

TEST REPORT

Test Report No.: 1-8237/19-02-03

Testing Laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken/Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Test Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

EUCHNER GmbH + Co. KG

Kohlhammerstraße 16

70771 Leinfelden-Echterdingen/GERMANY

Phone: +49 711 7597-0

Contact: Tobias König

e-mail: tobias.koenig@euchner.de

Phone: +49 711 7597-360

Manufacturer

EUCHNER GmbH + Co. KG

Kohlhammerstraße 16

70771 Leinfelden-Echterdingen/GERMANY

Test Standard/s

RSS - 102 Issue 5 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All

Frequency Bands)

RSS - 102 SPR-002 Supplementary Procedure for Assessing Compliance with RSS-102 Nerve Stimulation

Issue 1 Exposure Limits

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Safety Switch
Device type: fixed device

Model name: CTP / MGBS-P
FCC-ID: 2AJ58-05
IC: 22052-05


S/N serial number: See DUT list on page 4.
Hardware status: See DUT list on page 4.
Software status: See DUT list on page 4.

Frequency: RFID 125 kHz
Antenna: Integrated antenna
DC supply: external 24V

Accessories: ---

Test sample status: identical prototype

Exposure category: general population / uncontrolled environment

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test Report authorised:	Test performed:
Alexander Hnatovskiy	Marco Scigliano

Radio Communications & EMC

Testing Manager Radio Communications & EMC

Lab Manager

1 Table of contents

1	Table of contents2					
2	General information					
_	2.1 Notes and disclaimer					
	2.2 2.3		lication details			
	2.3 2.4		ement of compliancenical details			
3			ard/s:			
	3.1		exposure limits			
4	Sumi		of Measurement Results			
5		-	onment			
6	Test		o			
	6.1	Mea	surement system	7		
	6	5.1.1	Broadband Electromagnetic Field Test system			
	6	.1.2	Test equipment list	8		
	-	.1.3	Averaging	8		
	6	.1.4	Uncertainties			
	6	.1.4.1	Typical uncertainty of EHP-50F	9		
	6	.1.5	Validation procedure			
	6	.1.6	Definition of test position and distances	10		
	6.2		results			
	6.3	Fina	l verdict	12		
Anı	nex A:	Pi	noto documentation	13		
Anı	nex B:	D	ocument History	21		
Anı	nex C:	Fı	urther Information	21		

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

2.2 Application details

Date of receipt of order: 2019-05-06
Date of receipt of test item: 2019-05-10
Start of test: 2019-05-10
End of test: 2019-05-10

2.3 Statement of compliance

The EMF values found for the CTP and MGBS-P Safety Switch are below the maximum allowed levels according to the standards listed in section 3.

2.4 Technical details

short descrip- tion*)	DUT	Туре	S/N serial number	HW hardware status	SW software status
DUT A	safety switch	CTP-I-AP-U-HA-ZZ-SA-136732 (CTP-I-AP SERIES)	007469	V3.1.0	V1.2.0
DUT B	safety switch	CTP-L2-AR-U-HA-AZ-SAB- 122814 (CTP-L2-AR SERIES)	004983	V3.1.0	V1.2.0
DUT C	safety switch	MGBS-P-L1-AR-U-R-AEE-SH- 159086 (MGBS-P-L1-AR SERIES)	000172	V3.1.0	V1.2.0

DUT short description is used to simplify the identification of the DUT in this test report.

