

TEST REPORT

Product Name : quadcopter

HS340, HT02, HT02W, HT25, HT25W, HS260, D23, D23W, HS320, HT30, HS610, HS176,

HS290, HS380, HS390, HS400, HS460, HS480, HS490, HS500, HS520, HS530, HS540, HS560, HS570, HS580, HS590, HS610, HS620, HS630, HS640, HS660, HS670, HS680, HS690, HS730,

Model Number : HS740, HS750, HS760, HS770, HS780, HS790,

HS800, HS810, HS820, HS830, HS840, HS850, HS860, HS870, HS880, HS890, HS900, HS910, HT300, HT40, HT15, HT35, HT45, HT05, HT10, D11, D33, D60, D70, D80, D35, D55, D20L,

HS130, HS280, HT50, HT60, HT65, HT70 HT75,

HT90, D65, D75, D85

FCC ID : 2AJ55HOLYSTONE4W

Prepared for : Xiamen Huoshiquan Import & Export CO., LTD

Address : Unit. 33, Room 806, NO. 2 Huming Road, Siming District,

Xiamen, China

Prepared by : EMTEK (SHENZHEN) CO., LTD.

Address : Building 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : ENS2202210082W00201R

Date(s) of Tests: February 28, 2022 to March 31, 2022

Date of issue: March 31, 2022

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	3
2	EU.	T TECHNICAL DESCRIPTION	4
3	SU	MMARY OF TEST RESULT	5
4	TES	ST METHODOLOGY	6
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	6
5	FAC	CILITIES AND ACCREDITATIONS	8
	5.1 5.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	8
6		ST SYSTEM UNCERTAINTY	
7	SE	TUP OF EQUIPMENT UNDER TEST	10
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1RADIO FREQUENCY TEST SETUP 2CONDUCTED EMISSION TEST SETUPBLOCK DIAGRAM CONFIGURATION OF TEST SYSTEMSUPPORT EQUIPMENT	10 11 12
8	TES	ST REQUIREMENTS	
	8.1 8.2 8.3 8.4 8.5 8.6 8.7	DTS (6DB) BANDWIDTH MAXIMUM PEAK CONDUCTED OUTPUT POWER MAXIMUM POWER SPECTRAL DENSITY UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS RADIATED SPURIOUS EMISSION CONDUCTED EMISSIONS TEST ANTENNA APPLICATION	

1 TEST RESULT CERTIFICATION

Applicant : Xiamen Huoshiquan Import & Export CO., LTD

Address Unit. 33, Room 806, NO. 2 Huming Road, Siming District, Xiamen, China

Manufacturer : Xiamen Huoshiquan Import & Export CO., LTD

Address Unit. 33, Room 806, NO. 2 Huming Road, Siming District, Xiamen, China

EUT : quadcopter

HS340, HT02, HT02W, HT25, HT25W, HS260, D23, D23W, HS320, HT30, HS610, HS176, HS290, HS380, HS390, HS400, HS460, HS480, HS490, HS500, HS520, HS530, HS540, HS560, HS570, HS580, HS590, HS610, HS620, HS630, HS640, HS660, HS670, HS680, HS690, HS730, HS740, HS750, HS760, HS770,

Model Name : HS640, HS660, HS670, HS680, HS690, HS730, HS740, HS750, HS760, HS770, HS780, HS790, HS800, HS810, HS820, HS830, HS840, HS850, HS860, HS870,

HS880, HS890, HS900, HS910, HT300, HT40, HT15, HT35, HT45, HT05, HT10, D11, D33, D60, D70, D80, D35, D55, D20L, HS130, HS280, HT50, HT60, HT65,

HT70 HT75, HT90, D65, D75, D85

Trademark : Holy Stone

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS		

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247

The test results of this report relate only to the tested sample identified in this report.

February 28, 2022 to March 31, 2022
Luo Pei Ye
Luo peiye /Editor
Joe Yrd SHENZHEN,
Joe Xia/Editor
* * *
PESTING
Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description			
Product	quadcopter			
Model Number	HS340, HT02, HT02W, HT25, HT25W, HS260, D23, D23W, HS320, HT30, HS610, HS176, HS290, HS380, HS390, HS400, HS460, HS480, HS490, HS500, HS520, HS530, HS540, HS560, HS570, HS580, HS590, HS610, HS620, HS630, HS640, HS660, HS670, HS680, HS690, HS730, HS740, HS750, HS760, HS770, HS780, HS790, HS800, HS810, HS820, HS830, HS840, HS850, HS860, HS870, HS880, HS890, HS900, HS910, HT300, HT40, HT15, HT35, HT45, HT05, HT10, D11, D33, D60, D70, D80, D35, D55, D20L, HS130, HS280, HT50, HT60, HT65, HT70 HT75, HT90, D65, D75, D85 (These models are identical in circuitry and electrical, mechanical and physical construction; The differences among them are model name and the color of appearance. Only indicates for different market purposes; We chose HS340 as the final test prototype)			
IEEE 802.11 WLAN Mode Supported	⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth)			
Data Rate	802.11 b:1,2,5.5,11Mbps; 802.11 g:6,9,12,18,24,36,48,54Mbps; 802.11n(HT20): up to 72.2Mbps;			
Modulation	☑DSSS with DBPSK/DQPSK/CCK for 802.11b; ☑OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;			
Operating Frequency Range	⊠2412-2462MHz for 802.11b/g/n(HT20);			
Number of Channels	⊠11 channels for 802.11b/g n(HT20);			
Transmit Power Max	12.14dBm			
Antenna Type	FPC Antenna			
Antenna Gain	2.82dBi			
Power Supply	DC 3.7V from Li-Po battery DC 5V from adapter			
Test Voltage	AC 120V/60Hz			
Temperature Range	-10°C ~ +50°C			

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC PartClause	Test Parameter	Verdict	Remark		
15.247(a)(2)	DTS (6dB) Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS			
15.247(e)	Maximum Power Spectral Density Level	PASS			
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS			
15.247(d) Unwanted Emission Into Restricted Frequency 15.209 Bands (conducted)		PASS			
15.247(d) 15.209	15.247(d) Radiated Spurious Emission				
15.207	Conducted EmissionTest	PASS			
15.247(b)	Antenna Application	PASS			
	NOTE1:N/A (Not Applicable) NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.				

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AJ55HOLYSTONE4W filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT	Manufacturer	MODELNo.	SERIALNo.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESCI	101384	2021/5/15	1Year
AMN	Rohde & Schwarz	ENV216	5	2021/5/15	1Year
AMN	Kyoritsu	KNW-407	8-1492-9	2021/5/15	1Year
L.I.S.N.	Schwarzbeck	NNLK8129	8129203	2021/5/15	1Year
Current probe	Rohde & Schwarz	EZ-17	100213	2021/5/15	1Year
Capacitive Voltage Probe	TESEQ	CVP 2200 A	47173	2021/5/15	1Year

4.2.2 Radiated Emission Test Equipment

EQUIPMENT	Manufacturer	MODELNo.	SERIALNo.	Last Cal.	Cal. Interval
Pre-Amplifier	HP	8447F	2944A07999	2021/5/15	1Year
EMI Test Receiver	Rohde & Schwarz	ESCI	101414	2021/5/15	1Year
Bilog Antenna	Schwarzbeck	VULB9163	712	2021/9/22	2 Year
Horn antenna	Horn antenna Schwarzbeck		9120D-1178	2020/7/4	2 Year
Pre-Amplifie	Lunar EM	LNA1G18-48	J1011131010001	2021/5/15	1Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	2021/5/15	1Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	2021/6/12	2 Year

4.2.3 Radio Frequency Test Equipment

EQUIPMENT	Manufacturer	MODELNo.	SERIALNo.	Last Cal.	Cal. Interval
Signal Analyzer	Agilent	N9010A	MY53470879	2021/5/16	1Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	2021/5/15	1Year
RF Power Meter.	BOONTON	4232A	10539	2021/5/15	1 Year
Dual Channel					
50ohm Diode Power	BOONTON	51011EMC	36164	2021/5/15	1 Year
Sensor					

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (\boxtimes 802.11b:1 Mbps; \boxtimes 802.11g: 6 Mbps; \boxtimes 802.11n(HT20): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11b/g/n (HT20):

Channel	Frequency	Channel	Frequency	Channel	Frequency
Charine	(MHz)	Chamilei	(MHz)		(MHz)
1	2412	6	2437	11	2462
2	2417	7	2442		
3	2422	8	2447		
4	2427	9	2452		
5	2432	10	2457		

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS

The Certificate Registration Number is L2291.

