

FCC Test Report

Report No.: AGC15705240142FR01

FCC ID	:	2AJ55HOLYSTONEWW
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	R/C DRONE
BRAND NAME	:	DEERC
MODEL NAME	:	D20S (Series model name please see page 6)
APPLICANT	:	Xiamen Huoshiquan Import & Export CO., Ltd.
DATE OF ISSUE	:	Feb. 04, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Feb. 04, 2024	Valid	Initial Release

Table of Contents

1. General Information	6
2. Product Information	7
2.1 Product Technical Description	7
2.2 Table of Carrier Frequency	8
2.3 IEEE 802.11n Modulation Scheme	9
2.5 Related Submittal(S) / Grant (S)	10
2.6 Test Methodology	10
2.7 Special Accessories	10
2.8 Equipment Modifications	10
2.9 Antenna Requirement	10
2.11 Description of Test Software	11
3. Test Environment	12
3.1 Address of The Test Laboratory	12
3.2 Test Facility	12
3.3 Environmental Conditions	13
3.4 Measurement Uncertainty	13
3.5 List of Equipment Used	14
4.System Test Configuration	16
4.1 EUT Configuration	16
4.2 EUT Exercise	16
4.3 Configuration of Tested System	16
4.4 Equipment Used in Tested System	16
4.5 Summary of Test Results	17
5. Description of Test Modes	

6. Duty Cycle Measurement	19
7. RF Output Power Measurement	21
7.1 Provisions Applicable	21
7.2 Measurement Procedure	21
7.3 Measurement Setup (Block Diagram of Configuration)	21
7.4 Measurement Result	22
8. 6dB Bandwidth Measurement	23
8.1 Provisions Applicable	23
8.2 Measurement Procedure	23
8.3 Measurement Setup (Block Diagram of Configuration)	23
8.4 Measurement Result	24
9. Power Spectral Density Measurement	35
9.1 Provisions Applicable	35
9.2 Measurement Procedure	35
9.3 Measurement Setup (Block Diagram of Configuration)	36
9.4 Measurement Result	36
10. Conducted Band Edge and Out-of-Band Emissions	42
10.1 Provisions Applicable	42
10.2 Measurement Procedure	42
10.3 Measurement Setup (Block Diagram of Configuration)	42
10.4 Measurement Result	43
11. Radiated Spurious Emission	54
11.1 Measurement Limits	54
11.2 Measurement Procedure	54

	11.4 Measurement Result	58
12	2. AC Power Line Conducted Emission	75
	12.1 Measurement Limits	75
	12.2 Block Diagram of Line Conducted Emission Test	75
	12.3 Preliminary Procedure of Line Conducted Emission Test	76
	12.4 Final Procedure of Line Conducted Emission Test	76
	12.5 Test Result of Line Conducted Emission Test	76
Ap	opendix I: Photographs of Test Setup	77
Ap	opendix II: Photographs of Test EUT	77

1. General Information

Applicant	Xiamen Huoshiquan Import & Export CO., Ltd.
	Unit 1, Room 501, Hongxiang Building, No. 258 Hubin Nan Road,
Address	Siming District, Xiamen, China
Manufacturer	Xiamen Huoshiquan Import & Export CO., Ltd.
	Unit 1, Room 501, Hongxiang Building, No. 258 Hubin Nan Road,
Address	Siming District, Xiamen, China
Factory	Xiamen Huoshiquan Import & Export CO., Ltd.
Address	Unit 1, Room 501, Hongxiang Building, No. 258 Hubin Nan Road,
Address	Siming District, Xiamen, China
Product Designation	R/C DRONE
Brand Name	DEERC
Test Model	D20S
	D20G, D30, D30S, D30G, D33, D33W, D35, D41, D42, D43, D44, D45, D51,
	D52, D53, D54, D55, D100, D110, D120, D130, D140, D150, D200, D210,
	D220, D230, D240, D250, D300, D310, D320, D330, D340, D350, D400,
Series Model(s)	D410, D420, D430, D440, D450, HS130, HS155, HS280D, HT11, HT22,
Series Model(S)	HT33, HT44, HT100, HT110, HT120, HT130, HT140, HT150, HT200,
	HT210, HT220, HT230, HT240, HT250, HT300, HT310, HT320, HT330,
	HT340, HT350, HT400, HT410, HT420, HT430, HT440, HT450, WF10,
	WF20, WF30, WF40, WF50
Difference Description	All the same except for the model names.
Date of receipt of test item	Jan. 26, 2024
Date of Test	Jan. 26, 2024 to Feb. 04, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-2.4GWLAN-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

Cz li

Cici Li (Project Engineer)

Feb. 04, 2024

Reviewed By

in 1

Calvin Liu (Reviewer)

Feb. 04, 2024

Approved By

Zhan

Max Zhang

Feb. 04, 2024

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection" Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

2. Product Information

2.1 Product Technical Description

Equipment Type	WLAN 2.4G
Frequency Band	2400MHz ~ 2483.5MHz
Operation Frequency	2412MHz ~ 2462MHz
Output Power (Average)	IEEE 802.11b: 13.66dBm; IEEE 802.11g: 12.91dBm;
	IEEE 802.11n(HT20): 12.55dBm
Output Power (Peak)	IEEE 802.11b: 16.71dBm; IEEE 802.11g: 20.63dBm;
	IEEE 802.11n(HT20): 20.42dBm
Modulation	802.11b:(DQPSK, DBPSK, CCK) DSSS
	802.11g/n:(64-QAM,16-QAM, QPSK, BPSK) OFDM
	802.11b:1/2/5.5/11Mbps
Data Rate	802.11g: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 150Mbps
Number of channels	11
Hardware Version	YZ-JXWS05R
Software Version	0xec57d27f
Antenna Designation	PIFA Antenna
Antenna Gain	2.36 dBi
Power Supply	DC 3.7V by battery
	Model: 1202350D
Battery Information	Rated Voltage& Capacitance: DC 3.7V, 1200mAh, 4.44Wh
	Manufacturer: Xiamen Huoshiquan Import & Export CO., LTD

2.2 Table of Carrier Frequency

For 2412-2462MHz:

11 channels are provided for 802.11b/g/n(HT20):

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

2.3 IEEE 802.11n Modulation Scheme

MCS Index	Nss Modulation			N		N		Data Rate(Mbps)		
		Modulation	R	N _{BPSC}	N _{CBPS}		N _{DBPS}		800nsGI	
Index					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI	Guard interval	

2.5 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2AJ55HOLYSTONEWW**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.6 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

2.7 Special Accessories

Refer to section 4.4.

2.8 Equipment Modifications

Not available for this EUT intended for grant.

2.9 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 2.36dBi.

2.11 Description of Test Software

For IEEE 802.11 mode:

The test utility software used during testing was "FCCShow.exe", and the version was "V1.1".

🖹 FCC串口工具(发送) V	/1.1		_	
结构体名 → 所有结构体 FCC_CP FCC_CP FCC_CS FCC_CTX FCC_M FCC_RX	中文名称 不限封包数量调 有限封包数量调 载波抑制发送测 无间断调制讯号 MAC地址 接收测试 无调制讯号单	中文名称:	FCC_CTX(FCC_CTX) 无间断调制讯号发送测试 Continuous Tx testing 6 20M long_GI a 0	* * * *
功能区: 串口号: COM8 发送: 4A 4C 04 00 接收: 00	· 波特率 0D 00 06 00 00 00 00 00	: 115200 → = → 3 00 00 00 1E 00 00 00 62 A8	<闭串口(<u>c</u>)	数据(型)

Software Setting Diagram

Test Mode	Channel	Power Index
Test Mode	Channel	Chain 1
802.11b	L/M/H	default
802.11g	L/M/H	default
802.11n-HT20	L/M/H	default

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106

3.4 Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty		
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$		
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$		
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$		
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$		
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$		
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$		
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$		

3.5 List of Equipment Used

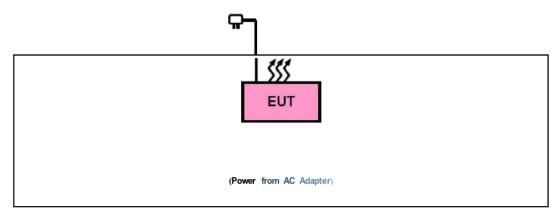
• R	RF Conducted Test System								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\square	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31		
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2023-03-03	2024-03-02		
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2023-03-03	2024-03-02		
\boxtimes	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		
\boxtimes	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31		
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A		
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A		

• F	Radiated Spurious Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\square	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023-02-18	2024-02-17		
	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02		
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31		
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2022-03-12	2024-03-11		
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10		
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2023-03-23	2024-03-22		
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23		
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03		
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31		
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		

• A	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023/06/03	2024/06/02		
	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08		
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023/06/03	2024/06/02		

 Tes 	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A			
\boxtimes	AGC-EM-S011	RSE Test System	Tonscend	TS⁺ Ver2.1(JS36-RSE)	4.0.0.0			
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71			
\boxtimes	AGC-ER-S009	BT/WIFI Test System	Tonscend	JS1120-3	2.6.77.0518			

4.System Test Configuration


4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

☐ Test Accessories Come From The Manufacturer

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(1)	RF Output Power	Pass
3	§15.247 (a)(1)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.247 (d)&15.209	Radiated Spurious Emission	Pass
7	§15.207	AC Power Line Conducted Emission	Not Applicable

Note: The conducted emission tests at AC port are not required for devices which WiFi does not work while charging.