Certification Numbers and Labeling Requirements				
FCC ID	IC	HVIN	FVIN	PMN
2AJ58-05	22052-05	05	-/-	CTP-I-AR SERIES
				CTP-I1-AR SERIES
				CTP-I2-AR SERIES
				CTP-L1-AR SERIES
				CTP-L2-AR SERIES
				CTP-I-AP SERIES
				CTP-I1-AP SERIES
				CTP-I2-AP SERIES
				CTP-L1-AP SERIES
				CTP-L2-AP SERIES
		06	-/-	MGBS-P-I-AR SERIES
				MGBS-P-I1-AR SERIES
				MGBS-P-I2-AR SERIES
				MGBS-P-L1-AR SERIES
				MGBS-P-L2-AR SERIES
				MGBS-P-I-AP SERIES
				MGBS-P-I1-AP SERIES
				MGBS-P-I2-AP SERIES
				MGBS-P-L1-AP SERIES
				MGBS-P-L2-AP SERIES

3 Test standard/s:

Test Standard	Version	Test Standard Description
RSS - 102 Issue 5	March 2015	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
RSS - 102 SPR-002 Issue 1	September 2016	Supplementary Procedure for Assessing Compliance with RSS-102 Nerve Stimulation Exposure Limits
Safety Code 6 (2015)	01.06.2010	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz

3.1 RF exposure limits

Reference levels for general public (uncontrolled environment) exposure to time-varying electric and magnetic fields

According to: RSS 102-ISSUE 05				
Frequency Range Electric Field Magnetic Field (MHz) (V/m rms) (A/m rms)				
0.003-10	83	90		

4 Summary of Measurement Results

No deviations from the technical specifications ascertained	
	Deviations from the technical specifications ascertained

No relevant emissions out of the cabinet of the DUT are detected.

5 Test Environment

Ambient temperature: 20 – 24 °C

Relative humidity content: 40 - 50 %

Air pressure: not relevant for this kind of testing

Power supply: 230 V / 50 Hz

6 Test Set-up

6.1 Measurement system

6.1.1 Broadband Electromagnetic Field Test system

A state of the art Broadband Electromagnetic Field Test system was used. The probes of the system are fitted with three sensors which measure the field strength of the X, Y and Z plane directions separately. The field strength is calculated by the instrument's processor by summing the squares of the three measured values.

The frequency range 5 Hz to 60 GHz is covered.

Depending on the used probe type Electric and Magnetic Field or Electric Field only is detectable.

•	EHP-50D	5 Hz to 100 kHz	Electric and Magnetic Field
•	EHP-50F	5 Hz to 400 kHz	Electric and Magnetic Field
•	HF 3061	300 kHz to 30 MHz	Magnetic Field
•	EF 0691	100 kHz to 6 GHz	Electric Field
•	EF 6092	100 MHz to 60 GHz	Electric Field

6.1.2 Test equipment list

	Manufacturer	Device	Туре	Serial number	Last Calibration
	Narda	Electric and Magnetic Field Meter	NBM-550	F-0319	2019-02-06
	Narda	Electric and Magnetic Field Meter	NBM-520	D-1234	2017-05-08
	Narda	Electric Field Probe (100 kHz - 6 GHz)	EF 0691	G-0027	2019-02-06
	Narda	Electric Field Probe (100 MHz - 60 GHz)	EF 6092	A-0071	2017-05-08
	Narda	Magnetic Field Probe (300 kHz to 30 MHz)	HF 3061	D-0404	2019-02-06
	Narda	Electric and Magnetic Field Analyser (5 Hz – 100 kHz)	EHP-50D	230WX50108	2019-02-12
\boxtimes	Narda	Electric and Magnetic Field Analyser (1 Hz – 400 kHz)	EHP-50F	000WX60907	2018-09-04

Devices used during the test	Devices not used during the test
------------------------------	----------------------------------

6.1.3 Averaging

For time efficient testing an average of 8 seconds was used. With some spot checks was verified, that caused by the time structure of the measured responses, the results did not change with a 6-minute-averaging.

6.1.4 Uncertainties

The probe uncertainties stated by the manufacturer are considered to be the main relevant and dominant issues.

6.1.4.1 Typical uncertainty of EHP-50F

The uncertainties stated in this document have been determined according to EA-4/2 [4].

They were estimated as expanded uncertainty obtained multiplying the standard by the coverage factor k=2, corresponding to a confidence level of about 95%.

