

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180700671004 Page: 1 of 85

TEST REPORT

Application No.:	SZEM1807006710CR		
Applicant:	Xiamen Huoshiquan Import & Export CO., LTD		
Address of Applicant:	Room 703, No. 813-2 Xiahe Road, Siming District, XIAMEN China		
Equipment Under Test (EUT)	:		
EUT Name:	RC quadcopter		
Model No.:	HS700, HS700D, HS700G, HS710, HS165, HS165G, HS165G, HS120I HS120G, HS130D, HS130G, HS500, HS600, HS800, HS900, HS510, HS610, HS810, HS910, HS550, HS650, HS760, HS770, HS880, HS660 HS9001, CD200D, CD600, HS500G, HS600G, HS800G, HS900G, HS510G, HS550G, HS610G, HS650G, HS660G, HS760G, HS770G, HS880G, HS910G, HS500D, HS600D, HS800D, HS900D, HS510D, HS610D, HS810D, HS910D, HS650D, HS660D, HS760D, HS770D, HS880D, HS410, HS510, HS175, HS176, HS320, HS330, *		
*	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.		
FCC ID:	2AJ55HOLYSTONEJX		
Standard(s) :	47 CFR Part 15, Subpart E 15.407		
Date of Receipt:	2018-07-26		
Date of Test:	2018-07-26 to 2018-09-04		
Date of Issue:	2018-09-12		
Test Result:	Pass*		

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180700671004 Page: 2 of 85

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2018-09-12		Original

Authorized for issue by:		
	Bive chen	
	Bill Chen /Project Engineer	
	Evic Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180700671004 Page: 3 of 85

2 Test Summary

Radio Spectrum Technical Requirement					
Standard	Method	Requirement	Result		
47 CFR Part 15, Subpart E 15.407	N/A	47 CFR Part 15, Subpart C 15.203	Pass		
47 CFR Part 15, Subpart E 15.407	N/A	47 CFR Part 15, Subpart C 15.407 (c)	Pass		
	Standard 47 CFR Part 15, Subpart E 15.407 47 CFR Part 15, Subpart E 15.407	mical RequirementStandardMethod47 CFR Part 15, Subpart E 15.407N/A47 CFR Part 15, Subpart E 15.407N/A	Inical RequirementStandardMethodRequirement47 CFR Part 15, Subpart E 15.407N/A47 CFR Part 15, Subpart C 15.20347 CFR Part 15, Subpart E 15.407N/A47 CFR Part 15, Subpart C 15.407 (c)		

N/A: Not applicable

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Duty Cycle	47 CFR Part 15, Subpart E 15.407	KDB 789033 II B 1	KDB 789033 D02 II B 1	Pass	
99% Bandwidth	47 CFR Part 15, Subpart E 15.407	KDB 789033 II D	N/A	Pass	
26dB Emission bandwidth	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II C 1	47 CFR Part 15, Subpart C 15.407 (a)	Pass	
Maximum Conducted output power	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II E	47 CFR Part 15, Subpart C 15.407 (a)	Pass	
Peak Power spectrum density	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II F	47 CFR Part 15, Subpart C 15.407 (a)	Pass	
Radiated Emissions	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	Pass	
Frequency Stability	47 CFR Part 15, Subpart E 15.407	ANSI C63.10 (2013) Section 6.8	47 CFR Part 15, Subpart C 15.407 (g)	Pass	

N/A: Not applicable

Declaration of EUT Family Grouping:

Model No.: HS700, HS700D, HS700G, HS710, HS165, HS165G, HS165G, HS120D, HS120G, HS130D, HS130G, HS500, HS600, HS800, HS900, HS510, HS610, HS810, HS910, HS550, HS650, HS760, HS770, HS880, HS660, HS9001, CD200D, CD600, HS500G, HS600G, HS800G, HS900G, HS510G, HS550G, HS610G, HS650G, HS660G, HS760G, HS770G, HS880G, HS910G, HS500D, HS600D, HS800D, HS900D, HS510D, HS610D, HS810D, HS910D, HS650D, HS660D, HS760D, HS770D, HS880D, HS410, HS510, HS175, HS176, HS320, HS330

Only the model HS700 was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for the above models, with only the colour, appearance, package and assort is different.