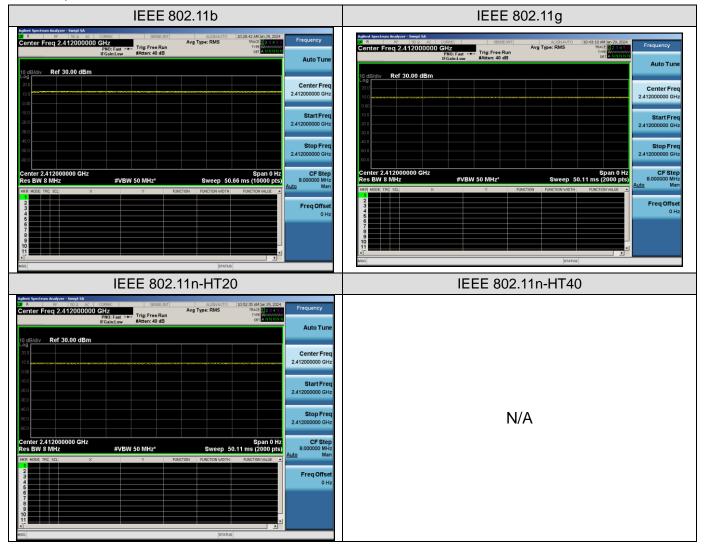
5. Description of Test Modes

Summary table of Test Cases				
	Data Rate / Modulation			
Test Item	2.4G WLAN – 802.11b/g/n (DSSS/OFDM)			
	Mode 1: 802.11b_TX CH01_2412 MHz_1 Mbps			
	Mode 2: 802.11b_TX CH06_2437 MHz_1 Mbps			
	Mode 3: 802.11b_TX CH11_2462 MHz_1 Mbps			
	Mode 4: 802.11g_TX CH01_2412 MHz_6 Mbps			
Radiated & Conducted	Mode 5: 802.11g_TX CH06_2437 MHz_6 Mbps			
Test Cases	Mode 6: 802.11g_TX CH11_2462 MHz_6 Mbps			
	Mode 7: 802.11n-HT20_TX CH01_2412 MHz_MCS0 Mbps			
	Mode 8: 802.11n-HT20_TX CH06_2437 MHz_ MCS0 Mbps			
	Mode 9: 802.11n-HT20_TX CH11_2462 MHz_ MCS0 Mbps			
AC Conducted Emission N/A				
lote:				
1. The battery is full-cha	arged during the test.			
2. For Radiated Emission	on, 3axis were chosen for testing for each applicable mode.			

- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.
- 4. Only the result of the worst case was recorded in the report, if no other cases.

6. Duty Cycle Measurement

2.4GHz WLAN (DTS) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:


Operating mode	Data rates (Mbps)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11b	1	100			
IEEE 802.11g	6	100			
IEEE 802.11n-HT20	MCS0	100			

Remark:

- 1. Duty Cycle factor = 10 * log (1/ Duty cycle)
- 2. Average factor = 20 log10 Duty Cycle
- 3. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value.

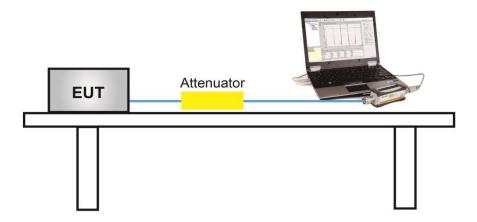
The test plots as follows:

7. RF Output Power Measurement

7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

7.2 Measurement Procedure


Method PM is Measurement using an RF Peak power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.1.3
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Method PM is Measurement using an RF average power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.2.3
- 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- 3. The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
- 4. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 5. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 6. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 7. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- 8. Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}.
- 9. Record the test results in the report.

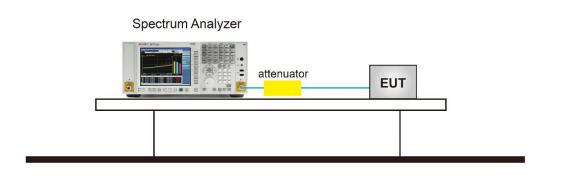
7.3 Measurement Setup (Block Diagram of Configuration)

7.4 Measurement Result

Test Data of Conducted Output Power								
Test Mode	Test Frequency (MHz)	Average Power (dBm)	Peak Power (dBm)	Limits (dBm)	Pass or Fail			
802.11b	2412	13.66	16.71	≤30	Pass			
	2437	13.08	16.11	≪30	Pass			
	2462	12.31	15.39	≪30	Pass			
802.11g	2412	12.91	20.63	≤30	Pass			
	2437	12.57	20.24	≪30	Pass			
	2462	12.02	19.64	≪30	Pass			
802.11n20	2412	12.55	20.42	≤30	Pass			
	2437	11.66	19.57	≤30	Pass			
	2462	11.19	19.02	≤30	Pass			

8. 6dB Bandwidth Measurement

8.1 Provisions Applicable

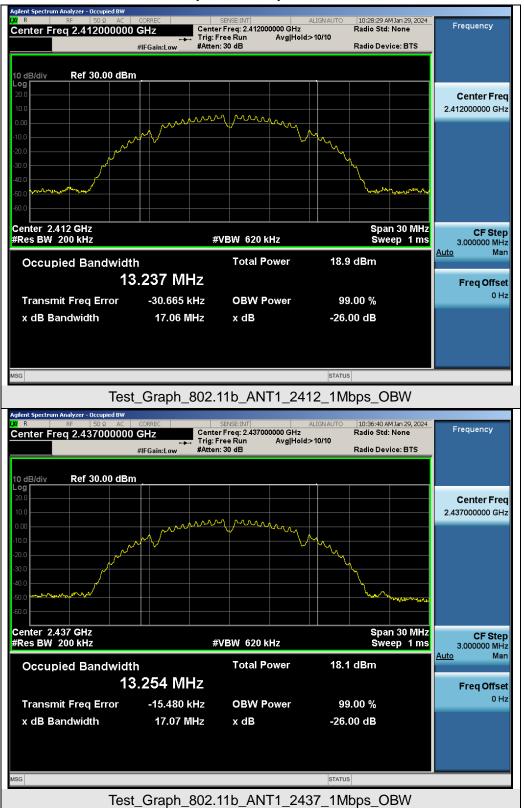

The minimum 6dB bandwidth shall be 500 kHz.

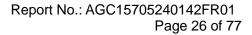
8.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).

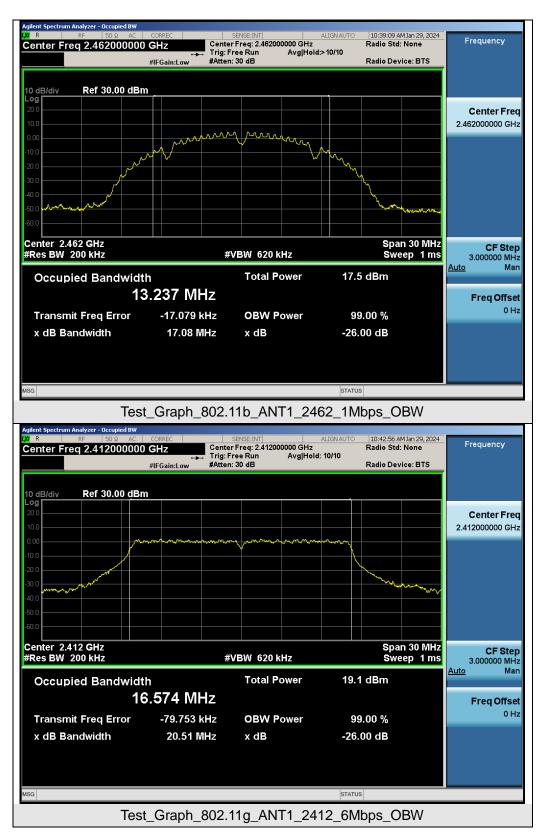
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. For 6dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Detector = peak
- 6. Trace mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize.
- 9. Measure and record the results in the test report.

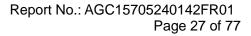
8.3 Measurement Setup (Block Diagram of Configuration)



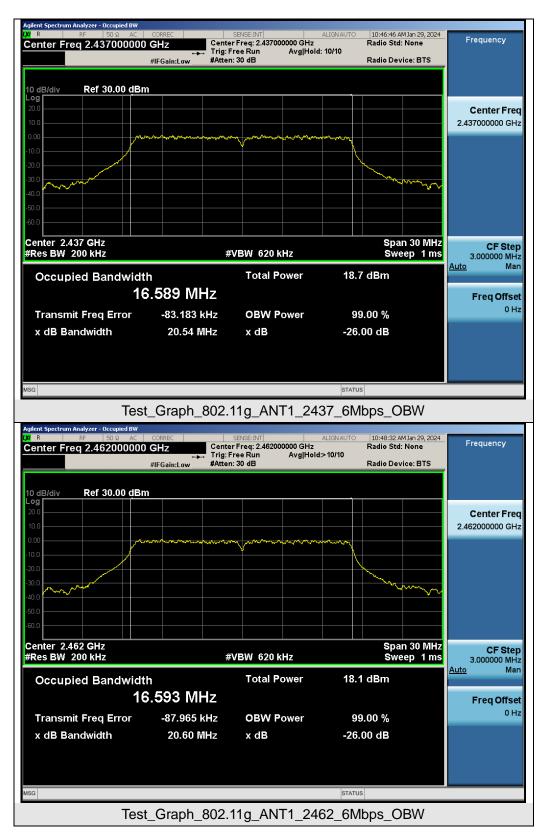

8.4 Measurement Result

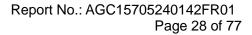
Test Data of Occupied Bandwidth and DTS Bandwidth							
Test Mode	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)	DTS Bandwidth (MHz)	DTS Bandwidth Limits (MHz)	Pass or Fail		
802.11b	2412	13.237	9.042	≥0.5	Pass		
	2437	13.254	9.055	≥0.5	Pass		
	2462	13.237	9.052	≥0.5	Pass		
802.11g	2412	16.574	16.541	≥0.5	Pass		
	2437	16.589	16.551	≥0.5	Pass		
	2462	16.593	16.556	≥0.5	Pass		
802.11n20	2412	17.698	17.737	≥0.5	Pass		
	2437	17.675	17.680	≥0.5	Pass		
	2462	17.670	17.682	≥0.5	Pass		