The total uncertainty of the probe derived from typical contributions of linearity, anisotropy, frequency response, temperature, relative humidity and with/without contribution of uncertainty of calibration.

		Total expanded uncertainty (k=2)		
Magnetic probe (1)	Magnetic flux density	Without contribution of uncertainty of	With contribution of uncertainty of	
		calibration UEHP50F (%)	calibration U⊤ (%)	
Eroguepov et 50Hz	0.05μT to < 100μT	2.3	3.0 (2)	
Frequency at 50Hz	100μT to < 3000μT	2.6	3.8 (3)	
Frequency from 5 to 40 Hz	0.05μT to < 10μT	5.3	5.7 ⁽²⁾	
Frequency from 40 to 10kHz	0.05μT to < 10μT	4.9	5.3 (2)	

⁽¹⁾ This uncertainty budget is for an ambient temperature of (23 +/- 4) °C, and relative humidity of (50 +/- 5) % The expanded uncertainty for magnetic flux density for values close to 50 nT is calculated with negligible contribution of noise level.

⁽³⁾ The uncertainty of calibration used is 2.8%

	Electric field range	Total expanded uncertainty (k=2)		
Electric probe (4)		Without contribution of uncertainty of	With contribution of uncertainty of	
		calibration U _{EHP50F} (%)	calibration U _T (%)	
Fraguency et FOHz	1 V/m to 1000 V/m	7.1	7.4 ⁽⁵⁾	
Frequency at 50Hz	1 V/m to < 100 kV/m	7.8	8.2 (6)	
Frequency from 5 Hz to 100 kHz	1 V/m to <1000 V/m	8.8	9.2 (6)	

⁽⁴⁾ This uncertainty budget is for an ambient temperature of (23 +/- 4) °C, and relative humidity of (50 +/- 5) %

6.1.5 Validation procedure

Before performing the tests the empty test chamber was checked for system immanent frequency responses. The following background signal level was detected. All levels are small enough to allow accurate proof of the limits to be considered.

Probe	Frequency Range	Magnetic Flux Density (B) in μT	Electrical Field Strength in V/m	Remark
EHP-50F	4 – 400 kHz	0.004	0.235	

⁽²⁾ The uncertainty of calibration used is 2.0%

⁽⁵⁾ The uncertainty of calibration used is 2.0%

⁽⁶⁾ The uncertainty of calibration used is 2.5%

6.1.6 Definition of test position and distances

In absence of an equipment specific regulation with given test distances, all not further noted test positions were measured in "touched" mode, the probe radome touching the DUT at the defined test position. Due to the mechanical concept of the used probe a distance between DUT surface and electrical centre of the probe antennas remains.

	Maximum distance (cm)		
Probe type	Magnetic Field	Electrical Field	
EHP-50F	4	4	

6.2 Test results

For considering worst-case conditions all measurements were performed at smallest possible distance from the device under test. Limits shown in the tables below are the lowest ones within the wideband frequency range of the field probe applied.

Due to limitations of test equipment the frequency ranges of < 1 Hz and > 400 kHz for E-field and H-field have been omitted.

Test position see photo documentation (Annex A).

During the measurements the DUT was switched on in normal operating mode. RFID reading was activated permanently.