Report No.: SZEM180700671004 Page: 4 of 85

3 Contents

		Page
1	1 COVER PAGE	1
~		
2	2 TEST SUMMARY	
3	3 CONTENTS	4
4	4 GENERAL INFORMATION	6
	4.1 DETAILS OF E.U. I	
	4.2 DESCRIPTION OF SUPPORT UNITS	
	4.3 MEASUREMENT UNCERTAINTY	
	4.4 TEST LOCATION	
	4.5 TEST FACILITY	
	4.7 ABNOBMALITIES FROM STANDARD CONDITIONS	
5	5 EQUIPMENT LIST	9
~		10
6	6 RADIO SPECTRUM TECHNICAL REQUIREMENT	
	6.1 ANTENNA REQUIREMENT	
	6.1.1 Test Requirement:	
	6.1.2 Conclusion	
	6.2 TRANSMISSION IN THE ABSENCE OF DATA	
	6.2.1 Test Requirement:	
		10
	6.2.2 Conclusion	
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 	
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 	
7	 6.2.2 Conclusion	
7	 6.2.2 Conclusion	
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data	13 14 14 14 14 14 14 14
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH	13 14 14 14 14 14 14 14 14 15
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 	13 14 14 14 14 14 14 14 15 15
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 	13 14 14 14 14 14 14 14 15 15 15 15
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 	13 14 14 14 14 14 14 14 15 15 15 15 15
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS. 7.1 DUTY CYCLE. 7.1.1 E.U.T. Operation	13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 16
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS. 7.1 DUTY CYCLE. 7.1.1 E.U.T. Operation. 7.1.2 Test Setup Diagram. 7.1.3 Measurement Procedure and Data. 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation. 7.2.2 Test Setup Diagram. 7.2.3 Measurement Procedure and Data. 7.3 26DB EMISSION BANDWIDTH. 7.3.1 E.U.T. Operation. 7.2.2 Test Ceture Diagram. 7.3 26DB EMISSION BANDWIDTH. 7.3.1 E.U.T. Operation. 	13 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram	13 14 14 14 14 14 14 15 15 15 15 15 15 15 16 16 16
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.3 Measurement Procedure and Data 7.3.4 Maximum Computered output power	13 14 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 17
7	 6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS. 7.1 DUTY CYCLE. 7.1.1 E.U.T. Operation	13 14 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 17 18
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.3 Measurement Procedure and Data 7.3.4 EAUSION BANDWIDTH 7.3.5 Measurement Procedure and Data 7.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram	13 14 14 14 14 14 14 15 15 15 15 15 15 15 16 16 16 16 17 18 18 18 18
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data	13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16 16 16 17 18 18 18 18 18
7	 6.2.2 Conclusion RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.5 PEAK POWER SPECTBUM DENSITY 	13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.4.3 Measurement Procedure and Data 7.5 PEAK POWER SPECTRUM DENSITY 7.5.1 E.U.T. Operation	13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15
7	 6.2.2 Conclusion RADIO SPECTRUM MATTER TEST RESULTS. 7.1 DUTY CYCLE. 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data. 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data. 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data. 7.4 MAXIMUM CONDUCTED OUTPUT POWER. 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data. 7.5 PEAK POWER SPECTRUM DENSITY. 7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram 	13 14 14 14 14 14 14 14 14 14 14
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.5 PEAK POWER SPECTRUM DENSITY 7.5.1 E.U.T. Operation 7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram 7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram 7.5.3 Measurement Procedure and Data	13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.5 PEAK POWER SPECTRUM DENSITY 7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram 7.5.3 Measurement Procedure and Data 7.5.3 Measurement Procedure and Data 7.5.3 Measurement Procedure and Data 7.5.4 E.U.T. Operation 7.5.5 Test Setup Diagram 7.5.6	13 14 15 15 15 15 16 16 17 18 18 19 20 20 20 20 21 21
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.4 E.U.T. Operation 7.3.5 Measurement Procedure and Data 7.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.5 PEAK POWER SPECTRUM DENSITY 7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram 7.5.3 Measurement Procedure and Data 7.5.3 Measurement Procedure and Data 7.5.3 Measurement Procedure and Data	13 14 15 15 15 15 15 16 16 17 18 18 19 20 20 20 20 21 21
7	6.2.2 Conclusion 7 RADIO SPECTRUM MATTER TEST RESULTS 7.1 DUTY CYCLE 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 99% BANDWIDTH 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 26DB EMISSION BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 7.3.3 Measurement Procedure and Data 7.3.4 E.U.T. Operation 7.3.5 Measurement Procedure and Data 7.4 MAXIMUM CONDUCTED OUTPUT POWER 7.4.1 E.U.T. Operation 7.4.2 Test Setup Diagram 7.4.3 Measurement Procedure and Data 7.5 PEAK POWER SPECTRUM DENSITY 7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram 7.5.3 Measurement Procedure and Data 7.5.4 E.U.T. Operation 7.5.5 Measurement Procedure and Data 7.5.6	13 14 14 14 14 14 14 15 15 15 15 15 15 15 16 16 16 16 16 16 16 18 18 18 18 19 20 20 20 21 21 21

Report No.: SZEM180700671004 Page: 5 of 85

	7.7	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7.1	E.U.T. Operation	
	7.7.2	Test Setup Diagram	
	7.7.3	Measurement Procedure and Data	
	7.8	FREQUENCY STABILITY	
	7.8.1	E.U.T. Operation	
	7.8.2	Test Setup Diagram	
	7.8.3	Measurement Procedure and Data	49
8	PHO	TOGRAPHS	50
	8.1	TEST SETUP	
	8.2	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	50
9	APP	ENDIX	51
	9.1	APPENDIX 15.407	

Report No.: SZEM180700671004 Page: 6 of 85

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 7.4V			
Frequency Range:	UNII Band III	IEEE 802.11a	5745-5825	5
		IEEE 802.11n 20MHz	5745-5825	5
Data Modulation:	For 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)			
	For 802.11n: OFDM(8PSK/QPSK/16QAM/64QAM)			
Antenna Type	Monopole			
Antenna Gain	Antenna 1: 2dBi Antenna 2: 2dBi			
	Two antennas can not simultaneous transmission.			