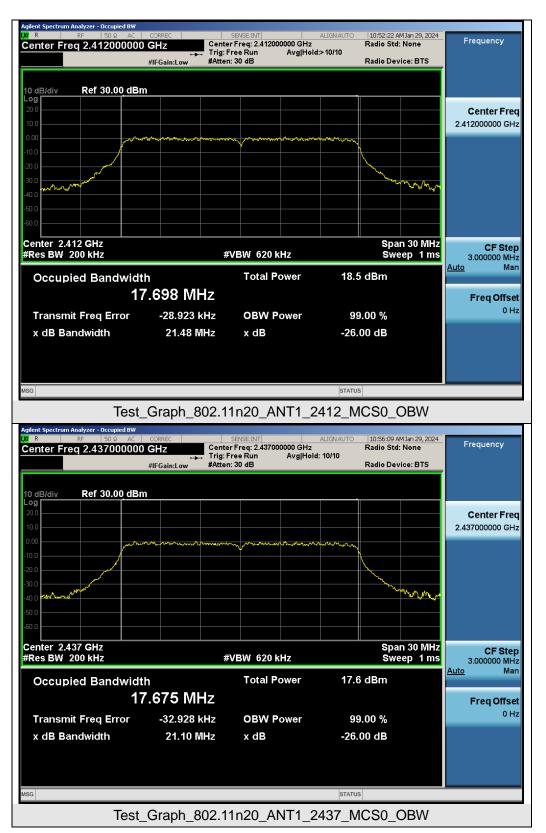


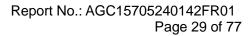


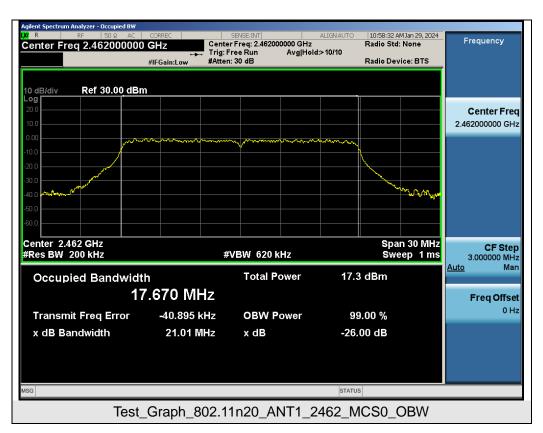
Test Graphs of Occupied Bandwidth

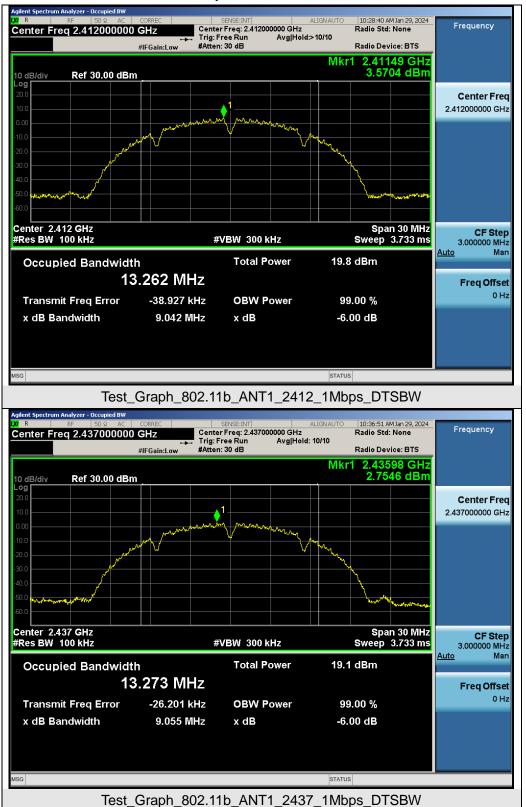


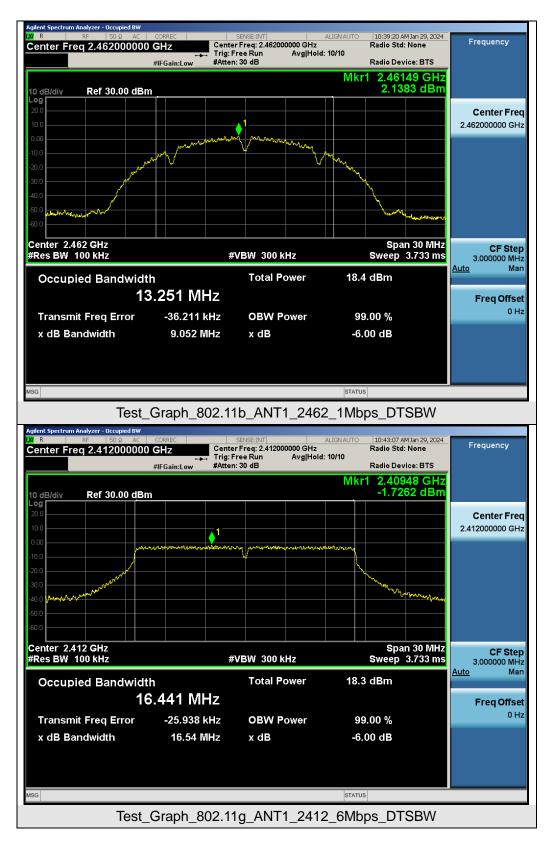




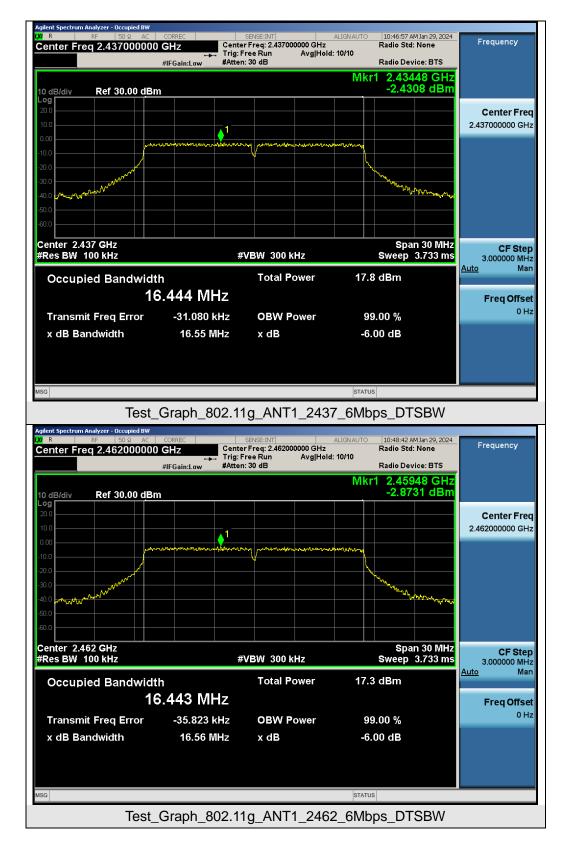




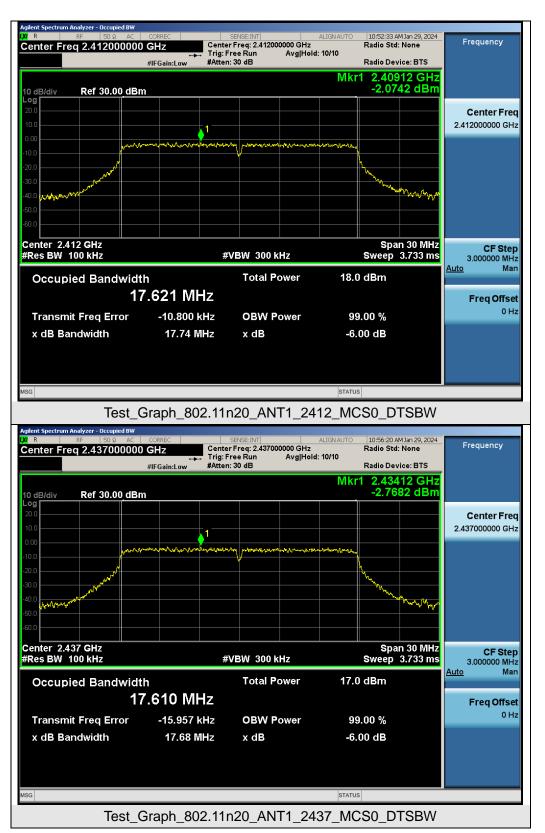




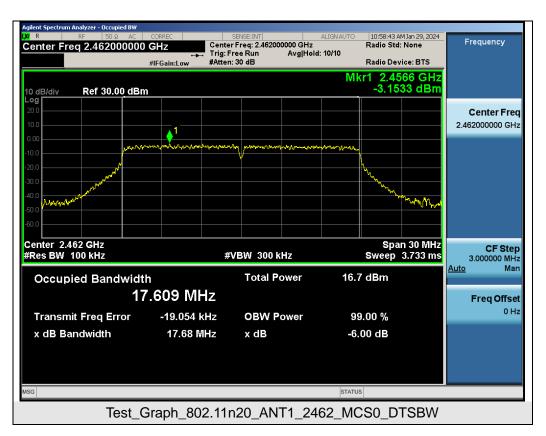
Test Graphs of DTS Bandwidth


 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd


 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/



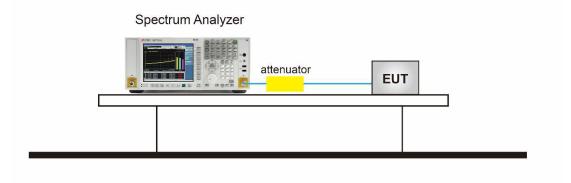
9. Power Spectral Density Measurement

9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

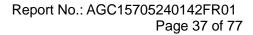
9.2 Measurement Procedure

SFor Peak power spectral density test:

