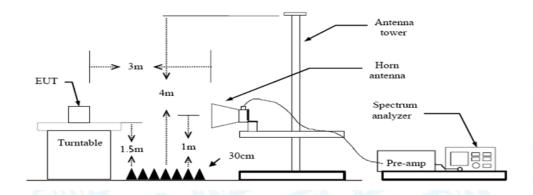
Frequency	Distance Meters(at 3m)		
(MHz)	Peak	Average	
Above 1000	74	54	


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 14 of 33


6.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Page: 15 of 33

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Deviation From Test Standard

No deviation

6.6 Test Data

Please refer to the Attachment A.

Page: 16 of 33

7. Fundamental and Band Edge Test

7.1 Test Standard and Limit

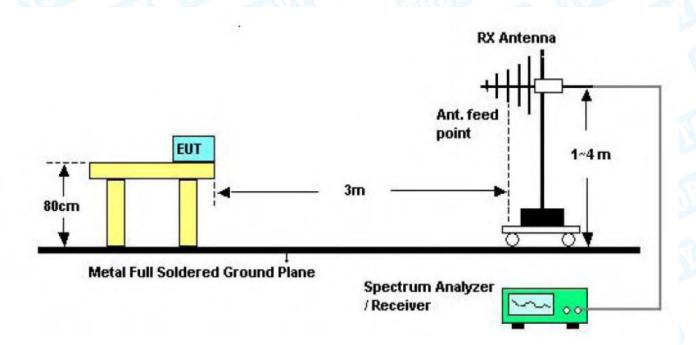
7.1.1 Test Standard

FCC Part 15.209 & 15.239

7.1.2 Test Limit

According to FCC 15.239(a)(b) and 15.209 requirement:

The field strength of emissions from the intentional radiators operated under these frequency bands shall not exceed the following:


Fundamental Frequency (MHz)	Field Strength of Fundamental (dBuV/m)			
99 to 109	Peak	Average		
88 to 108	67.96	47.96		

According to FCC 15.239(c) and 15.209 requirements:

Field strength of outside of the frequency bands limit show in below table.

Outside Frequency Band Edge	Distance Meters(at 3m)
Below 88 MHz	40.0 (QP)
Above 108 MHz	43.5 (QP)

7.2 Test Setup

Page: 17 of 33

7.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.5 Deviation From Test Standard

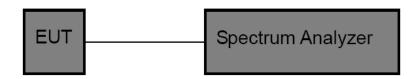
No deviation

7.6 Test Data

Please refer to the Attachment B.

Page: 18 of 33

8. Bandwidth


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.239

8.1.2 Test Limit

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.

8.2 Test Setup

8.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=3 kHz, VBW= 10 kHz, Span= 300 kHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

8.4 EUT Operating Condition

The Equipment Under Test was Programmed to be in continuously transmitting mode.

8.5 Deviation From Test Standard

No deviation

8.6 Test Data

Please refer to the Attachment C.

Page: 19 of 33

9. Antenna Requirement

9.1 Standard Requirement

9.1.1 Standard FCC Part 15.203

9.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2 Antenna Connected Construction

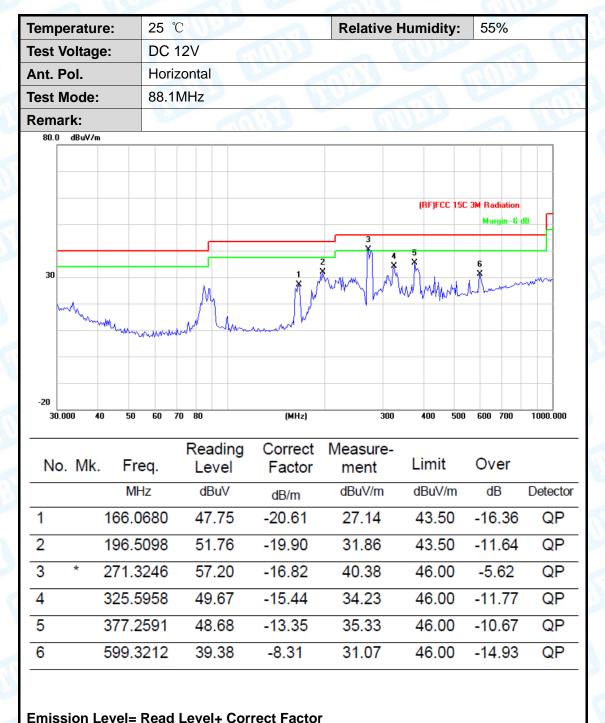
The gains of the antenna used for transmitting is 1.5 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is a Internal Antenna. It complies with the standard requirement.