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA

The Certificate Number is 4321.01.

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0008

Name of Firm : EMTEK (SHENZHEN) CO., LTD.

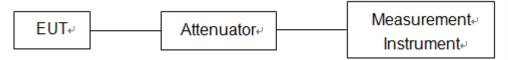
Site Location : Building 69, Majialong Industry Zone,

Nanshan District, Shenzhen, Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Uncertainty
±1x10^-5
±1.0dB
±2.0dB
±2.0dB
±2.0dB
±1.0dB
±3dB
±3dB
±3dB
±0.5°C
±3%


Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

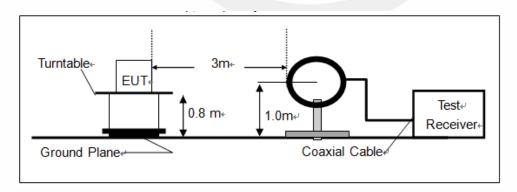
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

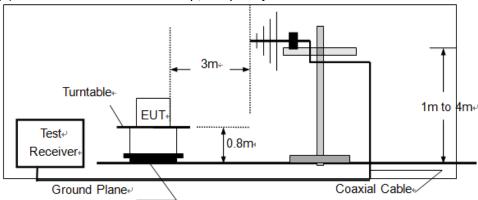
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground. For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.

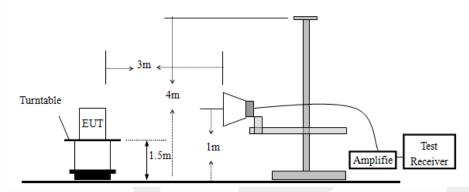

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

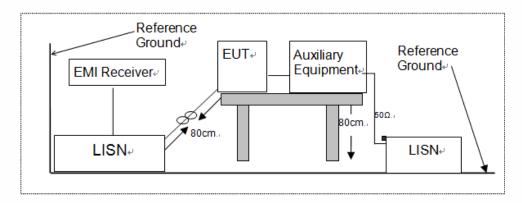

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



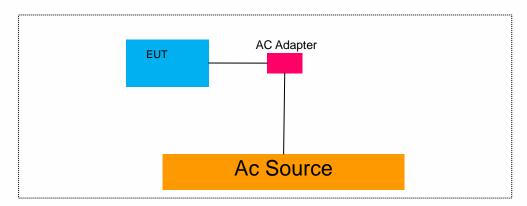
(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details							
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite				
1	/	1	/				
1	/	1	/				

Auxiliary Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		
1	1	1	1		

Auxiliary Equipment List and Details					
Description	Manufacturer	Model	Serial Number		
Notebook	LENOVO	M713A	SA12582190		

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. Unless otherwise denoted as EUT in <code>[Remark]</code> column , device(s) used in tested system is a support equipment

8 TEST REQUIREMENTS

8.1 DTS (6DB) BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part15.247 (a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

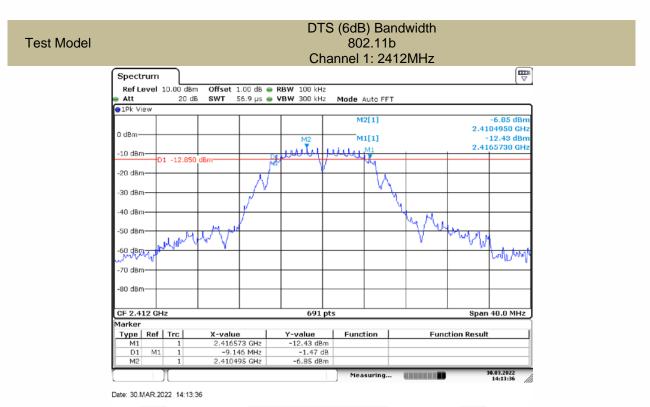
Set Trace mode = max hold.

Set Sweep = auto couple.

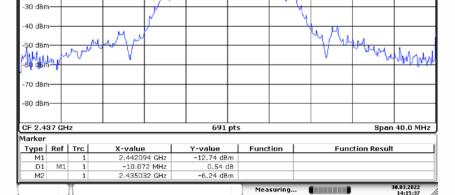
Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

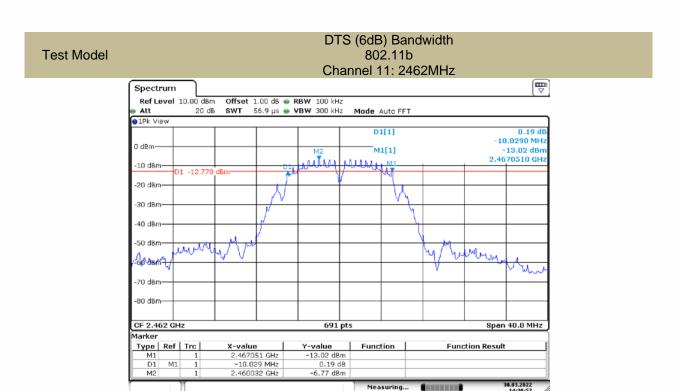
Measure and record the results in the test report.


8.1.5 Test Results

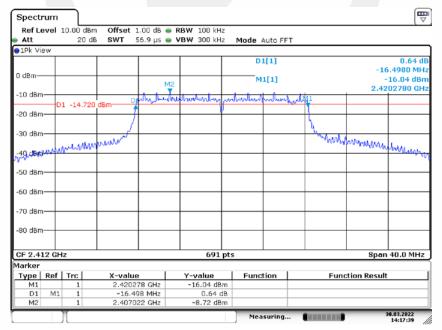
Temperature: 26℃ ATM Pressure:: 1011 mbar

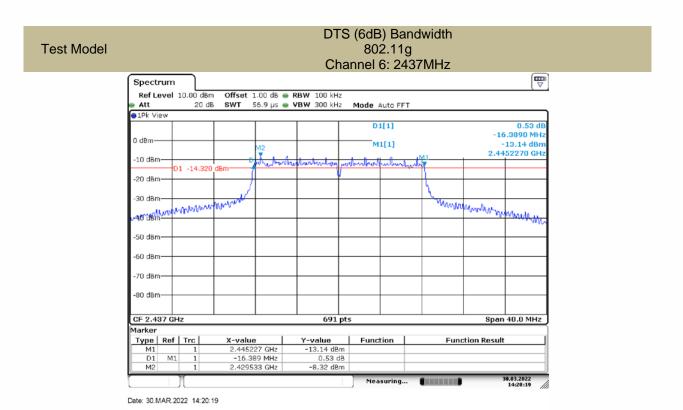

Humidity: 55 % Test By: Lily

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (kHz)	Verdict
802.11b	1	2412	9.146	>500	PASS
	6	2437	10.072	>500	PASS
	11	2462	10.029	>500	PASS
802.11g	1	2412	16.498	>500	PASS
	6	2437	16.389	>500	PASS
	11	2462	16.454	>500	PASS
802.11n (HT20)	1	2412	17.656	>500	PASS
	6	2437	17.663	>500	PASS
	11	2462	17.612	>500	PASS