Using test software was control EUT work in continuous transmitter and receiver mode. And select test channel as below:

For 20MHz bandwidth:

Channel	Frequency
The lowest channel	5745MHz
The middle channel	5785MHz
The highest channel	5825MHz

Report No.: SZEM180700671004 Page: 7 of 85

4.2 Description of Support Units

Description	Manufacturer	Model No.
Plane	Xiamen Huoshiquan Import & Export CO., LTD	HS700

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power	± 0.75dB
5	RF power density	± 2.84dB
6	Conducted Spurious emissions	± 0.75dB
7	DE Dedicted rewer	± 4.5dB (below 1GHz)
1	RF Radiated power	± 4.8dB (above 1GHz)
0		± 4.5dB (Below 1GHz)
8	Radiated Spurious emission test	± 4.8dB (Above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Report No.: SZEM180700671004 Page: 8 of 85

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180700671004 Page: 9 of 85

5 Equipment List

Unwanted emissions in the spurious domain					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

RF conducted test					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
DC Power Supply	ZhaoXin	PS-3005D	SEM011-05	2017-09-27	2018-09-26
Spectrum Analyzer (20Hz-43GHz)	Rohde & Schwarz	FSU43	SEM004-08	2018-04-13	2019-04-12
Signal Generator (9kHz-40GHz)	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.6	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A

Report No.: SZEM180700671004 Page: 10 of 85

Spurious Emission					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

RE in Chamber					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04
MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018-09-25	2019-09-24
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM025-01	2018-07-12	2019-07-11

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date

Report No.: SZEM180700671004 Page: 11 of 85

Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07

Report No.: SZEM180700671004 Page: 12 of 85

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is Antenna 1: 2dBi and Antenna 2: 2dBi.

Report No.: SZEM180700671004 Page: 13 of 85

6.2 Transmission in the Absence of Data

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.407 (c)

6.2.2 Conclusion

Standard Requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Applicants shall include in their application for equipment authorization a description of how this requirement is met.

EUT Details:

WIFI chip (AR1021X) support automatically discontinue transmission in case of either absence of information to transmit or operational failure, if the chip detect absence of information to transmit or operational failure, it will be automatically shut off.

Report No.: SZEM180700671004 Page: 14 of 85

7 Radio Spectrum Matter Test Results

7.1 Duty Cycle

Test RequirementKDB 789033 D02 II B 1Test Method:KDB 789033 II B 1

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44 % RHAtmospheric Pressure:1010mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180700671004 Page: 15 of 85

7.2 99% Bandwidth

Test RequirementN/ATest Method:KDB 789033 II D

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44 % RHAtmospheric Pressure:1010 mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180700671004 Page: 16 of 85

7.3 26dB Emission bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.407 (a)
Test Method:	KDB 789033 D02 II C 1

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44 % RHAtmospheric Pressure:1010 mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180700671004 Page: 17 of 85

7.4 Maximum Conducted output power

Test Requirement	47 CFR Part 15, Subpart C 15.407 (a)
Test Method:	KDB 789033 D02 II E
Limit:	

Frequency band(MI	Hz)	Limit		
		≤1W(30dBm) for master device		
5150-5250		≤250mW(24dBm) for client device		
5250-5350		≤250mW(24dBm) for client device or 11dBm+10logB*		
5470-5725		≤250mW(24dBm) for client device or 11dBm+10logB*		
5725-5850		≤1W(30dBm)		
Remark: * Where	* Where B is the 26dB emission bandwidth in MHz.			
The max continuou voltage.	The maximum conducted output power must be measured over any inte continuous transmission using instrumentation calibrated in terms of an rms-equivoltage.			

Report No.: SZEM180700671004 Page: 18 of 85

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44% RHAtmospheric Pressure:1010mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180700671004 Page: 19 of 85

7.5 Peak Power spectrum density

Test Requirement	47 CFR Part 15, Subpart C 15.407 (a)
Test Method:	KDB 789033 D02 II F
Limit:	

Frequency band(MHz)		Limit		
5150-5250		≤17dBm in 1MHz for master device		
		≤11dBm in 1MHz for client device		
5250-5350		≤11dBm in 1MHz for client device		
5470-5725		≤11dBm in 1MHz for client device		
5725-5850		≤30dBm in 500 kHz		
Remark:	The maximum power spectral density is measured as a conducted emission by connection of a calibrated test instrument to the equipment under test.			

Report No.: SZEM180700671004 Page: 20 of 85

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44% RHAtmospheric Pressure:1010mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180700671004 Page: 21 of 85

7.6 Radiated Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.407(b)
Test Method:	KDB 789033 D02 II G

7.6.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44 % RHAtmospheric Pressure:1010 mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.6.2 Test Setup Diagram

Above 1GHz

Report No.: SZEM180700671004 Page: 22 of 85

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. For emission below 1GHz, through the pre-scan found the worst case is the lowest channel of 802.11a. Only the worst case is recorded in the report.

3. Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180700671004 Page: 23 of 85

0ver

Limit

dB

Pretest the EUT at antenna 1 and antenna 2 and found the antenna 2 which is worst case, So, Only the antenna 1 test data is recorded in the report.