Antenna Type	9
▼ Permanent attached anten	na
□ Unique connector antenna	
□ Professional installatio	n antenna

Page: 20 of 33

Attachment A-- Radiated Emission Test Data


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

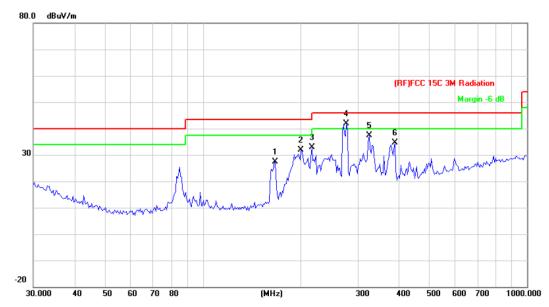
Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Page: 21 of 33

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 12V		
Ant. Pol.	Vertical		
Test Mode:	88.1MHz		
Remark:		mili	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	84.7019	52.75	-22.18	30.57	40.00	-9.43	QP
2		166.0680	53.40	-20.61	32.79	43.50	-10.71	QP
3		199.2855	51.59	-19.94	31.65	43.50	-11.85	QP
4		277.0935	47.39	-16.72	30.67	46.00	-15.33	QP
5		387.9920	47.51	-12.86	34.65	46.00	-11.35	QP
6		422.0577	46.70	-12.13	34.57	46.00	-11.43	QP

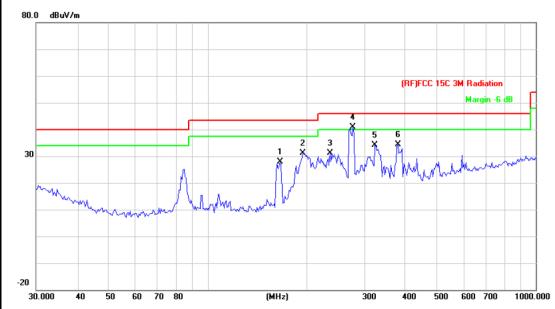
Page: 22 of 33

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 12V		100
Ant. Pol.	Horizontal		
Test Mode:	98.1MHz	Millian	3 100
Remark:		שווה	

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		167.2368	48.04	-20.56	27.48	43.50	-16.02	QP
2		200.6881	51.68	-19.91	31.77	43.50	-11.73	QP
3		216.7828	51.89	-19.04	32.85	46.00	-13.15	QP
4	*	277.0935	58.50	-16.72	41.78	46.00	-4.22	QP
5		325.5958	52.80	-15.44	37.36	46.00	-8.64	QP
6		390.7226	47.30	-12.72	34.58	46.00	-11.42	QP

Report No.: TB-FCC175149 Page: 23 of 33

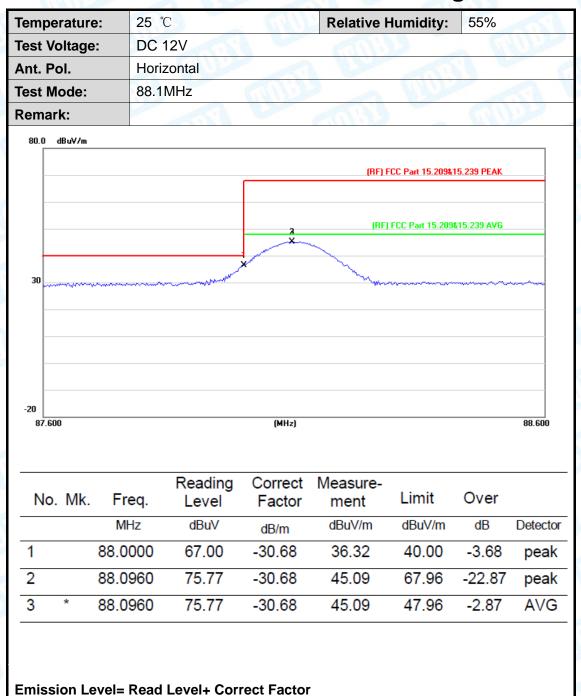
empe	rature:	25 ℃		III		Relative Humidity:				55%	55%	
est Vo	oltage:	DC 1	2V			33		6			3	
nt. Po	ol.	Vertic	cal		I Alle						A	1:17
Test M	ode:	98.11	ЛHz	113		CHI	النا		4	A		A Company
Remar	k:		62					THE STATE OF THE S	10			-
80.0	dBuV/m								_			
								(RF)FC	C 15C	3M Rad	iation jin -6 c	
			2		3 X 4	5		6 X				
30 1 X			M		, j	MMLA M	h	MAN	du.	مسلما		man
\wedge	my .		\mathcal{N}		- W	1 124	N W	v ''	y	May 4		
	My My Many	Married Married	/	M	many W							
-20												
30.000	0 40 50	60 70	80		(MHz)		300	400	500	600	700	1000.00
			Rea	dina	Correct	Measur						
No.	Mk. F	req.	Lev		Factor	ment		Limit	t	Ove	er	
	N									-ID	1	Detect
		ИHz	dBı	υV	dB/m	dBuV/n	n	dBuV	/m	dB	,	
1			dB:		dB/m -14.08							
	31.	5095	41.	03	-14.08	26.95	5	40.0	00	-13.	.05	QP
2	31.9 84.7	5095 7019	41. 52.	03 70	-14.08 -22.18	26.95 30.52)	40.0	00	-13. -9.4	.05 48	QP QP
2	31.5 84.7 * 166.	5095 7019 0680	41. 52. 55.	03 70 27	-14.08 -22.18 -20.61	26.95 30.52 34.66	3	40.0	00	-13. -9.4	.05 48 84	QP QP QP
2	31.5 84.7 * 166.	5095 7019	41. 52.	03 70 27	-14.08 -22.18	26.95 30.52	3	40.0	00	-13. -9.	.05 48 84	QP QP
2	31.5 84.7 * 166.	5095 7019 0680	41. 52. 55.	03 70 27 01	-14.08 -22.18 -20.61	26.95 30.52 34.66	; ? ;	40.0	00	-13. -9.4	.05 48 84 .32	QP QP QP