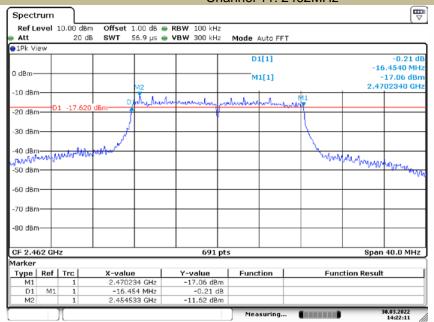


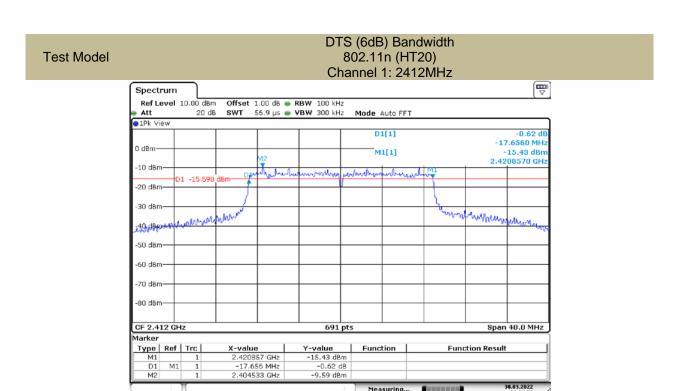
DTS (6dB) Bandwidth Test Model 802.11b Channel 6: 2437MHz Spectrum Ref Level 10.00 dBm Offset 1.00 dB @ RBW 100 kHz 56.9 μs 🌞 **VBW** 300 kHz Mode Auto FFT 1Pk View D1[1] 0.54 dB -10.0720 MHz 0 dBm M1[1] -12.74 dBn -10 dBm -20 dBm


Date: 30.MAR.2022 14:15:37

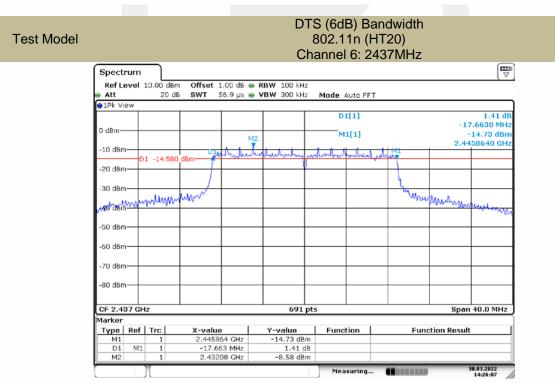

Date: 30.MAR.2022 14:30:57

DTS (6dB) Bandwidth
Test Model 802.11g
Channel 1: 2412MHz


Date: 30.MAR.2022 14:17:39

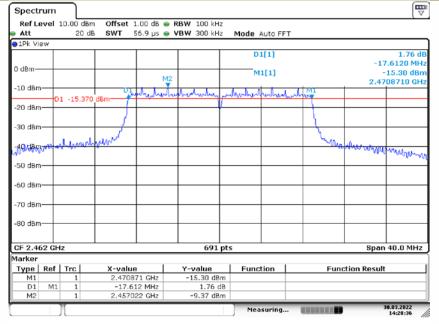

Test Model

DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz



Date: 30.MAR.2022 14:22:11

Date: 30.MAR.2022 14:24:09



Date: 30.MAR.2022 14:26:06

Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz

Date: 30.MAR.2022 14:28:36

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part15.247 (b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

■ According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

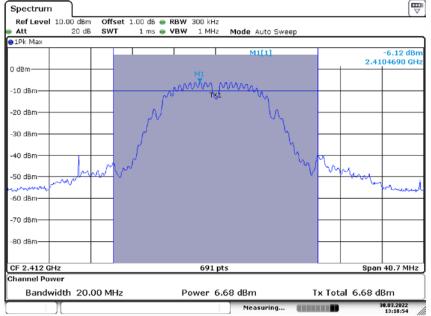
Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6)

8.2.5 Test Results

Temperature : 26℃ ATM Pressure: 1011 mbar

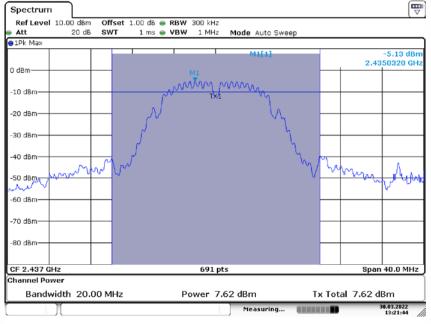
Humidity: 55 % Test By: Lily

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
802.11b	1	2412	6.68	30	PASS
	6	2437	7.62	30	PASS
	11	2462	4.54	30	PASS
802.11g	1	2412	12.14	30	PASS
	6	2437	8.88	30	PASS
	11	2462	7.09	30	PASS
802.11n (HT20)	1	2412	10.83	30	PASS
	6	2437	8.82	30	PASS
	11	2462	6.87	30	PASS

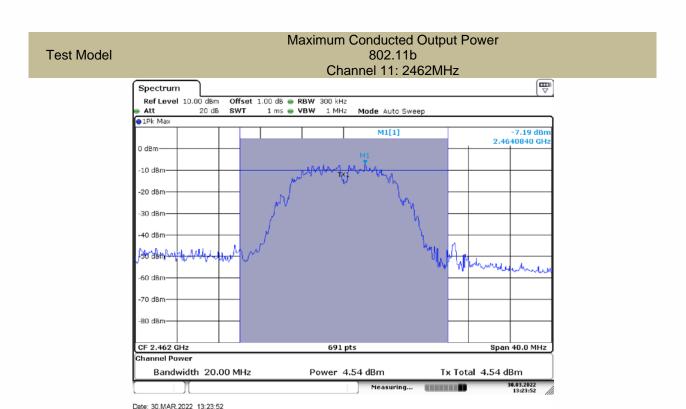

Note:

802.11b Duty cycle factor=10log(1/duty cycle)=0db 802.11g Duty cycle factor=10log(1/duty cycle)=0db

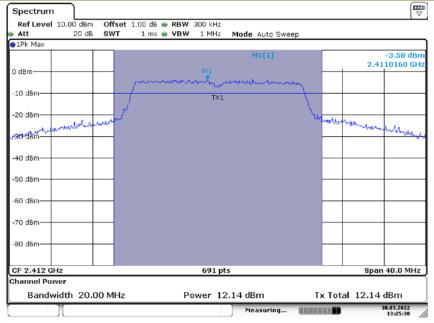
802.11n(HT20) Duty cycle factor=10log(1/duty cycle)=0db