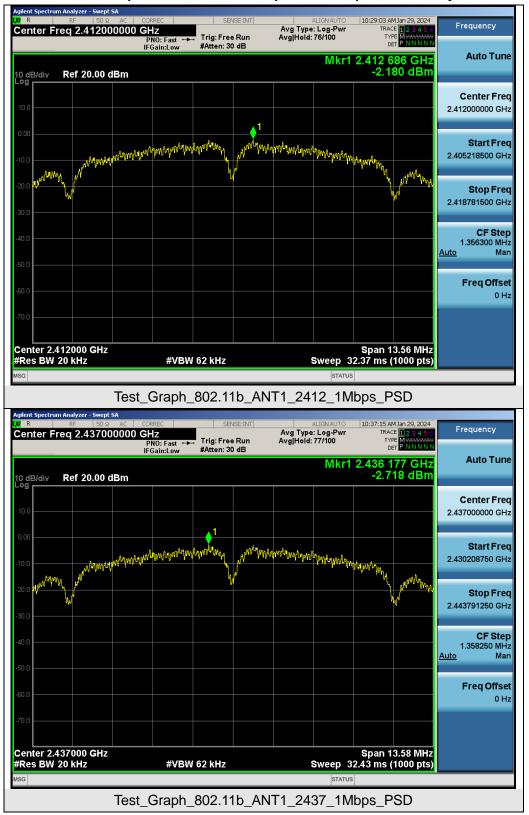

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the RBW = 20 kHz.
- 4. Set the VBW \geq [3 × RBW].
- 5. Set the Span \geq [1.5 × DTS bandwidth].
- 6. Sweep time=Auto couple.
- 7. Detector function=Peak.
- 8. Trace Mode=Max hold.
- When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result.
- 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
- 11. The indicated level is the peak output power, after any corrections for external attenuators and cables.

For Average power spectral density test:

- 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 3. Set Span to at least 1.5 times the OBW.
- 4. Set RBW to:3 kHz \leq RBW \leq 100 kHz.
- 5. Set VBW≥[3×RBW].
- 6. Sweep Time=Auto couple.
- 7. Detector function=RMS (i.e., power averaging).
- 8. Trace average at least 100 traces in power averaging (rms) mode.
- 9. When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result.
- 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.
- 12. Record the test results in the report.

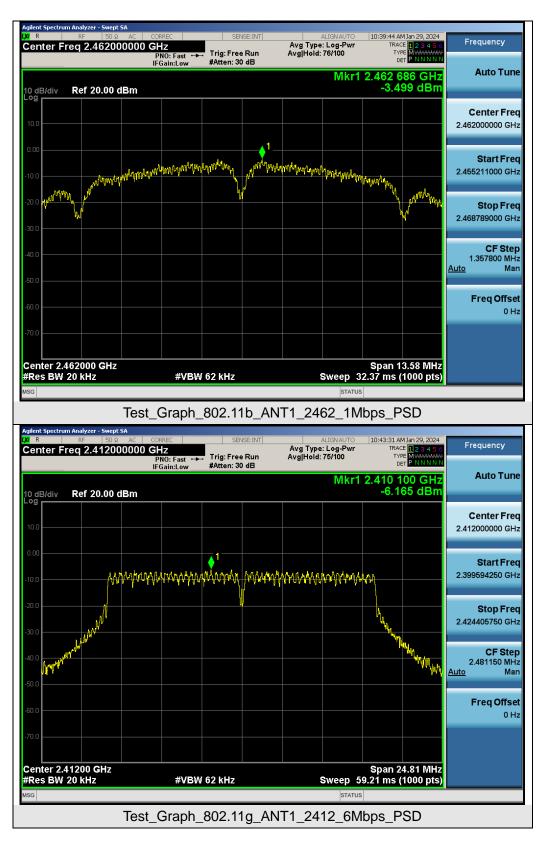


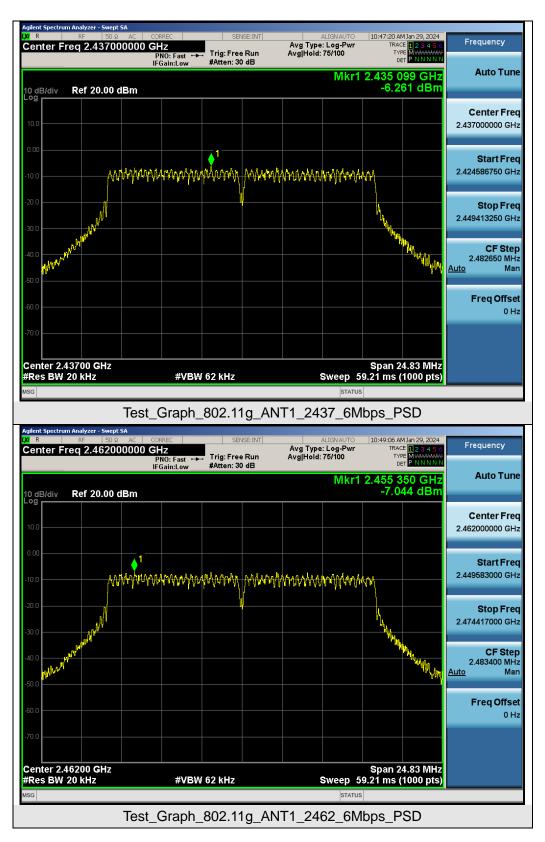
9.3 Measurement Setup (Block Diagram of Configuration)

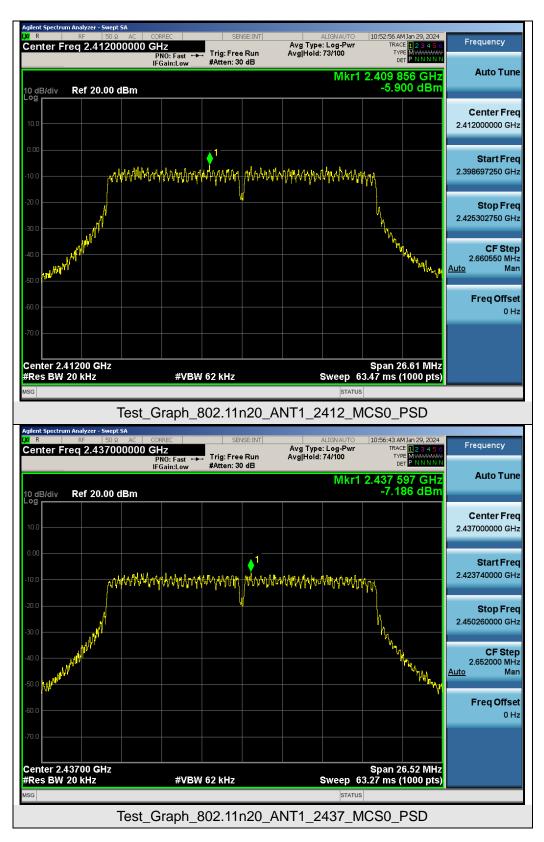


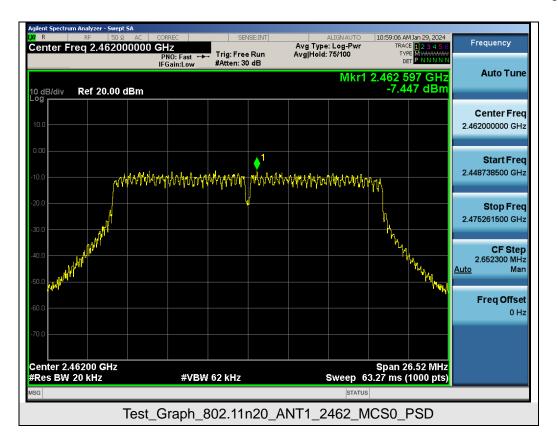
9.4 Measurement Result

Test Data of Conducted Output Power Spectral Density						
Test Mode	Test Frequency (MHz)	Power Spectral density (dBm/20kHz)	Power Spectral density (dBm/3kHz)	Limit (dBm/3kHz)	Pass or Fail	
802.11b	2412	-2.180	-10.419	≪8	Pass	
	2437	-2.718	-10.957	≪8	Pass	
	2462	-3.499	-11.738	≪8	Pass	
802.11g	2412	-6.165	-14.404	≪8	Pass	
	2437	-6.261	-14.5	≪8	Pass	
	2462	-7.044	-15.283	≪8	Pass	
802.11n20	2412	-5.900	-14.139	≪8	Pass	
	2437	-7.186	-15.425	≪8	Pass	
	2462	-7.447	-15.686	≪8	Pass	




Test Graphs of Conducted Output Power Spectral Density


Report No.: AGC15705240142FR01 Page 39 of 77



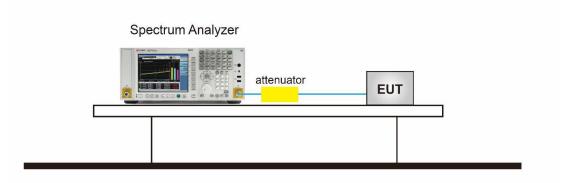
Report No.: AGC15705240142FR01 Page 40 of 77

10. Conducted Band Edge and Out-of-Band Emissions

10.1 Provisions Applicable

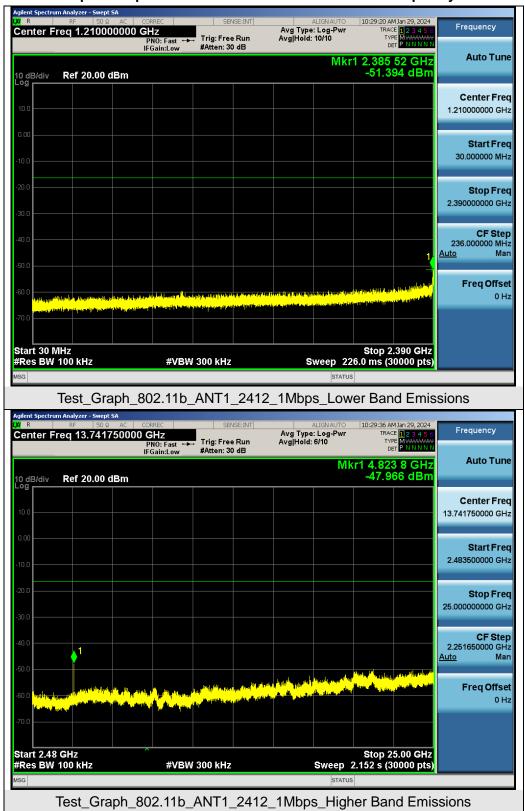
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