Report No.: TB-FCC175149 Page: 24 of 33

Temperature:	25 ℃		113	Relative H	lumidity:	55%	The state of
Test Voltage:	DC 12	2V		No.		1350	
Ant. Pol.	Horizo	ontal	A MARIA		1 63		4:17
Test Mode:	107.9	ИНz	2	alm		J W	
Remark:		1			MILL		
80.0 dBuV/m							
30	Manual	Aura	1 2	3 5 1	(RF)FCC 15C	C 3M Radiation Margin -6	dB
-20							
30.000 40	50 60 70	80	(MHz)	300	400 500	600 700	1000.00
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
No. Mk.					Limit dBuV/m	Over	Detecto
	Freq.	Level	Factor	ment			Detect
1 166	Freq. MHz	Level dBuV	Factor dB/m	ment dBuV/m	dBuV/m	dB	
1 166 2 195	Freq. MHz 3.0680	dBuV 48.52	dB/m -20.61	ment dBuV/m 27.91	dBuV/m 43.50	dB -15.59	QP
1 166 2 195 3 235	Freq. MHz 6.0680 5.1365	dBuV 48.52 51.01	Factor dB/m -20.61 -19.87	ment dBuV/m 27.91 31.14	dBuV/m 43.50 43.50	dB -15.59 -12.36	QP QP
1 166 2 195 3 235 4 * 277	Freq. MHz 5.0680 5.1365 5.8164	dBuV 48.52 51.01 49.09	Factor dB/m -20.61 -19.87 -18.00	ment dBuV/m 27.91 31.14 31.09	dBuV/m 43.50 43.50 46.00	dB -15.59 -12.36 -14.91	QP QP QP

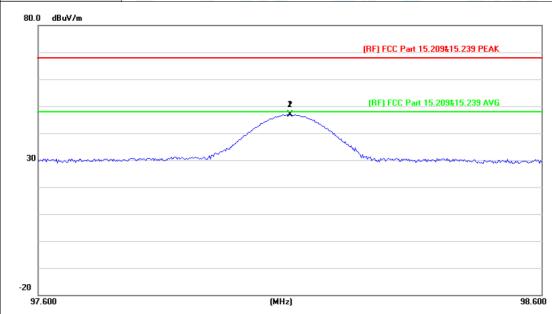
Page: 25 of 33

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 12V		
Ant. Pol.	Vertical		
Test Mode:	107.9MHz	Millian	J W
Remark:		MILL	



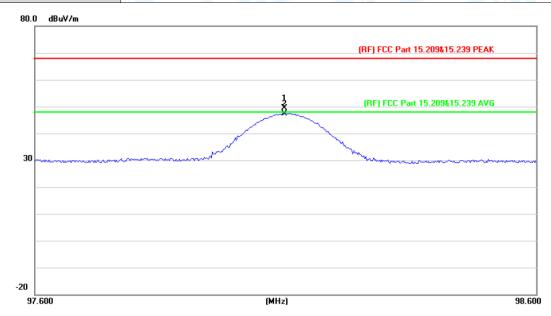
No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		166.0680	48.52	-20.61	27.91	43.50	-15.59	QP
2		195.1365	51.01	-19.87	31.14	43.50	-12.36	QP
3		235.8164	49.09	-18.00	31.09	46.00	-14.91	QP
4	*	277.0935	57.59	-16.72	40.87	46.00	-5.13	QP
5		323.3204	49.69	-15.53	34.16	46.00	-11.84	QP
6		379.9141	47.51	-13.23	34.28	46.00	-11.72	QP