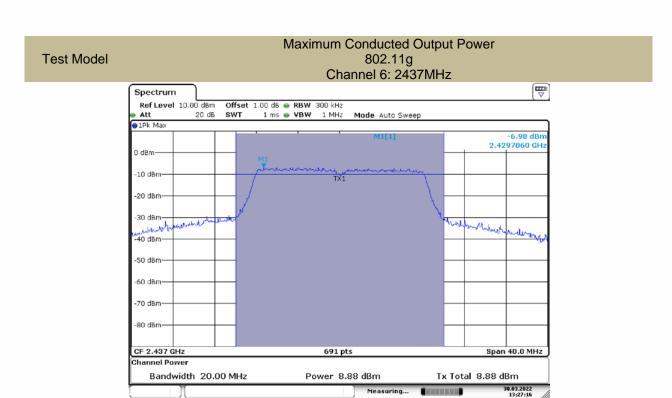


Date: 30.MAR.2022 13:18:54


Test Model

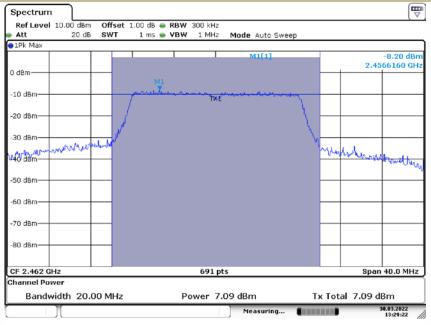
Maximum Conducted Output Power 802.11b Channel 6: 2437MHz


Date: 30.MAR.2022 13:21:44

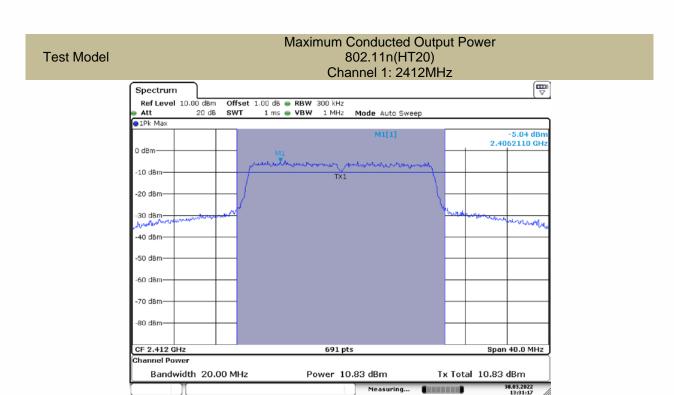


Maximum Conducted Output Power 802.11g Channel 1:2412MHz

Date: 30.MAR.2022 13:25:38

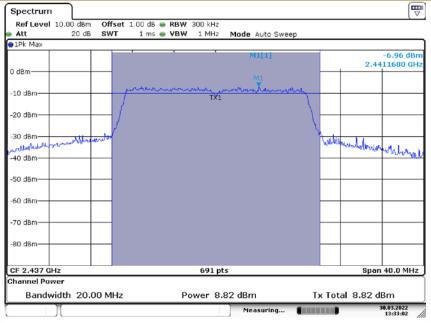


Date: 30.MAR.2022 13:27:16


Test Model

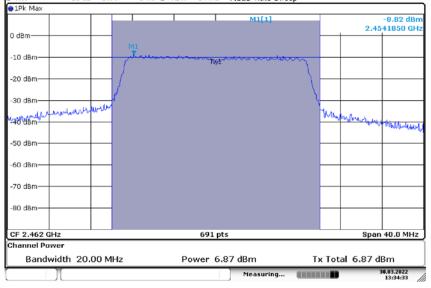
Maximum Conducted Output Power 802.11g Channel 11: 2462MHz

Date: 30.MAR.2022 13:29:22



Date: 30.MAR.2022 13:31:18

Test Model


Maximum Conducted Output Power 802.11n(HT20) Channel 6: 2437MHz

Date: 30.MAR.2022 13:33:01

Date: 30.MAR.2022 13:34:33

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer

Set analyzer center frequency to DTS channel center frequency.

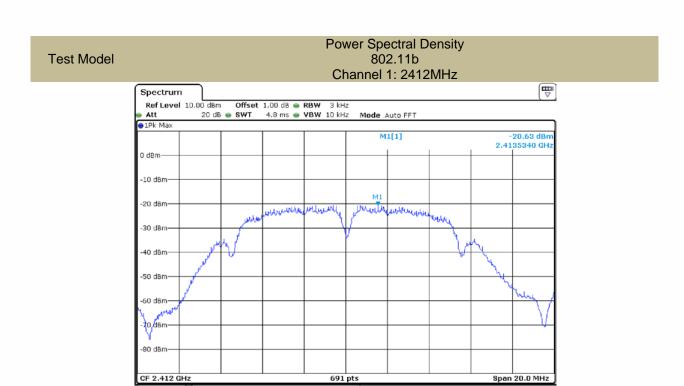
Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz Set the VBW to:10 kHz. Set Detector = peak.

Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

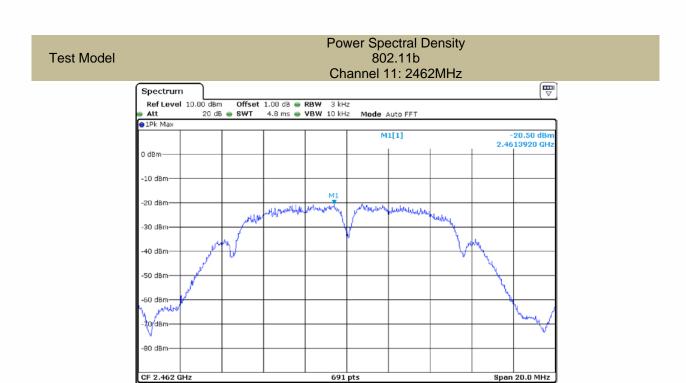

8.3.5 Test Results

Temperature : 26℃ ATM Pressure:: 1011 mbar

Humidity: 55 % Test By: Lily

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
802.11b	1	2412	-20.63	8	PASS
	6	2437	-20.25	8	PASS
	11	2462	-20.50	8	PASS
802.11g	1	2412	-21.70	8	PASS
	6	2437	-19.95	8	PASS
	11	2462	-20.81	8	PASS
802.11n (HT20)	1	2412	-21.55	8	PASS
	6	2437	-21.78	8	PASS
	11	2462	-21.96	8	PASS