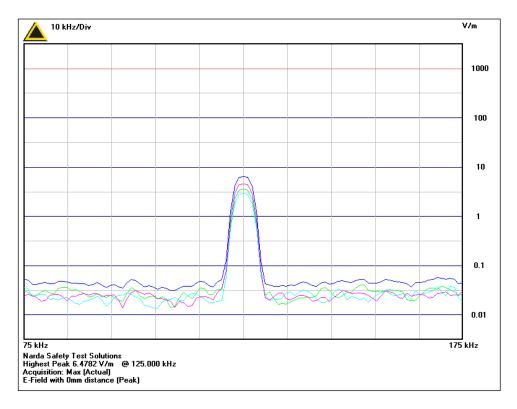
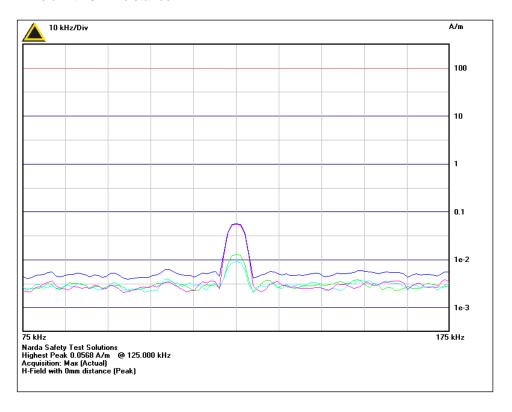

RFID frequency 125 kHz – Probe: EHP 50 F						
DUT*	distance (cm)	H (A/m)	Limit (A/m)	E (V/m)	Limit (V/m)	
Α	0	0.057	90	6.0	83	
В	0	0.057	90	6.5	83	
С	0	0.014	90	3.3	83	

Table 1: Test results E-/ H-f@125 kHz, peak values (max hold)

*) DUT short description is used to simplify the identification of the DUT in this test report.

PLOT: DUT B


E-Field with 0mm distance:

PLOT: DUT B

E-Field with 0mm distance:

6.3 Final verdict

No relevant emissions out of the cabinet of the DUT are detected.

Annex A: Photo documentation

Photo 1: DUT - Type overview (A/B/C)

Photo 2: DUT A - Side view

Photo 3: DUT A - Side view (Label)

Photo 4: DUT A - Top side view

Photo 5: DUT A - Back side view (Plug)

Photo 6: DUT A - Front side view

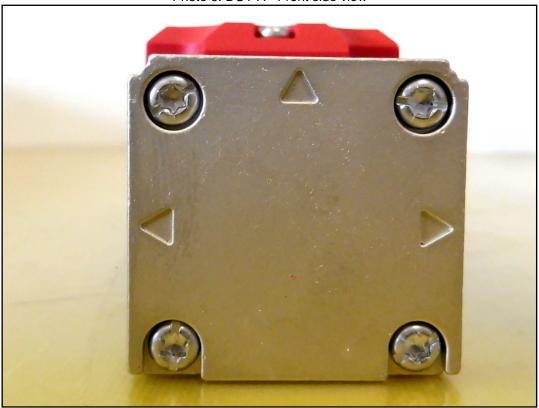


Photo 7: DUT B - Side view

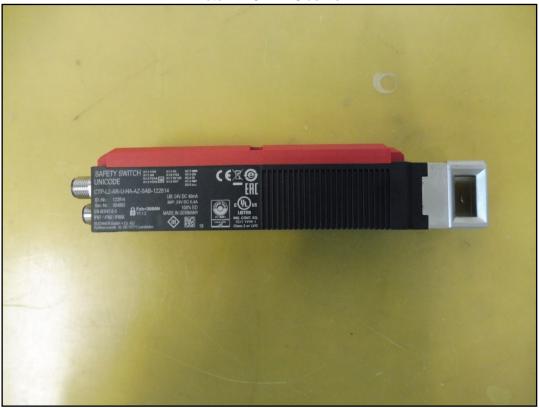


Photo 8: DUT B - Side view (Label)

Photo 9: DUT B - Top side view

Photo 10: DUT B - Back side view

Photo 11: DUT C - Side view

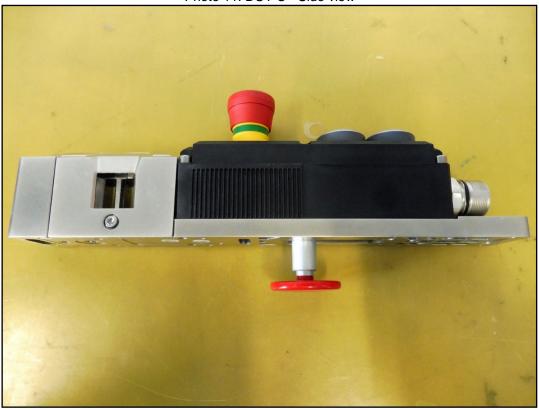


Photo 12: DUT C - Side view (Label)