10.2 Measurement Procedure

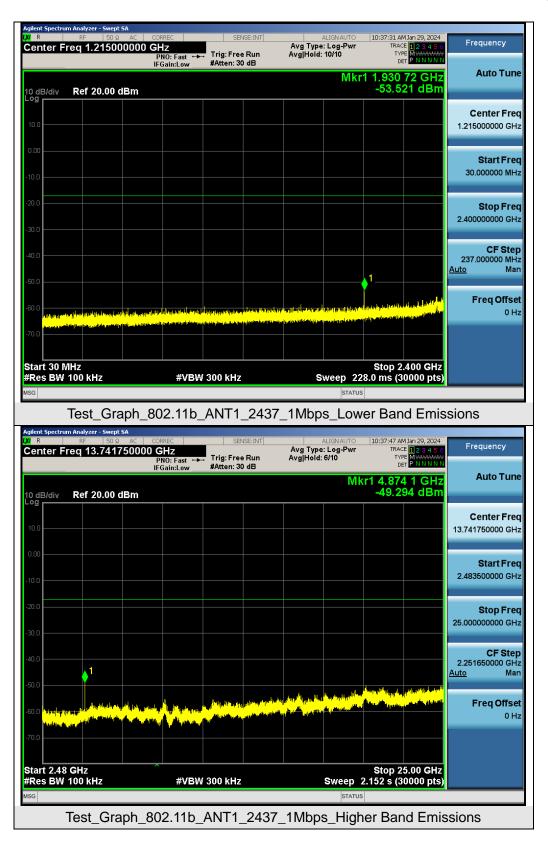

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

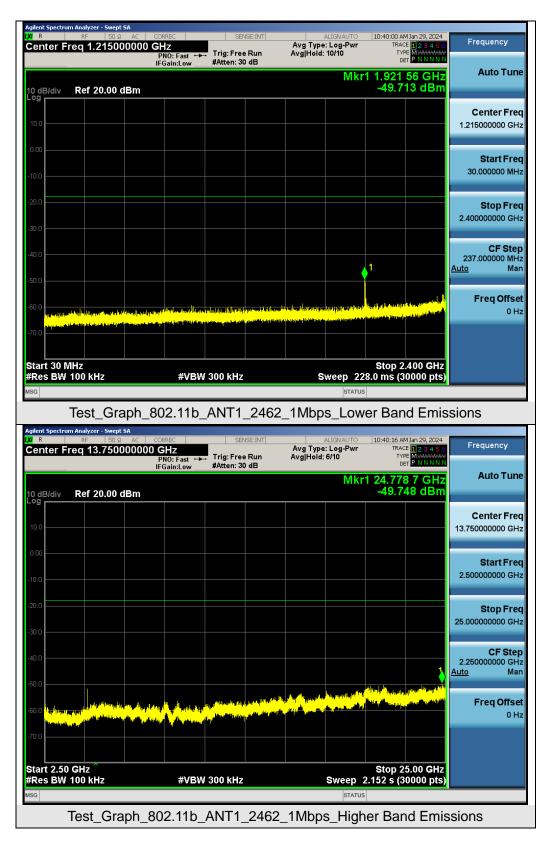
- Step 1: Measurement Procedure In-Band Reference Level
 - 1. Set instrument center frequency to DTS channel center frequency.
 - 2. Set the span to \geq 1.5 times the DTS bandwidth.
 - 3. Set the RBW = 100 kHz.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum PSD level.
 - 10. Note that the channel found to contain the maximum PSD level can be used to establish the reference level.
- Step 2: Measurement Procedure Out of Band Emission
 - 1. Set RBW = 100 kHz.
 - 2. Set VBW \ge 300 kHz.
 - 3. Detector = peak.
 - 4. Sweep = auto couple.
 - 5. Trace Mode = max hold.
 - 6. Allow trace to fully stabilize.
 - 7. Use the peak marker function to determine the maximum amplitude level.


Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

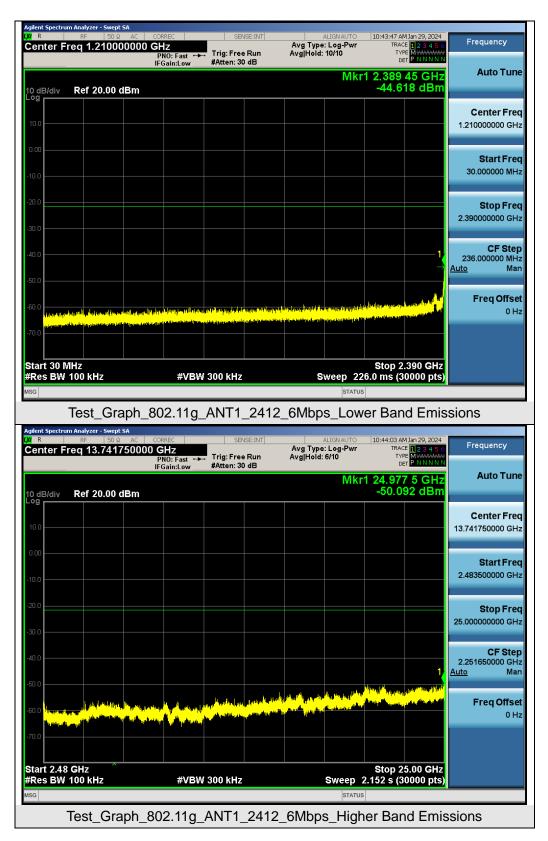
10.3 Measurement Setup (Block Diagram of Configuration)