30MHz~1GHz

Detector:QP

Mode: e; Polarization: Horizontal

Condi	tion:	Зm	HORIZO	NTAL				
Job N	o. :	067	710CR					
Mode	:	e						
			Cable	Ant	Preamp	Read		Limit
		Freq	Loss	Factor	Factor	Level	Level	Line
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m

1	268.49	1.76	18.97	27.54	45.04	38.23	46.00	-7.77
2	729.36	2.99	28.08	27.51	36.12	39.68	46.00	-6.32
3	810.27	3.25	28.64	27.38	36.99	41.50	46.00	-4.50
4 pp	893.86	3.58	29.72	27.10	36.30	42.50	46.00	-3.50
5	972.34	3.67	30.17	26.85	36,60	43.59	54.00	-10.41

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions nple(s)

Report No.: SZEM180700671004 Page: 24 of 85

Mode: e; Polarization: Vertical

Condition: 3m VERTICAL Job No. : 06710CR

Job No. : 0 Mode : e

	Freq	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	47.83	0.76	14.86	27.61	40.56	28.57	40.00	-11.43
2	143.83	1.31	14.06	27.52	32.85	20.70	43.50	-22.80
3 pp	268.49	1.76	18.97	27.54	45.51	38.70	46.00	-7.30
4	487.32	2.56	24.35	27.86	34.71	33.76	46.00	-12.24
5	729.36	2.99	28.08	27.51	34.71	38.27	46.00	-7.73
6	972.34	3.67	30.17	26.85	38.45	45.44	54.00	-8.56

Report No.: SZEM180700671004 Page: 25 of 85

Above 1GHz Mode:e; Polarization:Horizontal; Channel:High

Condition:	3m HORIZONTAL
Job No :	06710CR
Mode :	5825 TX RSE
Note :	5G WIFI 11A

_									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1260.149	4.65	24.77	41.23	45.02	33.21	68.20	-34.99	peak
2	1702.042	5.23	26.68	41.53	45.20	35.58	74.00	-38.42	peak
3	3261.418	6.24	31.79	42.17	46.32	42.18	74.00	-31.82	peak
4	4109.872	7.11	33.60	42.35	46.52	44.88	74.00	-29.12	peak
5	11650.000	12.20	38.25	38.29	40.34	52.50	74.00	-21.50	peak
6	pp17475.000	15.65	43.37	40.68	34.44	52.78	68.20	-15.42	peak

Report No.: SZEM180700671004 Page: 26 of 85

Cond Job Mode	Condition: 3m VERTICAL Ob No : 06710CR Node : 5825 TX RSE									
Net			1.0							
Νοτε	e : 5G	WIFI I	IA	_				_		
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1206.682	4.44	24.51	41.19	46.19	33.95	74.00	-40.05	peak	
2	1494.455	5.46	25.78	41.40	45.74	35.58	74.00	-38.42	peak	
3	3386.297	6.36	32.01	42.19	47.16	43.34	68.20	-24.86	peak	
4	4456.315	7.51	33.60	42.41	47.55	46.25	68.20	-21.95	peak	
5	11650.000	12.20	38.25	38.29	38.56	50.72	74.00	-23.28	peak	
6	pp17475.000	15.65	43.37	40.68	33.75	52.09	68.20	-16.11	peak	

Report No.: SZEM180700671004 Page: 27 of 85

Cond: Job I Mode Note	Condition: 3m HORIZONTAL Job No : 06710CR Mode : 5785 TX RSE Note : 5G WIFI 11A									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHZ	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1249.269	4.61	24.72	41.22	46.85	34.96	68.20	-33.24	peak	
2	1507.470	5.47	25.83	41.41	45.54	35.43	74.00	-38.57	peak	
3	3376.523	6.35	31.99	42.19	46.67	42.82	68.20	-25.38	peak	
4	4443.453	7.50	33.60	42.41	46.61	45.30	68.20	-22.90	peak	
5	11570.000	12.17	38.17	38.24	39.92	52.02	74.00	-21.98	peak	
6 p	p17355.000	15.92	43.23	40.58	33.65	52.22	68.20	-15.98	peak	

Report No.: SZEM180700671004 Page: 28 of 85

Cond	Condition: 3m VERTICAL									
Job	No : 067	10CR								
Mode	e : 578	5 TX R	SE							
Note	e : 5G I	WIFI 1	1A							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1297.103	4.79	24.94	41.26	44.99	33.46	68.20	-34.74	peak	
2	1547.199	5.42	26.02	41.44	44.90	34.90	74.00	-39.10	peak	
3	3261.418	6.24	31.79	42.17	46.76	42.62	74.00	-31.38	peak	
4	3912.809	6.89	33.37	42.31	47.75	45.70	74.00	-28.30	peak	
5	11570.000	12.17	38.17	38.24	40.33	52.43	74.00	-21.57	peak	
6	pp17355.000	15.92	43.23	40.58	33.79	52.36	68.20	-15.84	peak	

