

TEST REPORT

Applicant: ZHEJIANG EBOY TECHNOLOGY CO., LTD.

Address: No.568 Huabao Street, Qianyuan Town, Deqing County Huzhou City, Zhejiang Province, 313200 China

FCC ID: 2AJ3WEBESW016

Product Name: Smart plug

Standard(s): 47 CFR Part 15, Subpart C(15.247) ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230421646-00A

Date Of Issue: 2023/5/23

Reviewed By: Julie Tan

Title: RF Engineer **Approved By:** Sun Zhong

Julize Tan Sun 2hong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " \blacktriangle ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

TEST FACILITY	2
DECLARATIONS	2
DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION	8
 1.2.1 EUT Operation Condition: 1.2.2 Support Equipment List and Details 1.2.3 Support Cable List and Details 1.2.4 Block Diagram of Test Setup 1.3 MEASUREMENT UNCERTAINTY 	8 8 9
2. SUMMARY OF TEST RESULTS	11
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 AC LINE CONDUCTED EMISSIONS	
 3.1.1 Applicable Standard 3.1.2 EUT Setup 3.1.3 EMI Test Receiver Setup 3.1.4 Test Procedure 3.1.5 Corrected Amplitude & Margin Calculation	
 3.2.1 Applicable Standard	15
 3.3.1 Applicable Standard 3.3.2 EUT Setup 3.3.3 Test Procedure	17 17
3.4.1 EUT Setup 3.4.2 Test Procedure 3.5 MAXIMUM CONDUCTED OUTPUT POWER	
 3.5.1 Applicable Standard 3.5.2 EUT Setup 3.5.3 Test Procedure 3.6 MAXIMUM POWER SPECTRAL DENSITY 	19 19
3.6.1 Applicable Standard 3.6.2 EUT Setup	
3.6.3 Test Procedure	20
3.7 100 KHz BANDWIDTH OF FREQUENCY BAND EDGE	21

Page 3 of 59

3.7.1 Applicable Standard	21
3.7.2 EUT Setup	
3.7.3 Test Procedure	
3.8 DUTY CYCLE	
2.0.1 EUT Satur	22
3.8.1 EUT Setup 3.8.2 Test Procedure	
3.9 ANTENNA REQUIREMENT	
3.9.1 Applicable Standard	
3.9.2 Judgment	
4. Test DATA AND RESULTS	
4.1 AC LINE CONDUCTED EMISSIONS	
4.2 RADIATION SPURIOUS EMISSIONS	26
4.3 MINIMUM 6 DB EMISSION BANDWIDTH:	
4.4 99% OCCUPIED BANDWIDTH:	
4.5 MAXIMUM CONDUCTED OUTPUT POWER:	
4.6 MAXIMUM POWER SPECTRAL DENSITY:	
4.7 100 kHz Bandwidth of Frequency Band Edge:	51
4.8 D UTY C YCLE:	56
5. RF EXPOSURE EVALUATION	
5.1 MPE-BASED EXEMPTION	
5.1.1 Amplicable Standard	50
5.1.1 Applicable Standard 5.1.2 Measurement Result	

DOCUMENT REVISION HISTORY

Revision Number	Report Number Description of Revision		Date of Revision
1.0	CR230421646-00A	Original Report	2023/5/23

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Smart plug	
EUT Model:	EBE-SW016	
Multiple Models:	MI-WW334, WW334, WW234, WW134, WW434, WW534, WW634	
Operation Frequency:	2412-2462MHz(802.11b/g/n ht20), 2422-2452MHz(802.11n ht40)	
Maximum Average Output Power (Conducted):	16.75dBm(802.11b/g/n)	
Modulation Type:	802.11b:DSSS-DBPSK, DQPSK, CCK 802.11g/n:OFDM-BPSK, QPSK, 16QAM, 64QAM	
Rated Input Voltage:	AC 110V-130V/60Hz	
Serial Number:	250Y-1	
EUT Received Date:	2023/4/24	
EUT Received Status:	Good	
Note: The Multiple model is electrically identical with test model, please refer to the declaration letter for more detail, which was provided by manufacturer.		

Operation Frequency Detail: For 802.11b/g/n ht20:

Channel	Channel Frequency (MHz)		Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/
Per section 15.31(m), the	below frequencies were perform	ned the test as below:	
Test Channel			quency MHz)
Lowest		2412	
Middle		2437	
Highest		2462	

For 802.11n ht40:

Channel	Channel Frequency (MHz)		Frequency (MHz)	
3	2422	7	2442	
4	2427	8	2447	
5	2432	9	2452	
6	2437	/	/	
Per section 15.31(m), the below frequencies were performed the test as below:				
Test Channel			quency //Hz)	
Lowest		2422		
Middle		2437		
Highest		2452		

Antenna Information Detail **A** :

Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain	
РСВ	50	2.4~2.5GHz	0.04 dBi	
The Method of §15.203 Compliance:				
Antenna must be permanently attached to the unit.				
Antenna must use a unique type of connector to attach to the EUT.				
Unit must be professionally installed, and installer shall be responsible for verifying that the				
correct antenna is employed with the unit.				
	Type PCB mpliance: manently attact inique type of sionally instal	Type(Ohm)PCB50mpliance: manently attached to the unit. unique type of connector to attach to sionally installed, and installer sh	Type(Ohm)Frequency RangePCB502.4~2.5GHzmpliance: manently attached to the unit. unique type of connector to attach to the EUT. sionally installed, and installer shall be responsible for v	

Accessory Information:

Accessory Description	Manufacturer	Model
/	/	/

59

63

1.2 Description of Test Configuration 1.2.1 EUT Operation Condition: For 802.11b/g/n:

EUT Operation Mode:		The system was configured for testing in Engineering Mode, which was provided by the manufacturer.		
Equipment Modifications: No				
EUT Exercise Software: Beken Wi-Fi Test Tool V1.7.4				
The software was pro the manufacturer ▲ :	vided by manufacturer. T	The maximum power was	configured as below, the	hat was provided by
Test Modes	Data Rate]	Power Level Setting	
Test Modes	Modes Data Rate	Lowest Channel	Middle Channel	Highest Channel
802.11b	1Mbps	20	20	20

59

63

59

63

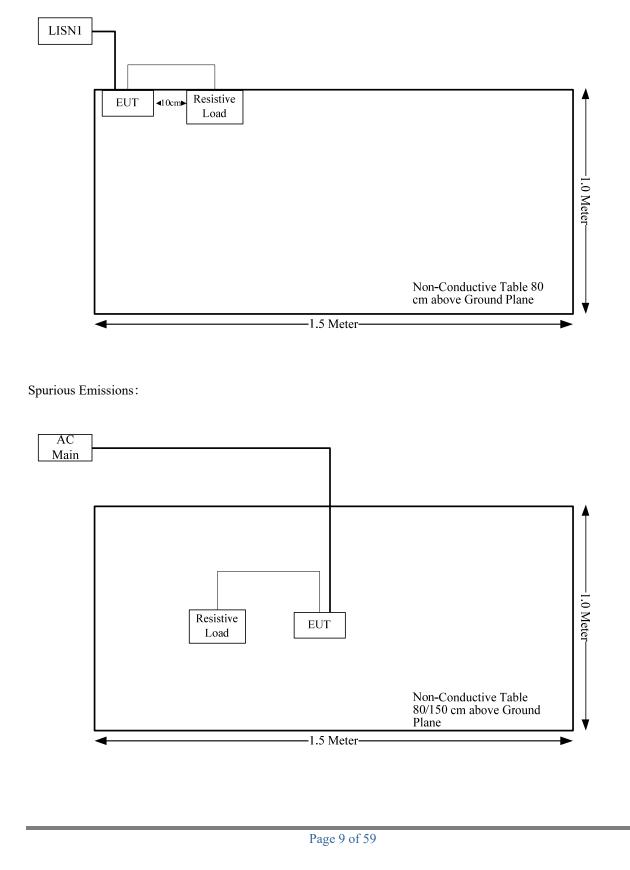
802.11n ht40MCS05353The above are the worst-case data rates, which are determined for each mode based upon investigations by
measuring the average power and PSD across all data rates, bandwidths, and modulations.53

1.2.2 Support Equipment List and Details

6Mbps

MCS0

802.11g


802.11n ht20

Manufacturer	Description Model		Serial Number	
Hengxin electronic	Resistive Load	RX20-T1000W	EMZBRL21120401EN	

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
AC Cable	No	No	2	EUT	Resistive Load

1.2.4 Block Diagram of Test Setup AC line conducted emissions:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB,
Oliwanted Emissions, faulated	6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1°C
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	Minimum 6 dB Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth Of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant
§15.247 (i) & §1.1307 & §2.1091	RF Exposure Evaluation	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 AC Line Conducted Emissions

3.1.1 Applicable Standard

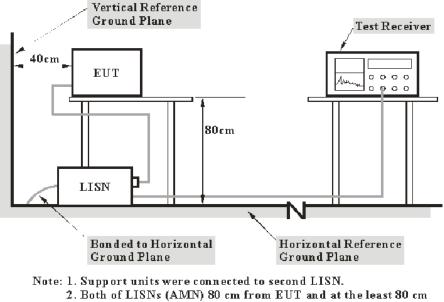
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μV within the frequency band 535-1705 kHz, as measured using a 50 $\mu H/50$ ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

3.1.2 EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz - 30 MHz	9 kHz

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

3.1.5 Corrected Amplitude & Margin Calculation

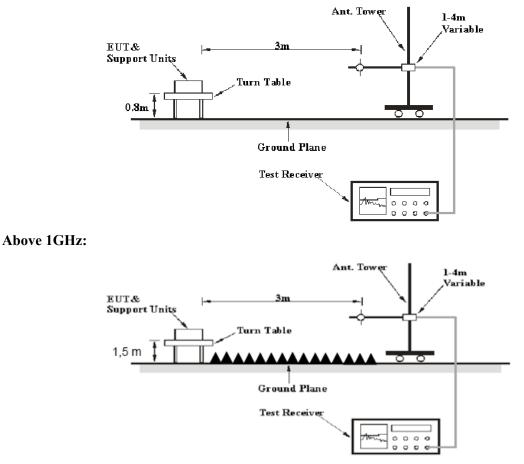
The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

3.2 Radiation Spurious Emissions


3.2.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(c)).