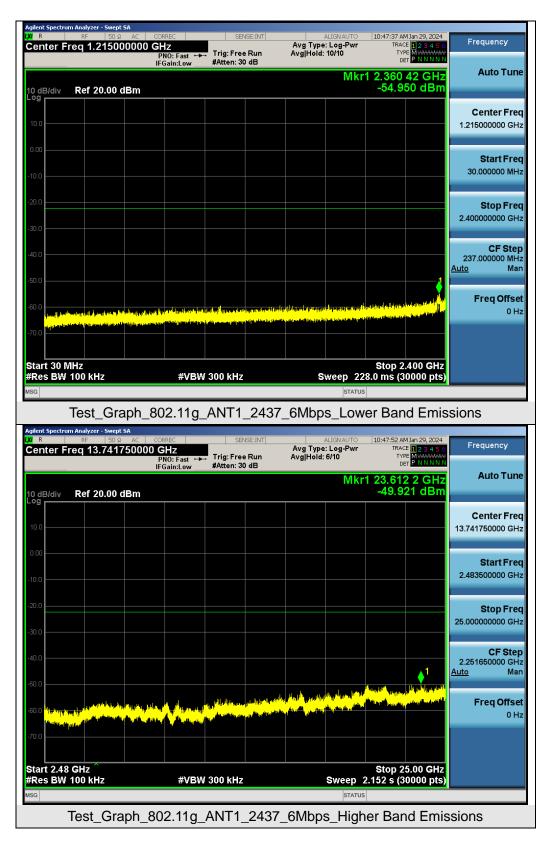


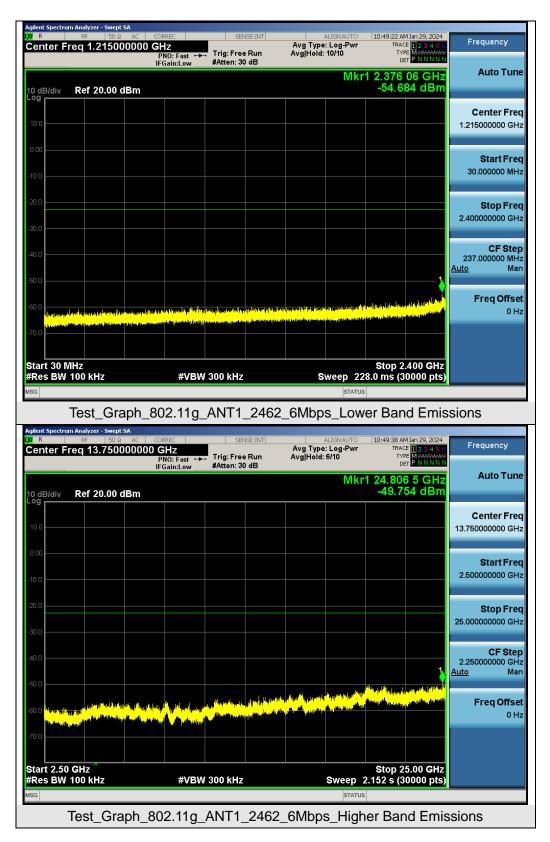
10.4 Measurement Result

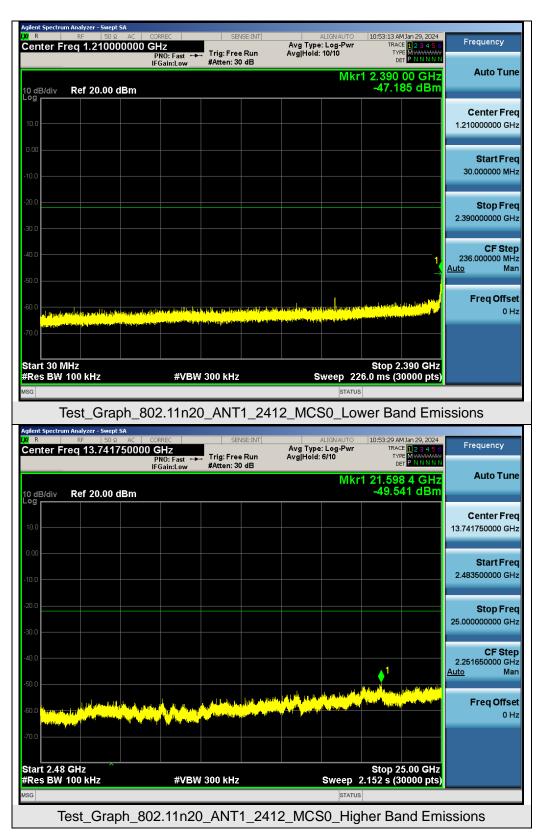


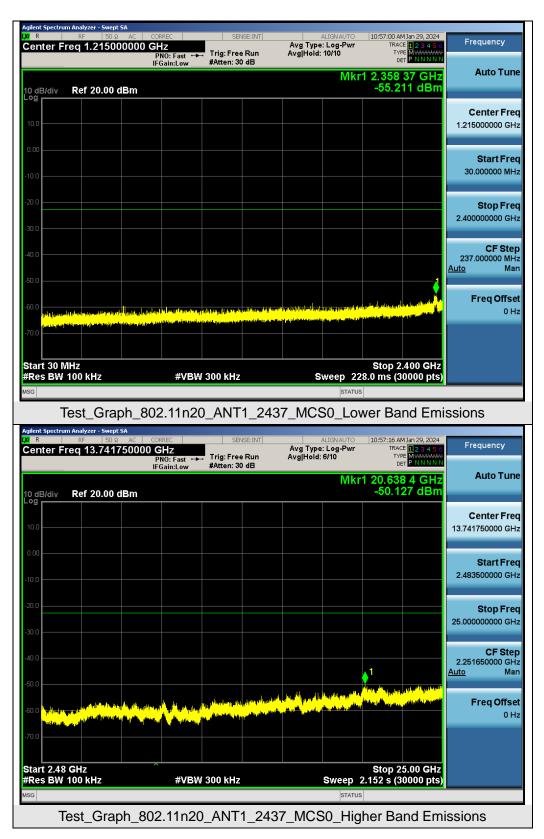
Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands



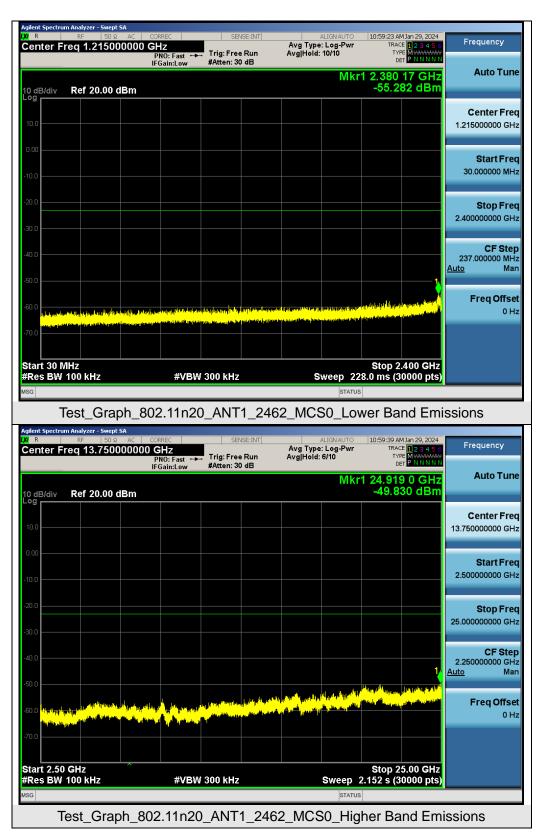


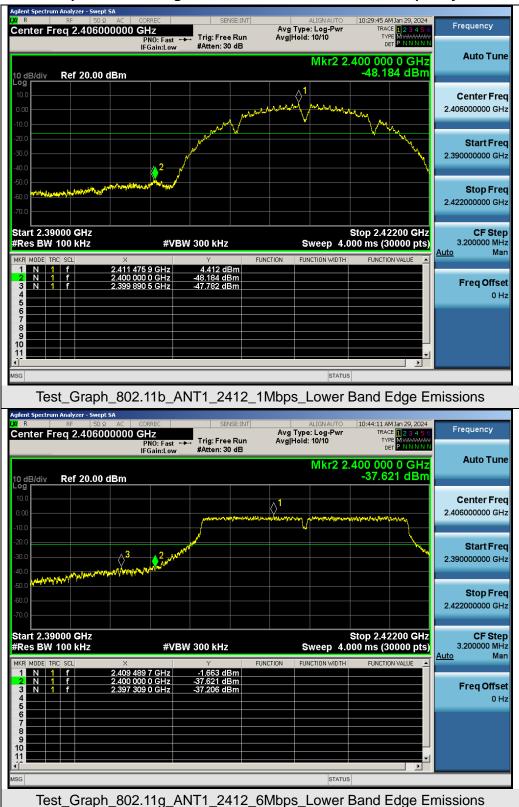




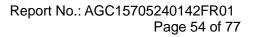


Report No.: AGC15705240142FR01 Page 49 of 77





Report No.: AGC15705240142FR01 Page 51 of 77



Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

Agilent Spectrum Analyzer - Swept SA V R RF 50 Ω AC C Center Freq 2.406000000	CORREC SENSE:INT) GHZ PN0: Fast ↔ Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr AvgIHold: 10/10	10:53:37 AM Jan 29, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB		100 000 0 GHz -39.212 dBm	Auto Tune
10.0 0.00		manuna manunana	ana la participa da la casa da la	Center Freq 2.406000000 GHz
-20.0	3 3 2000		hours and the second se	Start Freq 2.390000000 GHz
-60.0 -60.0 -70.0				Stop Freq 2.422000000 GHz
Start 2.39000 GHz #Res BW 100 kHz	#VBW 300 kHz		top 2.42200 GHz 00 ms (30000 pts)	CF Step 3.200000 MHz <u>Auto</u> Man
1 N 1 f 2.411 2 N 1 f 2.400	363 9 GHz -1.885 dBm 000 0 GHz -39.212 dBm 888 3 GHz -37.734 dBm			Freq Offset 0 Hz
6 7 8 9 10 11				
MSG	2.11n20_ANT1_2412_	STATUS		

Note: Emissions from 2483.5-2500MHz which fall in the restricted bands had been considered with the radiated emission limits specified.

11. Radiated Spurious Emission

11.1 Measurement Limits

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.
 Any redating alternative (provided the transmitter operates for longer than 0.1 seconds), or pin cases where the

Stamp" is deemed to be invalid. Copying or excerpting portion of, or latering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz
Start ~Stop Trequency	1MHz/3MHz for Peak, 1MHz/3MHz for Average

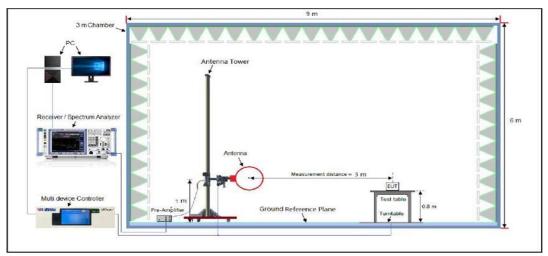
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

• Quasi-Peak Measurements below 1GHz

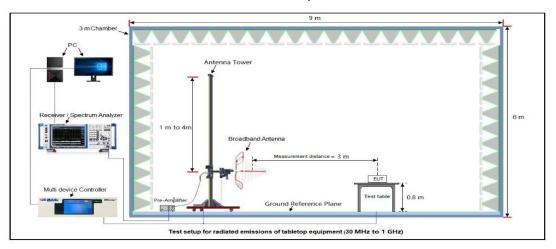
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz

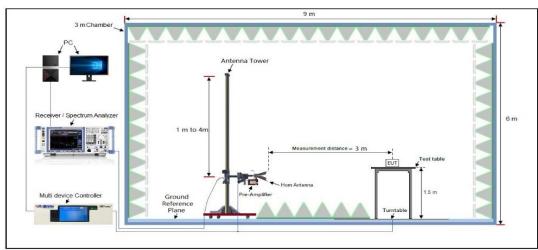
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


<u>Average Measurements above 1GHz (Method VB)</u>

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW setting requirements are as follows:
- 4. If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- 5. If the EUT duty cycle is < 98%, set VBW \geq 1/T. T is the minimum transmission duration.
- 6. Detector = Peak
- 7. Sweep time = auto
- 8. Trace mode = max hold



11.3 Measurement Setup (Block Diagram of Configuration)



Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/

11.4 Measurement Result

Radiated Emission at 9kHz-30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

EUT Name Temperature Pressure Test Mode 72.0 dB	23.9 960	CDRO 5℃ hPa de 1				Model N Relative Test Vol Antenna	Humidi tage	ty 5	020S 19.4% DC 3.7V Iorizontal	
Pressure Test Mode	960 Mod	hPa				Test Vol	tage	с С	DC 3.7V	
Test Mode	Mo						-			
		de 1				Antenna	a Polarity	y H	lorizontal	
72.0 dB	uV/m									
	:uv /m									
32 -8	an a	Million Argan			-orbeline the sector of the					
30.000	40	50	60 70	80	(MHz)	300	400	500 600	700 1000.000	
N	o. Mi	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dÐ	dBuV/m	dB/m	dÐ	Detector	
	1	408	.9460	16.80	20.58	37.38	46.00	-8.62	peak	
	2	455	.9058	14.12	24.54	38.66	46.00	-7.34	peak	
	3 !	744	.8661	17.04	23.46	40.50	46.00	-5.50	peak	
	4 *	793	.3960	17.08	26.34	43.42	46.00	-2.58	peak	
_	5!	842	.1296	12.95	28.03	40.98	46.00	-5.02	peak	
	6!	890	.7278	9.94	30.64	40.58	46.00	-5.42	peak	