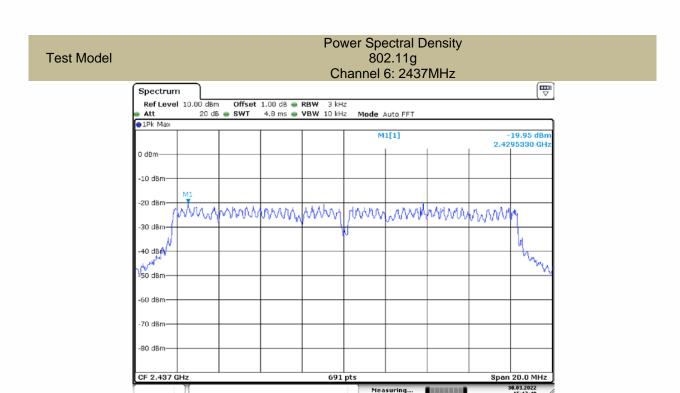
Date: 30.MAR.2022 15:13:05


Date: 30.MAR.2022 15:14:16

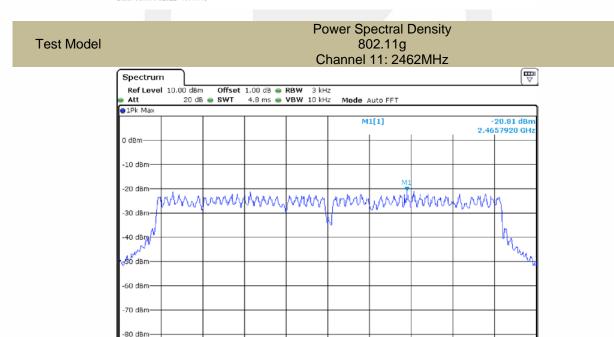
CF 2.437 GHz

691 pts

Span 20.0 MHz

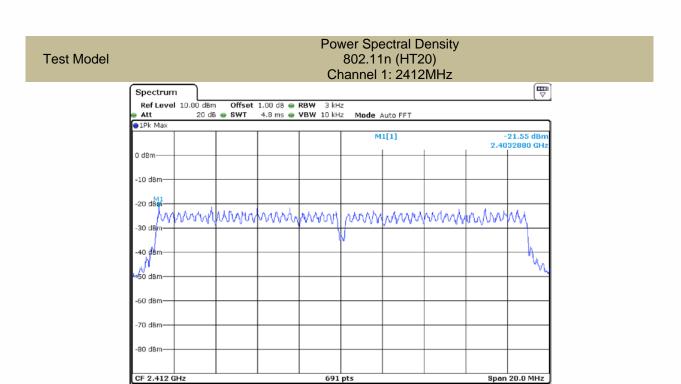


Date: 30.MAR.2022 15:15:36



Date: 30.MAR.2022 15;16:53

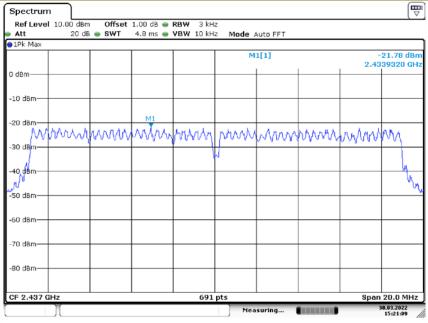
Date: 30.MAR.2022 15:17:48


Date: 30.MAR.2022 15:18:48

CF 2.462 GHz

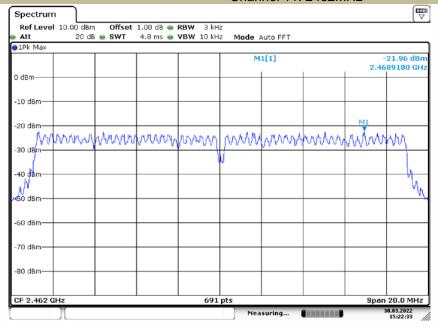
691 pts

Span 20.0 MHz



Date: 30.MAR.2022 15:20:00

Power Spectral Density 802.11n (HT20) Channel 6: 2437MHz



Date: 30.MAR.2022 15:21:09

Test Model

Power Spectral Density 802.11n (HT20) Channel 11: 2462MHz

Date: 30.MAR.2022 15:22:33

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

■ Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

■ Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

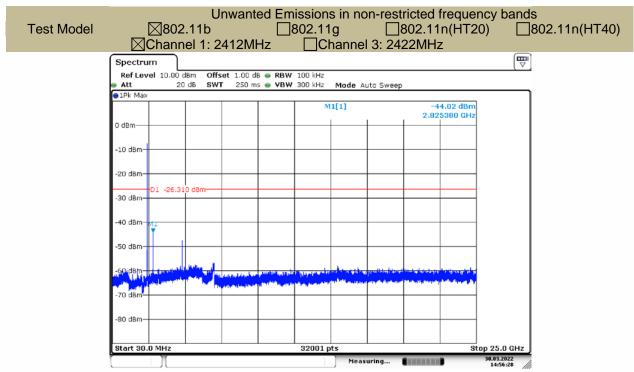
Trace mode = max hold.

Allow trace to fully stabilize.

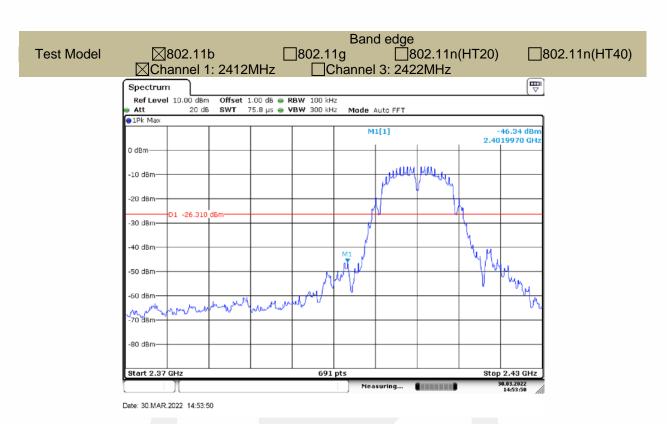
Use the peak marker function to determine the maximum amplitude level.

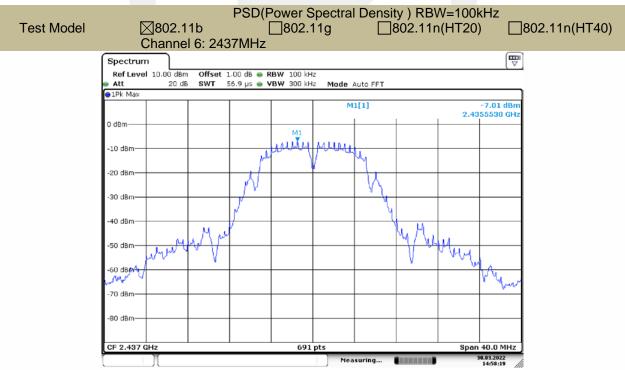
Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results

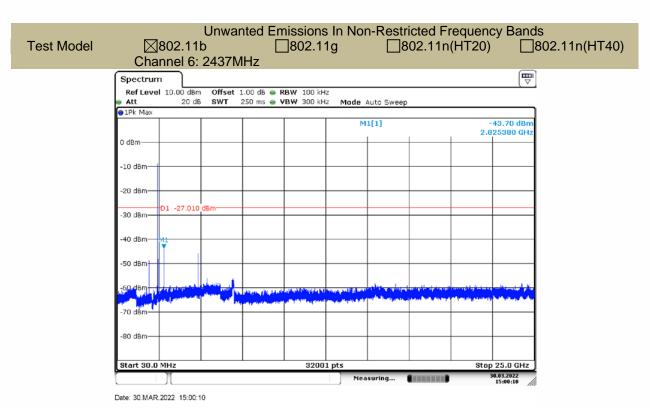


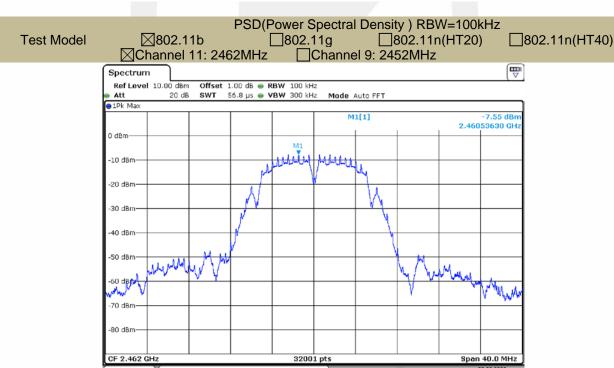
All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:



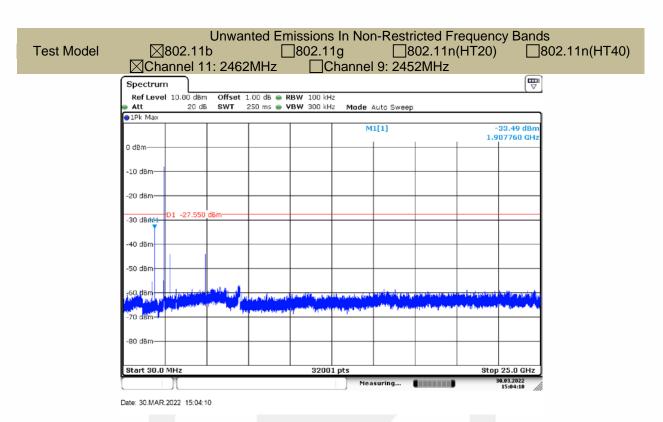


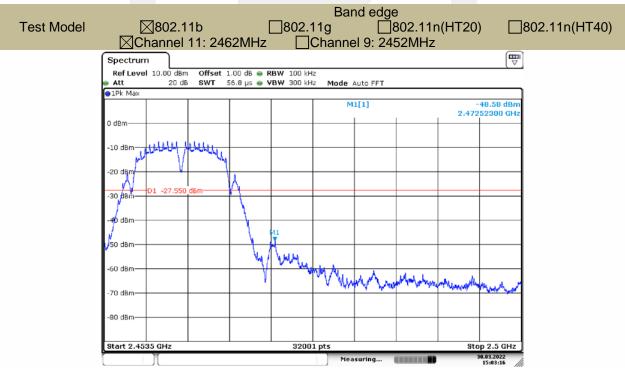
Date: 30.MAR.2022 14:56:28





Date: 30.MAR.2022 14:58:20





Date: 30.MAR.2022 15:01:40

Date: 30.MAR.2022 15:03:16

8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205,the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

VBW > RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 9kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

Temperature:	26.2° C
Relative Humidity:	40%
ATM Pressure:	1011 mbar

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK	ÁV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

- Spurious Emission Above 1GHz(1GHz to 25GHz)
- All modes 2.4G 802.11b/g/n have been tested, and the worst result of 802.11b recorded was report as below:

Test mode):	802.11b	11b Frequency:			Channel 1: 2412MHz			
Freq. (MHz)	Ant.Pol.		ssion dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)			
(IVITZ)	H/V	PK	AV	PK	PK AV		AV		
5650.625	V	45.38	28.44	74	54	-28.62	-25.58		
11417.39	V	54.99	36.15	74	54	-19.01	-17.85		
17997.39	V	63.55	45.38	74	54	-10.45	-8.62		
6548.102	Н	46.68	29.44	74	54	-27.32	-24.56		
11420.69	Н	54.69	36.38	74	54	-19.31	-17.62		
17927.31	Н	63.46	45.15	74	54	-10.54	-8.85		

Test mod	de:	802.11b	F	requency:		Channel 6: 24	37MHz	
Freq. (MHz)	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(IVIIIZ)	H/V	PK	PK AV PK AV		AV	PK	AV	
5429.674	V	44.66	26.58	74	54	-29.34	-27.42	
10732.58	V	53.61 35.22		74	54	-20.39	-18.78	
17839.43	V	64.74	46.33	74	54	-9.26	-7.67	
5650.625	Н	47.48	30.24	74	54	-26.52	-23.76	
10978.88	Н	53.65	35.33	74	54	-20.35	-18.67	
17924.71	Н	63.91	45.39	74	54	-10.09	-8.61	

Test mode) .	802.11b Frequency: C				nannei 11: 2462MHZ		
Freq.	Ant.Pol.		ssion dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
5130.627	V	45.40 28.65		74	54	-28.60	-25.35	
9674.755	V	50.81	32.54	74	54	-23.19	-21.46	
17924.71	V	63.49	45.37	74	54	-10.51	-8.63	
5650.625	Н	48.14	30.15	74	54	-25.86	-23.85	
8650.893	Н	50.64	32.68	74	54	-23.36	-21.32	
17984.39	Н	63.99	45.34	74	54	-10.01	-8.66	

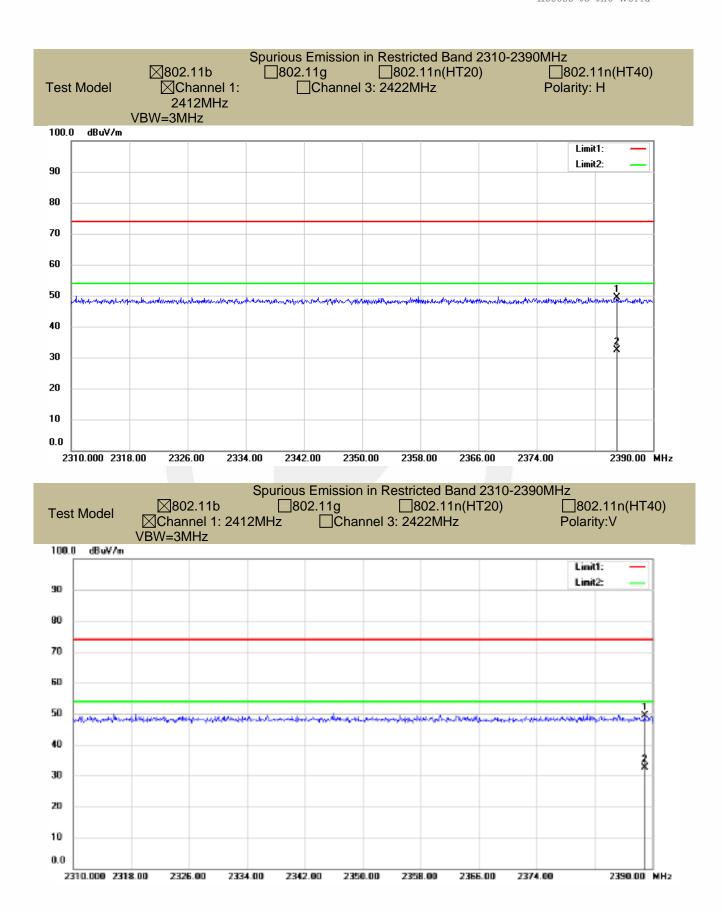
Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

- (2) Emission Level= Reading Level+Correct Factor +Cable Loss.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4)The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

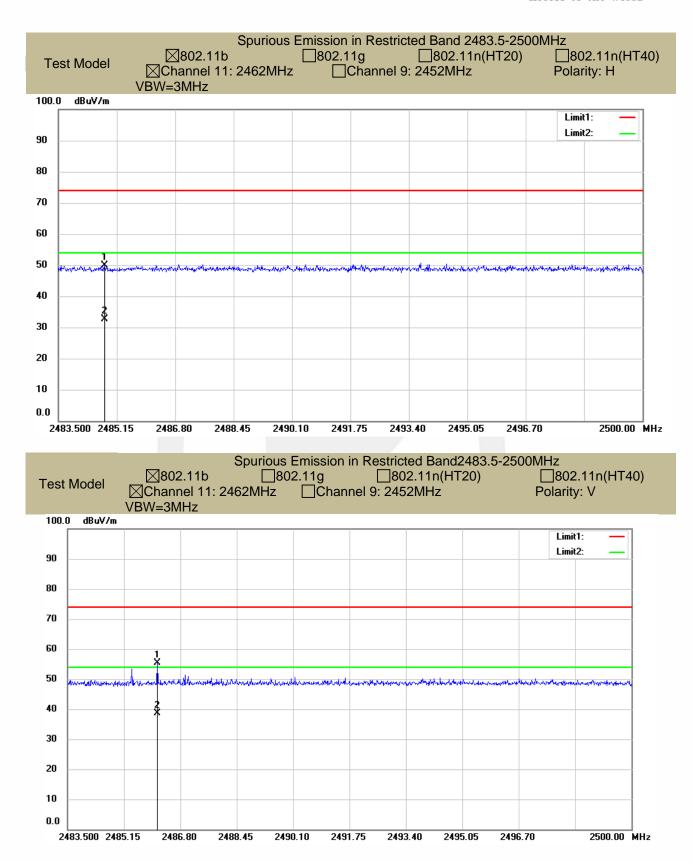
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz All modes 2.4G 802.11b/g/n have been tested, and the worst result of802.11b recorded was report as below:

Test mode: 802.11b Frequency: Channel 1: 2412MHz

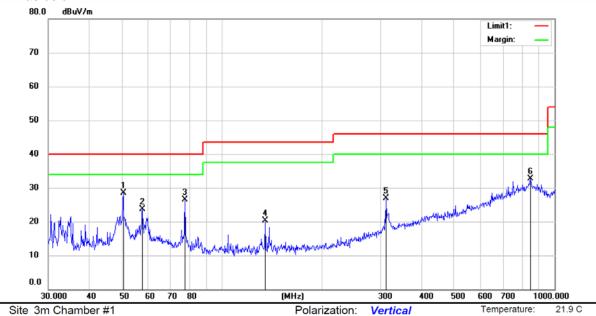
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2385.116	Н	49.34	74	32.28	54
2388.984	V	49.34	74	32.58	54


Test mode: 802.11b Frequency: Channel 11: 2462MHz

Frequenc (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2484.81	4 H	49.82	74	32.67	54
2486.12	5 V	55.50	74	38.58	54


Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

- (2) Emission Level= Reading Level+Correct Factor +Cable Loss.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

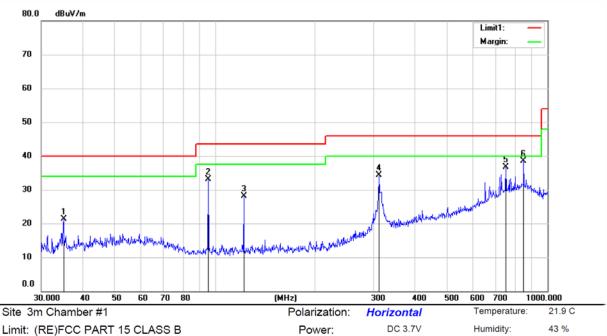


Humidity:

43 %

- Spurious Emission below 1GHz (30MHz to 1GHz)
- All modes 2.4G 802.11b/g/n have been tested, and the worst resultof 802.11b recorded was report as below:

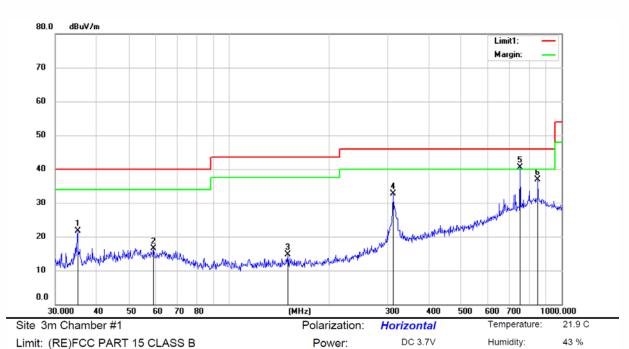
Limit: (RE)FCC PART 15 CLASS B


Mode:WIFI 2.4G 2412

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	50.4090	40.43	-11.96	28.47	40.00	-11.53	QP			
2		57.6444	35.72	-12.08	23.64	40.00	-16.36	QP			
3		77.4230	41.06	-14.55	26.51	40.00	-13.49	QP			
4	•	134.9727	34.44	-14.20	20.24	43.50	-23.26	QP			
5	:	312.0426	36.06	-9.11	26.95	46.00	-19.05	QP			
6	8	849.1722	29.76	2.92	32.68	46.00	-13.32	QP			

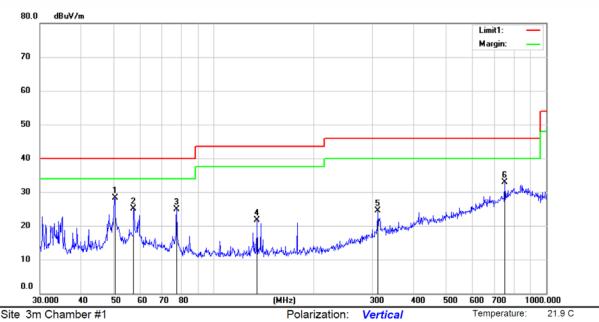
Power: DC 3.7V



Limit: (RE)FCC PART 15 CLASS B

Mode:WIFI 2.4G 2412

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	35.0048	35.12	-13.83	21.29	40.00	-18.71	QP			
	95.7202	47.82	-14.65	33.17	43.50	-10.33	QP			
1	22.0290	42.53	-14.37	28.16	43.50	-15.34	QP			
3	12.0426	43.51	-9.11	34.40	46.00	-11.60	QP			
7	'50.1083	36.70	0.07	36.77	46.00	-9.23	QP			
* 8	350.2896	35.51	2.91	38.42	46.00	-7.58	QP			
,	1 3		MHz dBuV 35.0048 35.12 95.7202 47.82 122.0290 42.53 312.0426 43.51 750.1083 36.70	MHz dBuV dB 35.0048 35.12 -13.83 95.7202 47.82 -14.65 122.0290 42.53 -14.37 312.0426 43.51 -9.11 750.1083 36.70 0.07	MHz dBuV dB dBuV/m 35.0048 35.12 -13.83 21.29 95.7202 47.82 -14.65 33.17 122.0290 42.53 -14.37 28.16 312.0426 43.51 -9.11 34.40 750.1083 36.70 0.07 36.77	MHz dBuV dB dBuV/m dBuV/m 35.0048 35.12 -13.83 21.29 40.00 95.7202 47.82 -14.65 33.17 43.50 122.0290 42.53 -14.37 28.16 43.50 312.0426 43.51 -9.11 34.40 46.00 750.1083 36.70 0.07 36.77 46.00	MHz dBuV dB dBuV/m dBuV/m dB 35.0048 35.12 -13.83 21.29 40.00 -18.71 95.7202 47.82 -14.65 33.17 43.50 -10.33 122.0290 42.53 -14.37 28.16 43.50 -15.34 312.0426 43.51 -9.11 34.40 46.00 -11.60 750.1083 36.70 0.07 36.77 46.00 -9.23	MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m	MHz dBuV dB dBuV/m dB Detector cm 35.0048 35.12 -13.83 21.29 40.00 -18.71 QP 95.7202 47.82 -14.65 33.17 43.50 -10.33 QP 122.0290 42.53 -14.37 28.16 43.50 -15.34 QP 312.0426 43.51 -9.11 34.40 46.00 -11.60 QP 750.1083 36.70 0.07 36.77 46.00 -9.23 QP	MHz dBuV dB dBuV/m dB Detector cm degree 35.0048 35.12 -13.83 21.29 40.00 -18.71 QP 95.7202 47.82 -14.65 33.17 43.50 -10.33 QP 122.0290 42.53 -14.37 28.16 43.50 -15.34 QP 312.0426 43.51 -9.11 34.40 46.00 -11.60 QP 750.1083 36.70 0.07 36.77 46.00 -9.23 QP


Mode:WIFI 2.4G 2437

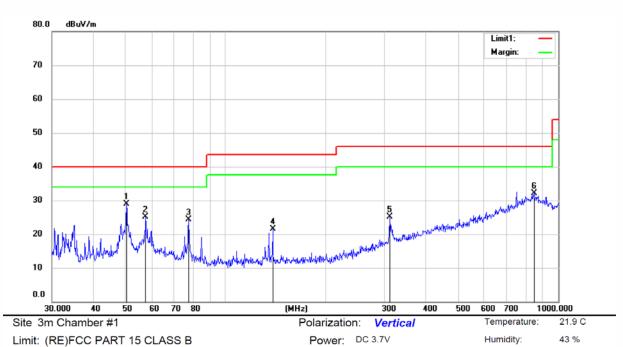
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.0355	35.56	-13.82	21.74	40.00	-18.26	QP			
2		59.3104	28.58	-12.02	16.56	40.00	-23.44	QP			
3		150.0108	28.45	-13.75	14.70	43.50	-28.80	QP			
4		312.0426	41.87	-9.11	32.76	46.00	-13.24	QP			
5	*	750.1083	40.52	0.07	40.59	46.00	-5.41	QP			
6		850.2896	33.92	2.91	36.83	46.00	-9.17	QP			