Report No.: SZEM180700671004 Page: 29 of 85

Mode:e; Polarization:Horizontal; Channel:Low

Cond Job Mode	Condition: 3m HORIZONTAL Ob No : 06710CR Node : 5745 TX RSE									
NUL	. 574									
Νοτε	: 56	WIFI 1	1A							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1206.682	4.44	24.51	41.19	45.62	33.38	74.00	-40.62	peak	
2	1634.543	5.31	26.40	41.49	45.25	35.47	68.20	-32.73	peak	
3	3318.471	6.29	31.89	42.18	46.64	42.64	68.20	-25.56	peak	
4	3823.371	6.80	33.13	42.29	48.74	46.38	74.00	-27.62	peak	
5	11490.000	12.13	38.09	38.19	37.22	49.25	74.00	-24.75	peak	
6 p	p17235.000	16.18	43.08	40.48	32.36	51.14	68.20	-17.06	peak	

Report No.: SZEM180700671004 Page: 30 of 85

Cond	Condition: 3m VERTICAL									
Job	No : 067	10CR								
Mode	e : 574	5 TX R	SE							
Note	e : 5G	WIFI 1	1A							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1271.123	4.69	24.82	41.24	45.56	33.83	68.20	-34.37	peak	
2	1556.169	5.41	26.06	41.44	44.81	34.84	74.00	-39.16	peak	
3	3475.541	6.44	32.16	42.22	46.52	42.90	68.20	-25.30	peak	
4	4367.058	7.41	33.60	42.39	46.99	45.61	74.00	-28.39	peak	
5	11490.000	12.13	38.09	38.19	39.69	51.72	74.00	-22.28	peak	
6	pp17235.000	16.18	43.08	40.48	33.71	52.49	68.20	-15.71	peak	

Report No.: SZEM180700671004 Page: 31 of 85

Mode:e; Polarization:Horizontal; Channel:High

Con	Condition: 3m HORIZONTAL									
Job	No : 067	10CR								
Mod	e : 582	5 TX R	SE							
Not	e :5G	WIFI 1	1N20							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1206.682	4.44	24.51	41.19	45.44	33.20	74.00	-40.80	peak	
2	1435.189	5.27	25.54	41.36	45.77	35.22	74.00	-38.78	peak	
3	3485.601	6.45	32.18	42.22	45.73	42.14	68.20	-26.06	peak	
4	4254.921	7.28	33.60	42.37	46.38	44.89	74.00	-29.11	peak	
5	11650.000	12.20	38.25	38.29	39.03	51.19	74.00	-22.81	peak	
6	pp17475.000	15.65	43.37	40.68	33.63	51.97	68.20	-16.23	peak	

Report No.: SZEM180700671004 Page: 32 of 85

Cond	Condition: 3m VERTICAL									
Job	No : 067	10CR								
Mode	e : 582	5 TX R	SE							
Note	e : 5G	WIFI 1	1N20							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1203.199	4.43	24.49	41.19	45.65	33.38	74.00	-40.62	peak	
2	1529.414	5.44	25.94	41.43	45.49	35.44	74.00	-38.56	peak	
3	3415.787	6.38	32.06	42.20	46.62	42.86	68.20	-25.34	peak	
4	3924.135	6.91	33.40	42.31	47.46	45.46	74.00	-28.54	peak	
5	11650.000	12.20	38.25	38.29	39.23	51.39	74.00	-22.61	peak	
6	pp17475.000	15.65	43.37	40.68	34.11	52.45	68.20	-15.75	peak	

Report No.: SZEM180700671004 Page: 33 of 85

Mode:e; Polarization:Horizontal; Channel:middle

Condition: 3m HORIZONTAL											
Job No : 06710CR											
Mode : 5785 TX RSE											
Note	: 5G I	WIFI 1	1N20								
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	1199.726	4.42	24.48	41.18	47.17	34.89	74.00	-39.11	peak		
2	1370.328	5.05	25.26	41.32	45.78	34.77	74.00	-39.23	peak		
3	3465.510	6.43	32.14	42.21	46.14	42.50	68.20	-25.70	peak		
4	4279.589	7.31	33.60	42.38	46.76	45.29	74.00	-28.71	peak		
5	11570.000	12.17	38.17	38.24	39.12	51.22	74.00	-22.78	peak		
6	pp17355.000	15.92	43.23	40.58	33.27	51.84	68.20	-16.36	peak		

Report No.: SZEM180700671004 Page: 34 of 85

Condition: 3m VERTICAL											
Job No : 06710CR											
Mode	: 578	5 TX R	SE								
Note	e : 5G	WIFI 1	1N20								
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	1224.247	4.51	24.60	41.20	45.21	33.12	74.00	-40.88	peak		
2	1538.281	5.43	25.98	41.43	44.70	34.68	74.00	-39.32	peak		
3	3465.510	6.43	32.14	42.21	45.85	42.21	68.20	-25.99	peak		
4	4341.886	7.38	33.60	42.39	46.61	45.20	74.00	-28.80	peak		
5	11570.000	12.17	38.17	38.24	38.85	50.95	74.00	-23.05	peak		
6	pp17355.000	15.92	43.23	40.58	33.20	51.77	68.20	-16.43	peak		