		Radiated Emissi	on Test Resu	ts at 30M	Hz-1GHz		
EUT Name	R/C DRONE Mo				lame	D20S	
Temperature	23.5°C Relative Humidity			59.4%			
Pressure	960hPa			Test Vol	tage	DC 3.7V	
Test Mode	Mode 1			Antenna	a Polarity	Vertical	
72.0 dB	uV/m						
72.0 4						Limit: — Margin: —	
						maryin. —	
							4
					1	<u> </u>	-
					× ×	× ××	M
32					1 delaw handred way		-
	and the state of t	have been and the second of th	angen Magnahan nakeng	when har and a whole	Mranda.		_
whom		and the second second		~			
							-
-8 30.000	40 50 60	70 80	(MHz)	300	400 500 0	500 7 00 100	D. 000
		Reading		Aeasure-	Lineite C		
N		req. Level	Factor	ment)ver	
		Hz dBuV	dB	dBuV/m		dB Deter	
	1 440.1	963 11.85	26.09	37.94	46.00 -8	3.06 pea	ak
_	2 547.0	977 12.05	24.66	36.71	46.00 -9	9.29 pea	ak
	3 668.1	422 9.63	27.58	37.21	46.00 -8	3.79 pea	ak
	4 * 744.8	660 11.47	27.22	38.69	46.00 -7	7.31 pea	ak
	5 793.3	958 10.12	27.67	37.79	46.00 -8	3.21 pea	ak
	6 945.4	398 6.69	30.78	37.47	46.00 -8	3.53 pea	ak

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.

Radiated Emissions Test Results above 1 GHz

EUT Name	R/C DRONE	R/C DRONE			el Name		D20S	
Temperature	23.5°C			Relat	Relative Humidity 59.4%		59.4%	
Pressure	960hPa			Test Voltage DC 3.7V		V		
Test Mode	Mode 1	Mode 1		Ante	nna Polarity		Horizoi	ntal
Frequency	Meter Reading	Factor	Emission	Level	Limits	ſ	<i>l</i> argin	
(MHz)	(dBµV)	(dB)	(dBµV/r	m)	(dBµV/m)		(dB)	Value Type
4824.000	46.56	0.08	46.64	1	74		27.36	peak
4824.000	37.73	0.08	37.81	1	54		16.19	AVG
7236.000	41.86	2.21	44.07	7	74		29.93	peak
7236.000	32.52	2.21	34.73	3	54	-	19.27	AVG
	ļļ							
Remark:								
Factor = Antei	nna Factor + Cable	e Loss – Pre-	amplifier.					-
EUT Name	R/C DRONE	e Loss – Pre-		Mode	el Name		D20S	
		e Loss – Pre-			el Name ive Humidity	,	D20S 59.4%	
EUT Name Temperature	R/C DRONE	e Loss – Pre-		Relat		,		V
EUT Name Temperature Pressure	R/C DRONE	e Loss – Pre-		Relat Test	ive Humidity	,	59.4%	
EUT Name Temperature Pressure Test Mode	 R/C DRONE 23.5°C 960hPa Mode 1 	e Loss – Pre-		Relat Test	ive Humidity Voltage nna Polarity		59.4% DC 3.7 Vertica	
EUT Name Temperature Pressure Test Mode	R/C DRONE 23.5°C 960hPa Mode 1	Factor	Emission	Relat	ive Humidity Voltage nna Polarity Limits		59.4% DC 3.7 Vertica	
EUT Name Temperature Pressure Test Mode	R/C DRONE 23.5°C 960hPa Mode 1 Meter Reading (dBµV)			Relat	ive Humidity Voltage nna Polarity		59.4% DC 3.7 Vertica	
EUT Name Temperature Pressure Test Mode	R/C DRONE 23.5°C 960hPa Mode 1 Meter Reading (dBµV) 46.17	Factor	Emission	Relat Test Anter Level m)	ive Humidity Voltage nna Polarity Limits		59.4% DC 3.7 Vertica	Value Type
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4824.000 4824.000	R/C DRONE 23.5°C 960hPa Mode 1 Meter Reading (dBμV) 46.17 36.95	Factor (dB) 0.08 0.08	Emission (dBµV/r 46.25 37.03	Relat Test Anter Level m) 5	ive Humidity Voltage nna Polarity Limits (dBμV/m) 74 54	<u>ا</u>	59.4% DC 3.7 Vertica /argin (dB) 27.75 16.97	Value Type peak AVG
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4824.000 4824.000 7236.000	R/C DRONE 23.5°C 960hPa Mode 1 Meter Reading (dBμV) 46.17 36.95 41.56	Factor (dB) 0.08 0.08 2.21	Emission (dBµV/r 46.25 37.03 43.77	Relat Test Anter Level m) 5 3 7	Limits (dBµV/m) 74 54 74	1 - -	59.4% DC 3.7 Vertica Aargin (dB) 27.75 16.97 30.23	Value Type peak AVG peak
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4824.000 4824.000	R/C DRONE 23.5°C 960hPa Mode 1 Meter Reading (dBμV) 46.17 36.95	Factor (dB) 0.08 0.08	Emission (dBµV/r 46.25 37.03	Relat Test Anter Level m) 5 3 7	ive Humidity Voltage nna Polarity Limits (dBμV/m) 74 54	1 - -	59.4% DC 3.7 Vertica /argin (dB) 27.75 16.97	Value Type peak AVG
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4824.000 4824.000 7236.000	R/C DRONE 23.5°C 960hPa Mode 1 Meter Reading (dBμV) 46.17 36.95 41.56	Factor (dB) 0.08 0.08 2.21	Emission (dBµV/r 46.25 37.03 43.77	Relat Test Anter Level m) 5 3 7	Limits (dBµV/m) 74 54 74	1 - -	59.4% DC 3.7 Vertica Aargin (dB) 27.75 16.97 30.23	Value Type peak AVG peak

RESULT: Pass

Radiated Emissions Test Results above 1GHz

EUT Name		R/C DRONE				I Name		D20S		
Temperature		23.5°C			Relat	ive Humi	dity	59.4%)	
Pressure		960hPa			Test	Voltage		DC 3.	7V	
Test Mode		Mode 2		Anter	Antenna Polarity Ho		Horizo	lorizontal		
Frequence	су	Meter Reading	Factor	Emissior	n Level	Limits		Margin	Value Typ	
(MHz)		(dBµV)	(dB)	(dBµV	//m)	(dBµV/m)	(dB)	value ryp	be
4874.00	0	45.81	0.14	45.9	5	74		-28.05	peak	
4874.00	0	38.19	0.14	38.3	3	54		-15.67	AVG	
7311.00	0	41.38	2.36	43.7	'4	74		-30.26	peak	
7311.00	0	34.19	2.36	36.5	5	54		-17.45	AVG	
Remark:										
Factor = A	ntenna	Factor + Cat	ole Loss – P	re-amplifier.						
								1		
EUT Name		R/C DRON	E		Mode	I Name		D20S		
Temperature		23.5°C			Relative Humidity 59		59.4%	9.4%		
Pressure		960hPa			Test Voltage		DC 3.7V			
Test Mode		Mode 2			Anter	nna Polar	ity	Vertica	al	
Frequency	Motor	Reading	Factor	Emission Leve		Limits	Margi	n		
(MHz)		dBµV)	(dB)	(dBµV/m)	-	BµV/m)	(dB)		Value Type	
4874.000		15,15	0.14	45.29		74	-28.7	1	peak	
4874.000		37.64	0.14	37.78		54	-16.2		AVG	
7311.000		10.92	2.36	43.28		74	-30.7		peak	
7311.000		33.67	2.36	36.03		54	-17.9		AVG	
Remark:										
Factor = Anten	na Fac	tor + Cable I	oss – Pre-a	mplifier						