Humidity:

43 %

Site 3m Chamber #1

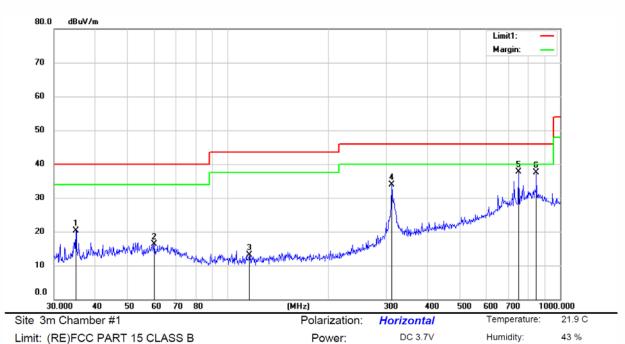
Limit: (RE)FCC PART 15 CLASS B


Mode:WIFI 2.4G 2437

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	50.4531	40.16	-11.95	28.21	40.00	-11.79	QP			
2		57.5687	37.19	-12.08	25.11	40.00	-14.89	QP			
3		77.4230	39.37	-14.55	24.82	40.00	-15.18	QP			
4		135.0320	35.92	-14.19	21.73	43.50	-21.77	QP			
5	;	312.0426	33.59	-9.11	24.48	46.00	-21.52	QP			
6		750.1083	32.84	0.07	32.91	46.00	-13.09	QP			

Power: DC 3.7V



Limit: (RE)FCC PART 15 CLASS B

Mode:WIFI 2.4G 2462

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	50.3868	40.81	-11.96	28.85	40.00	-11.15	QP			
2		57.5182	37.14	-12.08	25.06	40.00	-14.94	QP			
3		77.4230	38.91	-14.55	24.36	40.00	-15.64	QP			
4		138.6302	35.88	-14.37	21.51	43.50	-21.99	QP			
5	;	312.0426	34.25	-9.11	25.14	46.00	-20.86	QP			
6		845.4583	29.20	2.89	32.09	46.00	-13.91	QP			

LIIIII. (NE)FOO FART 13 C

Mode:WIFI 2.4G 2462

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.9742	34.06	-13.85	20.21	40.00	-19.79	QP			
2		60.0691	28.23	-11.98	16.25	40.00	-23.75	QP			
3		116.1831	27.39	-14.24	13.15	43.50	-30.35	QP			
4		312.0426	42.92	-9.11	33.81	46.00	-12.19	QP			
5	*	750.1083	37.67	0.07	37.74	46.00	-8.26	QP			
6		850.2896	34.64	2.91	37.55	46.00	-8.45	QP			

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3conducted emission test setup

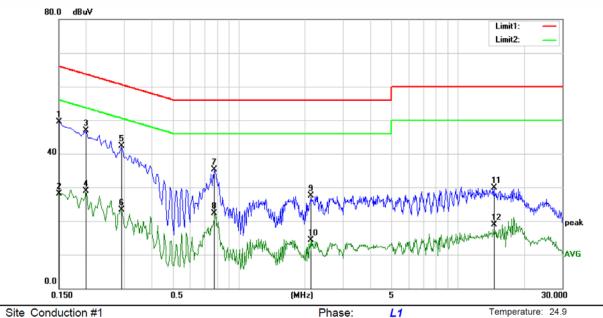
8.6.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

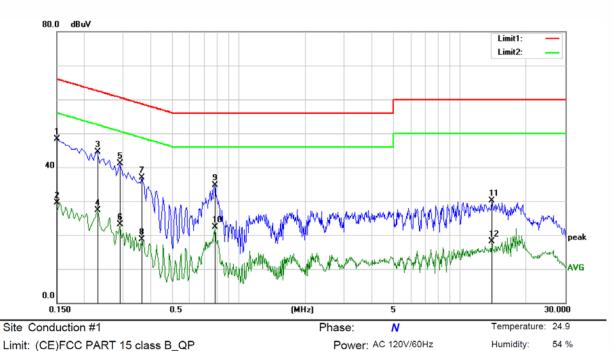

Pass

The 120V &240V voltagehave been tested, and the worst result recorded was report as below:

Humidity:

54 %

Power: AC 120V/60Hz


Site Conduction #1

Limit: (CE)FCC PART 15 class B_QP

Mode: Charging Mode

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	40.02	9.58	49.60	66.00	-16.40	QP	
2		0.1500	18.49	9.58	28.07	56.00	-27.93	AVG	
3		0.2000	37.43	9.42	46.85	63.61	-16.76	QP	
4		0.2000	19.54	9.42	28.96	53.61	-24.65	AVG	
5		0.2900	33.08	9.30	42.38	60.52	-18.14	QP	
6		0.2900	14.05	9.30	23.35	50.52	-27.17	AVG	
7		0.7750	25.91	9.43	35.34	56.00	-20.66	QP	
8		0.7750	12.84	9.43	22.27	46.00	-23.73	AVG	
9		2.1300	17.48	9.94	27.42	56.00	-28.58	QP	
10		2.1300	4.29	9.94	14.23	46.00	-31.77	AVG	
11		14.6550	19.68	10.17	29.85	60.00	-30.15	QP	
12		14.6550	8.82	10.17	18.99	50.00	-31.01	AVG	

Limit: (CE)FCC PART 15 class B_QP Mode: Charging Mode

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	38.81	9.58	48.39	66.00	-17.61	QP	
2		0.1500	19.99	9.58	29.57	56.00	-26.43	AVG	
3		0.2300	35.20	9.38	44.58	62.45	-17.87	QP	
4		0.2300	17.97	9.38	27.35	52.45	-25.10	AVG	
5		0.2900	31.78	9.30	41.08	60.52	-19.44	QP	
6		0.2900	13.71	9.30	23.01	50.52	-27.51	AVG	
7		0.3650	27.61	9.32	36.93	58.61	-21.68	QP	
8		0.3650	9.43	9.32	18.75	48.61	-29.86	AVG	
9		0.7800	25.29	9.44	34.73	56.00	-21.27	QP	
10		0.7800	12.90	9.44	22.34	46.00	-23.66	AVG	
11		13.9300	19.91	10.17	30.08	60.00	-29.92	QP	
12		13.9300	7.88	10.17	18.05	50.00	-31.95	AVG	

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

PASS.

• Th	ne EUT	has FPC Antenna for WIFI 2.4G, theantennagain is2.82dBi.
Note:	\boxtimes	Antenna uses a permanently attached antenna which is not replaceable.
		Not using a standard antenna jack or electrical connector for antenna replacement
		The antenna has to be professionally installed (please provide method of installation)
	Which	in accordance to section 15.203, please refer to the internal photos.

Detail of factor for radiated emission

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	\	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	\	20.38
30	18.8	0.45	1	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	44.4	14.04
1000 3000	25.6		41.4 43.2	-14.04
5000	28.9 31.1	3.27 4.2	44.6	-11.03 -9.3
	36.2	5.95	44.6	
8000 10000	38.4	6.3	43.9	-2.55 0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

*** End of Report ***