Report No.: SZEM180700671004 Page: 35 of 85

Mode:e; Polarization:Horizontal; Channel:Low

Condition: 3m HORIZONTAL									
Job	No : 067	10CR							
Mode	e : 574	15 TX R	SE						
Note	e : 5G	WIFI 1	1N20						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1285.904	4.75	24.89	41.25	45.18	33.57	68.20	-34.63	peak
2	1629.825	5.31	26.38	41.49	44.75	34.95	68.20	-33.25	peak
3	3445.535	6.41	32.11	42.21	46.43	42.74	68.20	-25.46	peak
4	4482.150	7.54	33.60	42.41	46.99	45.72	68.20	-22.48	peak
5	11490.000	12.13	38.09	38.19	40.31	52.34	74.00	-21.66	peak
6	pp17235.000	16.18	43.08	40.48	33.81	52.59	68.20	-15.61	peak

Report No.: SZEM180700671004 Page: 36 of 85

Condition: 3m VERTICAL									
Job	No : 067	10CR							
Mode	e : 574	5 TX R	SE						
Note	e : 5G	WIFI 1	1N20						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1267.454	4.68	24.80	41.24	44.67	32.91	68.20	-35.29	peak
2	1702.042	5.23	26.68	41.53	44.95	35.33	74.00	-38.67	peak
3	3150.237	6.13	31.59	42.14	47.43	43.01	68.20	-25.19	peak
4	4379.699	7.43	33.60	42.40	47.18	45.81	74.00	-28.19	peak
5	11490.000	12.13	38.09	38.19	39.46	51.49	74.00	-22.51	peak
6	pp17235.000	16.18	43.08	40.48	33.37	52.15	68.20	-16.05	peak

Report No.: SZEM180700671004 Page: 37 of 85

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.407(b)
Test Method:	KDB 789033 D02 II G
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM180700671004 Page: 38 of 85

7.7.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44 % RHAtmospheric Pressure:1010 mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.7.2 Test Setup Diagram

Report No.: SZEM180700671004 Page: 39 of 85

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180700671004 Page: 40 of 85

Pretest the EUT at antenna 1 and antenna 2 and found the antenna 2 which is worst case, So, Only the antenna 1 test data is recorded in the report.

Mode:e; Polarization:Horizontal; Channel:High

Condit	:10n: 3m	HORIZO	NIAL							
Job No	: 067	10CR								
Mode	: 582	5 Band	edge							
	: 5G	WIFI 1	1A							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-										
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	5825.000	9.98	34.93	41.75	99.16	102.32	125.20	-22.88	peak	
2	5850.000	10.07	34.95	41.73	57.85	61.14	122.20	-61.06	peak	
3	5860.000	10.10	34.96	41.72	48.32	51.66	109.40	-57.74	peak	

Report No.: SZEM180700671004 Page: 41 of 85

Condit	ion: 3m	VERTIC	4L						
Job No	: 067	10CR							
Mode	: 582	5 Band	edge						
	: 5G	WIFI 1:	1A						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	5825.000	9.98	34.93	41.75	88.58	91.74	125.20	-33.46	peak
2	5850.000	10.07	34.95	41.73	48.17	51.46	122.20	-70.74	peak
3	5860.000	10.10	34.96	41.72	47.57	50.91	109.40	-58.49	peak

Mode

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180700671004 Page: 42 of 85

	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	5715.000	9.61	34.82	41.85	50.25	52.83	109.40	-56.57	peak
2	5725.000	9.64	34.83	41.84	68.25	70.88	122.20	-51.32	peak
3 pp	5745.000	9.71	34.85	41.82	97.43	100.17	125.20	-25.03	peak

Report No.: SZEM180700671004 Page: 43 of 85

tion:	3m \	VERTIC	AL							
lo :	067	10CR								
:	574	5 Band	edge							
:	5G	WIFI 1	1A							
		Cable	Ant	Preamp	Read		Limit	0ver		
F	req	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
5715.	000	9.61	34.82	41.85	47.35	49.93	109.40	-59.47	peak	
5725.	000	9.64	34.83	41.84	58.02	60.65	122.20	-61.55	peak	
5745.	000	9.71	34.85	41.82	88.93	91.67	125.20	-33.53	peak	
	tion: o : :	tion: 3m o : 067 : 574 : 5G Freq 	tion: 3m VERTIC o : 06710CR : 5745 Band : 5G WIFI 1 Cable Freq Loss MHz dB 5715.000 9.61 5725.000 9.64 o 5745.000 9.71	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Freq Loss Factor MHz dB dB/m 5715.000 9.61 34.82 5725.000 9.64 34.83 5745.000 9.71 34.85	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Preamp Freq Loss Factor Factor MHz dB dB/m dB 5715.000 9.61 34.82 41.85 5725.000 9.64 34.83 41.84 o 5745.000 9.71 34.85 41.82	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 5715.000 9.61 34.82 41.85 47.35 5725.000 9.64 34.83 41.84 58.02 o 5745.000 9.71 34.85 41.82 88.93	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 5715.000 9.61 34.82 41.85 47.35 49.93 5725.000 9.64 34.83 41.84 58.02 60.65 p 5745.000 9.71 34.85 41.82 88.93 91.67	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 5715.000 9.61 34.82 41.85 47.35 49.93 109.40 5725.000 9.64 34.83 41.84 58.02 60.65 122.20 p 5745.000 9.71 34.85 41.82 88.93 91.67 125.20	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 5715.000 9.61 34.82 41.85 47.35 49.93 109.40 -59.47 5725.000 9.64 34.83 41.84 58.02 60.65 122.20 -61.55 5745.000 9.71 34.85 41.82 88.93 91.67 125.20 -33.53	tion: 3m VERTICAL o : 06710CR : 5745 Band edge : 5G WIFI 11A Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit Remark MHz dB dB/m dB dB/w dBuV/m dBuV/m dBuV/m dB 5715.000 9.61 34.82 41.85 47.35 49.93 109.40 -59.47 peak 5725.000 9.64 34.83 41.84 58.02 60.65 122.20 -61.55 peak 5745.000 9.71 34.85 41.82 88.93 91.67 125.20 -33.53 peak