Attachment B--Fundamental and Band Edge Test Data


Page: 27 of 33

Page: 28 of 33

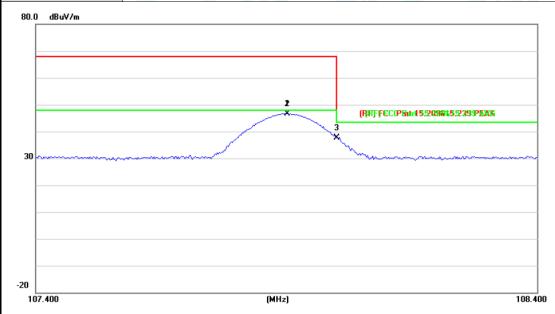
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 12V	The state of the	
Ant. Pol.	Horizontal	WURP -	AHU:
Test Mode:	98.1MHz		
Remark:	AN COUNTY		



N	lo. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		98.1000	77.50	-30.56	46.94	67.96	-21.02	peak
2	*	98.1000	77.49	-30.56	46.93	47.96	-1.03	AVG

Page: 29 of 33

Te	emperature:	25 ℃	Relative Humidity:	55%
Te	est Voltage:	DC 12V		
Aı	nt. Pol.	Vertical		OHO:
Te	est Mode:	98.1MHz		3
R	emark:	Mary College		



N	lo. N	Лk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			98.0979	80.01	-30.56	49.45	67.96	-18.51	peak
2	*		98.0979	78.01	-30.56	47.45	47.96	-0.51	AVG

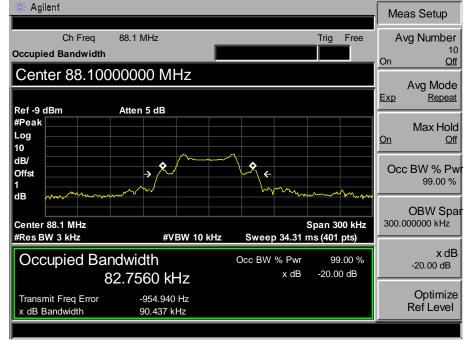
Page: 30 of 33

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		107.9020	77.20	-30.51	46.69	67.96	-21.27	peak
2	*	107.9020	77.20	-30.51	46.69	47.96	-1.27	AVG
3		108.0000	68.15	-30.51	37.64	43.50	-5.86	peak

Report No.: TB-FCC175149 Page: 31 of 33

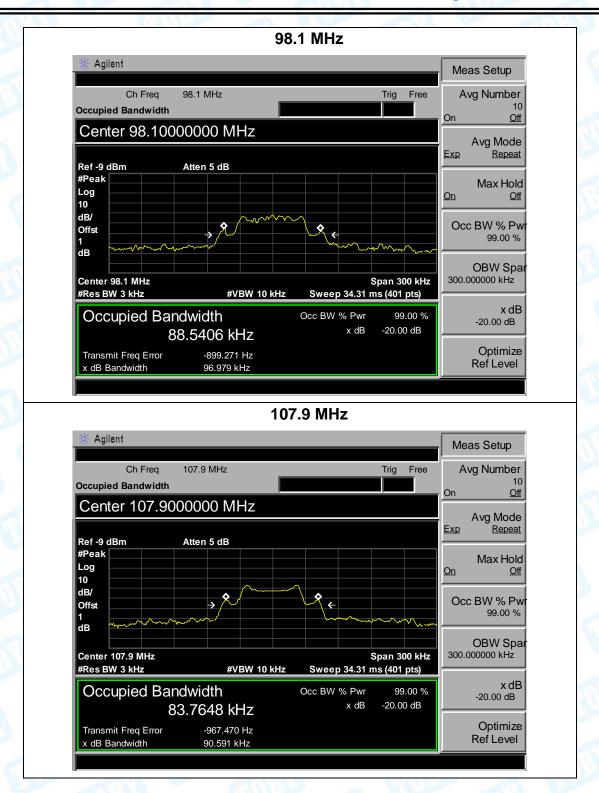
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 12V	THE PARTY OF THE	
Ant. Pol.	Vertical		OHU:
Test Mode:	107.9MHz		
Remark:		THE NAME OF THE PARTY OF THE PA	
80.0 dBuV/m			

N	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		107.8979	75.40	-30.51	44.89	67.96	-23.07	peak
2	*	107.8979	75.40	-30.51	44.89	47.96	-3.07	AVG
3		108.0000	67.09	-30.51	36.58	43.50	-6.92	peak



Page: 32 of 33

Attachment C-- Bandwidth Data


Frequency (MHz)	20 dB Bandwidth (kHz)	Limits (kHz)	Result
88.1	90.437		PASS
98.1	96.979	200	PASS
107.9	90.591		PASS

88.1 MHz

Page: 33 of 33

----END OF REPORT----