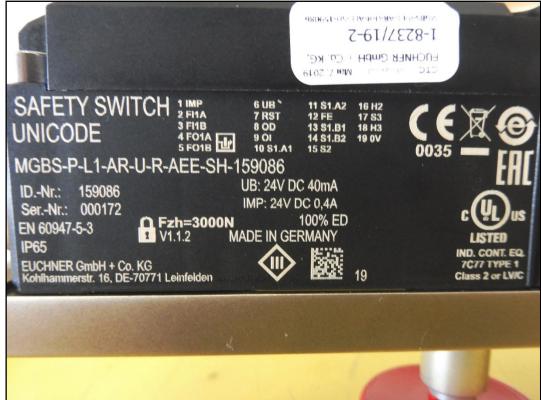


Photo 13: DUT C - Top side view

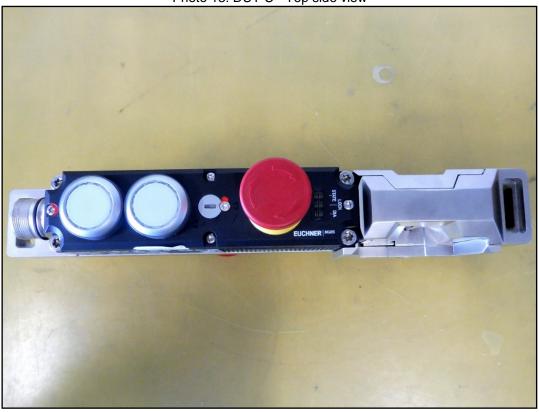


Photo 14: Test position - DUT A with EHP-50 F probe (0mm distance)

Photo 15: Test position - DUT B with EHP-50 F probe (0mm distance)

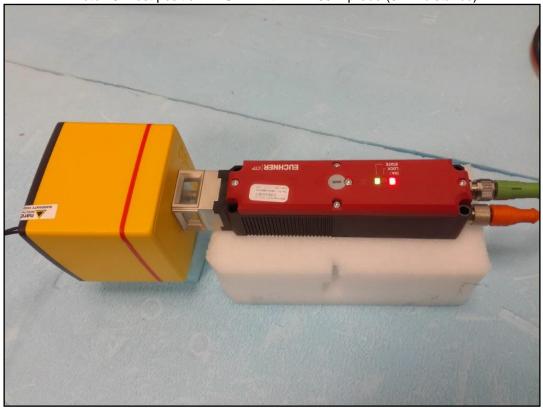
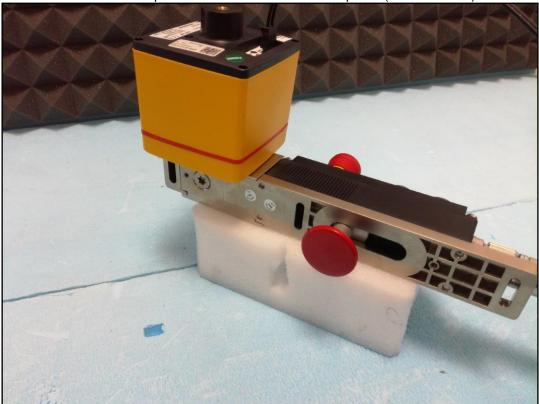



Photo 16: Test position - DUT C with EHP-50 F probe (0mm distance)

Annex B: Document History

Version	Applied Changes	Date of Release	
	Initial Release	2019-05-14	

Annex C: Further Information

Glossary

DUT - Device under Test EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable

OET - Office of Engineering and Technology

S/N - Serial Number SW - Software