Mode

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180700671004 Page: 44 of 85

Mode:e; Polarization:Horizontal; Channel:High

	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	5850.000	10.07	34.95	41.73	72.43	75.72	122.20	-46.48	peak	
2	5859.708	10.10	34.96	41.72	62.68	66.02	109.48	-43.46	Peak	
3	pp 5860.000	10.10	34.96	41.72	102.52	105.86	109.40	-3.54	peak	

Report No.: SZEM180700671004 Page: 45 of 85

Condit	tion: 3m	VERTIC	AL							
Job No	b : 067	10CR								
Mode	: 582	5 Band	edge							
	: 5G	WIFI 1	1N20							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-										
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	5825.000	9.98	34.93	41.75	93.79	96.95	125.20	-28.25	peak	
2	5850.000	10.07	34.95	41.73	61.30	64.59	122.20	-57.61	peak	
-				44 70	50 33	CO C7	4.00 40			
3	5860.000	10.10	34.96	41./2	59.33	62.67	109.40	-46.73	peak	

Mode

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180700671004 46 of 85 Page:

			MTLT T	11120							
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1		5715.000	9.61	34.82	41.85	68.08	70.66	109.40	-38.74	peak	
2		5725.000	9.64	34.83	41.84	78.87	81.50	122.20	-40.70	, peak	
3	pp	5745.000	9.71	34.85	41.82	102.94	105.68	125.20	-19.52	peak	

Report No.: SZEM180700671004 Page: 47 of 85

Condi	tion: 3m	VERITC	AL							
Job No	o :067	10CR								
Mode	: 574	5 Band	edge							
	: 5G	WIFI 1	1N20							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	5715.000	9.61	34.82	41.85	57.49	60.07	109.40	-49.33	peak	
2	5725.000	9.64	34.83	41.84	70.78	73.41	122.20	-48.79	peak	
3 pp	5745 000	9 71	3/ 85	41 82	92 73	95 47	125 20	-29 73	neak	

Report No.: SZEM180700671004 Page: 48 of 85

7.8 Frequency Stability

Test Requirement	47 CFR Part 15, Subpart C 15.407 (g)
Test Method:	ANSI C63.10 (2013) Section 6.8
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Report No.: SZEM180700671004 Page: 49 of 85

7.8.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:44% RHAtmospheric Pressure:1010mbarTest modee:TX mode (UNII Band III)_Keep the EUT in continuously transmitting mode with
all modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); Only the data of worst case is
recorded in the report.

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

The applicant declares that the emissions are maintained within the band of operation under all conditions of normal operation as specified in the user's manual and meets Section 15.407(g) requirements.

Report No.: SZEM180700671004 Page: 50 of 85

8 Photographs

8.1 Test Setup Refer to Setup Photos

8.2 EUT Constructional Details (EUT Photos) Refer to EUT external and internal photos

Report No.: SZEM180700671004 Page: 51 of 85

9 Appendix

9.1 Appendix 15.407

1. Emission Bandwidth Measurement

Test Mode	Test Channel	Ant	EBW[MHz]	Limit[MHz]	Verdict
11A	5745	Ant1	15.720	>=0.5	PASS
11A	5745	Ant2	15.750	>=0.5	PASS
11A	5785	Ant1	15.600	>=0.5	PASS
11A	5785	Ant2	15.720	>=0.5	PASS
11A	5825	Ant1	15.750	>=0.5	PASS
11A	5825	Ant2	15.960	>=0.5	PASS
11N20	5745	Ant1	16.830	>=0.5	PASS
11N20	5745	Ant2	16.860	>=0.5	PASS
11N20	5785	Ant1	16.890	>=0.5	PASS
11N20	5785	Ant2	16.590	>=0.5	PASS
11N20	5825	Ant1	16.860	>=0.5	PASS
11N20	5825	Ant2	16.830	>=0.5	PASS

Report No.: SZEM180700671004 Page: 52 of 85

Report No.: SZEM180700671004 Page: 53 of 85

Report No.: SZEM180700671004 Page: 54 of 85

Report No.: SZEM180700671004 Page: 55 of 85

Report No.: SZEM180700671004 Page: 56 of 85

Report No.: SZEM180700671004 Page: 57 of 85

Report No.: SZEM180700671004 Page: 58 of 85

Test Mode	Test Channel	Ant	OBW[MHz]	Limit[MHz]	Verdict
11A	5745	Ant1	17.400		PASS
11A	5745	Ant2	16.950		PASS
11A	5785	Ant1	17.580		PASS
11A	5785	Ant2	17.400		PASS
11A	5825	Ant1	17.100		PASS
11A	5825	Ant2	17.700		PASS
11N20	5745	Ant1	18.210		PASS
11N20	5745	Ant2	18.090		PASS
11N20	5785	Ant1	18.240		PASS
11N20	5785	Ant2	18.450		PASS
11N20	5825	Ant1	18.240		PASS
11N20	5825	Ant2	18.750		PASS