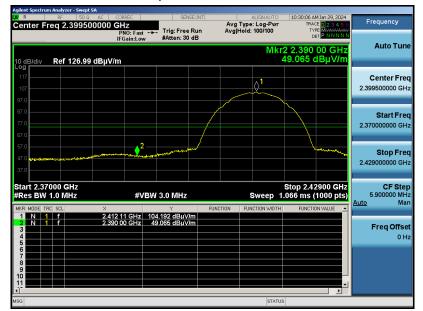
RESULT: Pass

Radiated Emissions Test Results above 1GHz

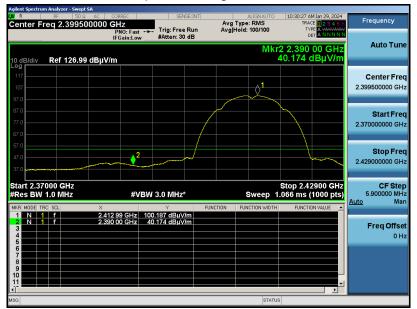
EUT Name	R/C DRONE	R/C DRONE			E Model Name			D20S		
Temperature	23.5°C		Relativ	Relative Humidity		59.4%				
Pressure	960hPa	60hPa Test Voltage		oltage	DC 3.7V					
Test Mode	Mode 3	Mode 3		na Polarity	Horizont	al				
			·		·					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type				
4924.000	46.66	0.22	46.88	74	-27.12	peak				
4924.000	38.44	0.22	38.66	54	-15.34	AVG				
7386.000	41.39	2.64	44.03	74	-29.97	peak				
7386.000	32.25	2.64	34.89	54	-19.11	AVG				
Remark:	<u> </u>					1				
Factor = Anter	nna Factor + Cable	Loss – Pre-	amplifier.			-				
EUT Name	R/C DRONE	Loss – Pre-		Name	D20S					
		ELOSS – Pre-	Model	Name ve Humidity	D20S 59.4%					
EUT Name Temperature	R/C DRONE	Loss – Pre-	Model	ve Humidity						
EUT Name Temperature Pressure	R/C DRONE 23.5°C	Loss – Pre-	Model Relativ Test V	ve Humidity	59.4%					
EUT Name Temperature Pressure Test Mode	R/C DRONE 23.5°C 960hPa Mode 3		Model Relativ Test V Anten	ve Humidity oltage na Polarity	59.4% DC 3.7V Vertical					
EUT Name Temperature Pressure Test Mode	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading	Factor	Model Relativ Test V Anten Emission Level	ve Humidity foltage na Polarity Limits	59.4% DC 3.7V Vertical	Value Type				
EUT Name Temperature Pressure Test Mode Frequency (MHz)	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV)	Factor (dB)	Model Relativ Test V Anten Emission Level (dBµV/m)	ve Humidity oltage na Polarity Limits (dBµV/m)	59.4% DC 3.7V Vertical Margin (dB)	- Value Type				
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4924.000	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV) 46.18	Factor (dB) 0.22	Model Relativ Test V Anten Emission Level (dBµV/m) 46.4	ve Humidity foltage na Polarity Limits (dBµV/m) 74	59.4% DC 3.7V Vertical Margin (dB) -27.6	Value Type				
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV) 46.18 38.53	Factor (dB) 0.22 0.22	Model Relativ Test V Anten Emission Level (dBµV/m) 46.4 38.75	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54	59.4% DC 3.7V Vertical Margin (dB) -27.6 -15.25	- Value Type peak AVG				
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000 7386.000	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV) 46.18 38.53 40.77	Factor (dB) 0.22 0.22 2.64	Model Relative Test V Anten Emission Level (dBµV/m) 46.4 38.75 43.41	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	59.4% DC 3.7V Vertical Margin (dB) -27.6 -15.25 -30.59	- Value Type peak AVG peak				
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV) 46.18 38.53	Factor (dB) 0.22 0.22	Model Relativ Test V Anten Emission Level (dBµV/m) 46.4 38.75	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54	59.4% DC 3.7V Vertical Margin (dB) -27.6 -15.25	- Value Type peak AVG				
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000 7386.000	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV) 46.18 38.53 40.77	Factor (dB) 0.22 0.22 2.64	Model Relative Test V Anten Emission Level (dBµV/m) 46.4 38.75 43.41	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	59.4% DC 3.7V Vertical Margin (dB) -27.6 -15.25 -30.59	- Value Type peak AVG peak				
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000 7386.000	R/C DRONE 23.5°C 960hPa Mode 3 Meter Reading (dBµV) 46.18 38.53 40.77	Factor (dB) 0.22 0.22 2.64	Model Relative Test V Anten Emission Level (dBµV/m) 46.4 38.75 43.41	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	59.4% DC 3.7V Vertical Margin (dB) -27.6 -15.25 -30.59	- Value Type peak AVG peak				

RESULT: Pass

Note:


- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.
- 4. All test modes had been tested. The 802.11b modulation is the worst case and recorded in the report. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection"

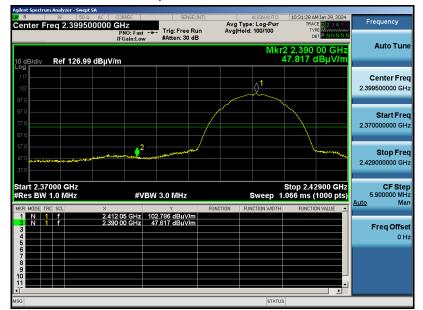
Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.



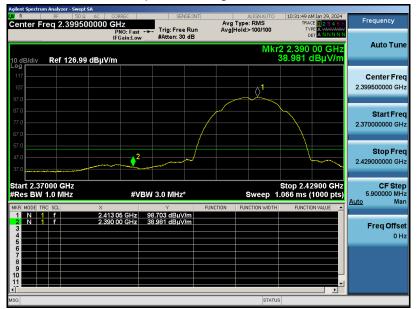
EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 1	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



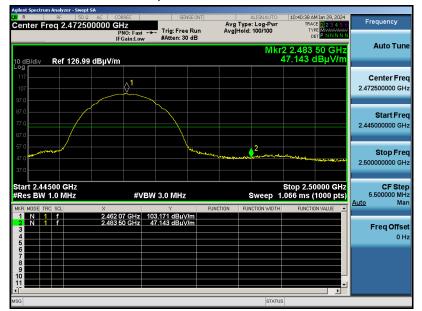
RESULT: Pass



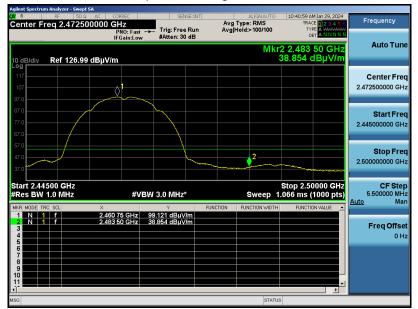
EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



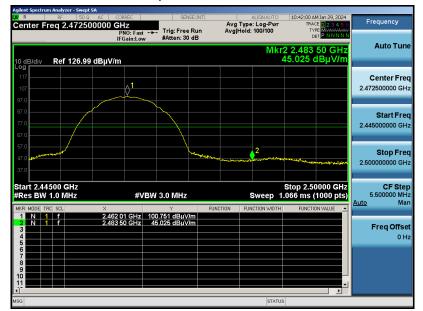
RESULT: Pass



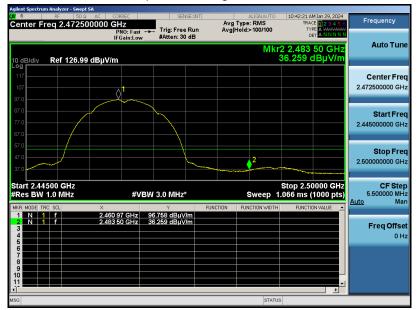
EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



RESULT: Pass

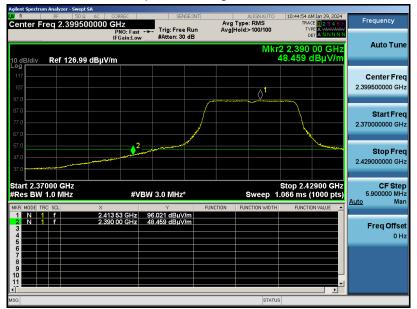


EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 3	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

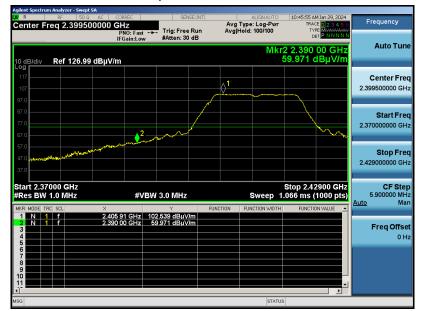
RESULT: Pass



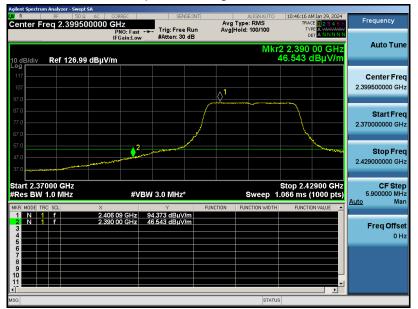
EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 4	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



RESULT: Pass



EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 4	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 6	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

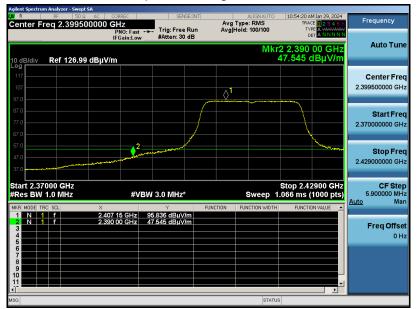
RESULT: Pass

EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 6	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

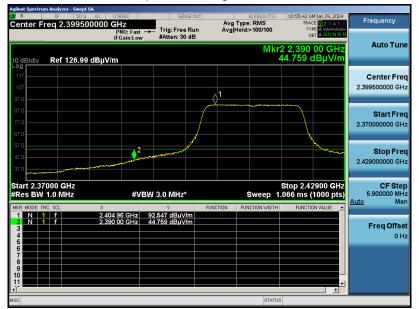


EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 7	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass



EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 7	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 9	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

EUT Name	R/C DRONE	Model Name	D20S
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V
Test Mode	Mode 9	Antenna Polarity	Vertical

Test Graph for Peak Measurement

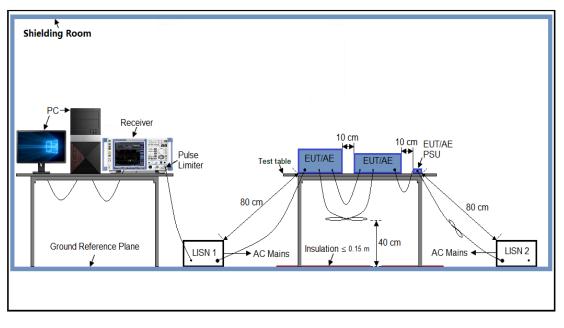
Test Graph for Average Measurement

RESULT: Pass

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

12. AC Power Line Conducted Emission

12.1 Measurement Limits


Frequency	Maximum RF Line Voltage		
Frequency	Q.P (dBµV)	Average (dBµV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2 Block Diagram of Line Conducted Emission Test

12.3 Preliminary Procedure of Line Conducted Emission Test

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 Ohm load; the second scan had Line 1 connected to a 50 Ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case was reported on the Summary Data page.

12.5 Test Result of Line Conducted Emission Test

N/A

Note: The conducted emission tests at AC port are not required for devices which WiFi does not work while charging.

Report No.: AGC15705240142FR01 Page 77 of 77

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC15705240142AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC15705240142AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.