2.Occupied Bandwidth Measurement

Report No.: SZEM180700671004 Page: 59 of 85

Report No.: SZEM180700671004 Page: 60 of 85

Report No.: SZEM180700671004 Page: 61 of 85

Report No.: SZEM180700671004 Page: 62 of 85

Report No.: SZEM180700671004 Page: 63 of 85

Report No.: SZEM180700671004 Page: 64 of 85

Report No.: SZEM180700671004 Page: 65 of 85

Test Mode	Test Channel	Ant	Level [dBm]	10log(1/x) Factor [dB]	Power [dBm]	Limit [dBm]	Verdict
11A	5745	Ant1	12.66	0.09	12.75	<30.00	PASS
11A	5745	Ant2	11.29	0.09	11.38	<30.00	PASS
11A	5785	Ant1	12.1	0.09	12.19	<30.00	PASS
11A	5785	Ant2	11.92	0.09	12.01	<30.00	PASS
11A	5825	Ant1	11.82	0.09	11.91	<30.00	PASS
11A	5825	Ant2	12	0.09	12.09	<30.00	PASS
11N20	5745	Ant1	11.45	0.1	11.55	<30.00	PASS
11N20	5745	Ant2	11.9	0.1	12.00	<30.00	PASS
11N20	5785	Ant1	12.37	0.11	12.48	<30.00	PASS
11N20	5785	Ant2	12.19	0.1	12.29	<30.00	PASS
11N20	5825	Ant1	12	0.1	12.10	<30.00	PASS
11N20	5825	Ant2	12.26	0.1	12.36	<30.00	PASS

3.Maximum Conduct Output Power

Report No.: SZEM180700671004 Page: 66 of 85

Report No.: SZEM180700671004 Page: 67 of 85

Report No.: SZEM180700671004 Page: 68 of 85

Report No.: SZEM180700671004 Page: 69 of 85

Report No.: SZEM180700671004 Page: 70 of 85

Report No.: SZEM180700671004 Page: 71 of 85

Report No.: SZEM180700671004 Page: 72 of 85

4. Maximum Power Spectral Density

Test Mode	Test Channel	Ant	Level [dBm/500kHz]	10log(1/x) Factor[dB]	10log(500kHz/RBW) Factor [dB]	PSD [dBm/500kHz]	Limit [dBm/500kHz]	Verdict
11A	5745	Ant1	0.87	0.09	0	0.96	<17.00	PASS
11A	5745	Ant2	-0.64	0.09	0	-0.55	<17.00	PASS
11A	5785	Ant1	0.23	0.09	0	0.32	<17.00	PASS
11A	5785	Ant2	0.08	0.09	0	0.17	<17.00	PASS
11A	5825	Ant1	-0.26	0.09	0	-0.17	<17.00	PASS
11A	5825	Ant2	0.15	0.09	0	0.24	<17.00	PASS
11N20	5745	Ant1	-0.51	0.1	0	-0.41	<17.00	PASS
11N20	5745	Ant2	-0.23	0.1	0	-0.13	<17.00	PASS
11N20	5785	Ant1	0.17	0.11	0	0.28	<17.00	PASS
11N20	5785	Ant2	0.38	0.1	0	0.48	<17.00	PASS
11N20	5825	Ant1	-0.1	0.1	0	0	<17.00	PASS
11N20	5825	Ant2	0.21	0.1	0	0.31	<17.00	PASS

Report No.: SZEM180700671004 Page: 73 of 85

Report No.: SZEM180700671004 Page: 74 of 85

Report No.: SZEM180700671004 Page: 75 of 85

Report No.: SZEM180700671004 Page: 76 of 85

Report No.: SZEM180700671004 Page: 77 of 85

Report No.: SZEM180700671004 Page: 78 of 85

Report No.: SZEM180700671004 Page: 79 of 85

Test Mode	Test Channel	Ant	Duty Cycle[%]	10log(1/x) Factor[dB]
11A	5745	Ant1	97.87	0.09
11A	5745	Ant2	97.87	0.09
11A	5785	Ant1	97.87	0.09
11A	5785	Ant2	97.87	0.09
11A	5825	Ant1	97.87	0.09
11A	5825	Ant2	97.87	0.09
11N20	5745	Ant1	97.71	0.1
11N20	5745	Ant2	97.71	0.1
11N20	5785	Ant1	97.46	0.11
11N20	5785	Ant2	97.71	0.1
11N20	5825	Ant1	97.72	0.1
11N20	5825	Ant2	97.71	0.1

5.Duty Cycle (x)

Report No.: SZEM180700671004 Page: 80 of 85

Report No.: SZEM180700671004 Page: 81 of 85

Report No.: SZEM180700671004 Page: 82 of 85

Report No.: SZEM180700671004 Page: 83 of 85

Report No.: SZEM180700671004 Page: 84 of 85

Report No.: SZEM180700671004 Page: 85 of 85

- End of the Report -