3.2.2 EUT Setup

Below 1GHz:

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

3.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-25GHz:

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
A vo	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

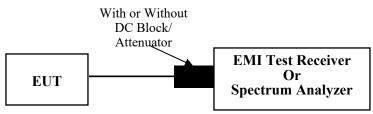
3.2.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

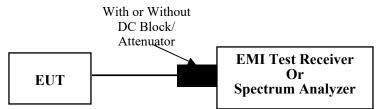

3.3 Minimum 6 dB Emission Bandwidth

3.3.1 Applicable Standard

FCC §15.247 (a)(2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3.3.2 EUT Setup


3.3.3 Test Procedure

According to ANSI C63.10-2013 Section 11.8

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.4 99% Occupied Bandwidth

3.4.1 EUT Setup

3.4.2 Test Procedure

According to ANSI C63.10-2013 Section 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

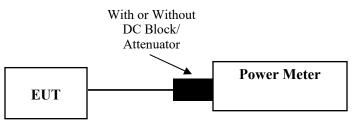
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).


3.5 Maximum Conducted Output Power

3.5.1 Applicable Standard

FCC §15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

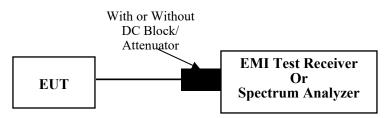
3.5.2 EUT Setup

3.5.3 Test Procedure

According to ANSI C63.10-2013 Section 11.9.2.3.2

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.


3.6 Maximum Power Spectral Density

3.6.1 Applicable Standard

FCC §15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.2 EUT Setup

3.6.3 Test Procedure

Duty cycle \geq 98%

According to ANSI C63.10-2013 Section 11.10.3

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

According to ANSI C63.10-2013 Section 11.10.5

Duty cycle <98%, duty cycle variations exceed $\pm 2\%$

According to ANSI C63.10-2013 Section 11.10.7

3.7 100 kHz Bandwidth of Frequency Band Edge

3.7.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.7.2 EUT Setup

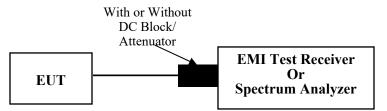
3.7.3 Test Procedure

According to ANSI C63.10-2013 Section 11.11

a) Set the center frequency and span to encompass frequency range to be measured.

b) Set the RBW = 100 kHz.

- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

3.8 Duty Cycle

3.8.1 EUT Setup

3.8.2 Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \ \mu s$.)

3.9 Antenna Requirement

3.9.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of \$\$\$15.211, 15.213, 15.217, 15.219, 15.221, or \$\$15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with \$\$15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.9.2 Judgment

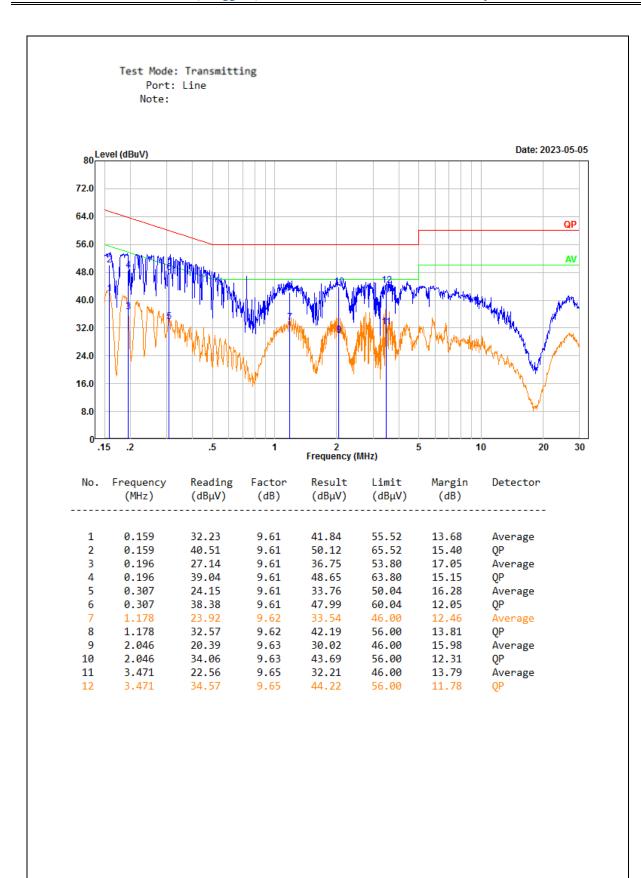
Compliant. Please refer to the Antenna Information detail in Section 1.

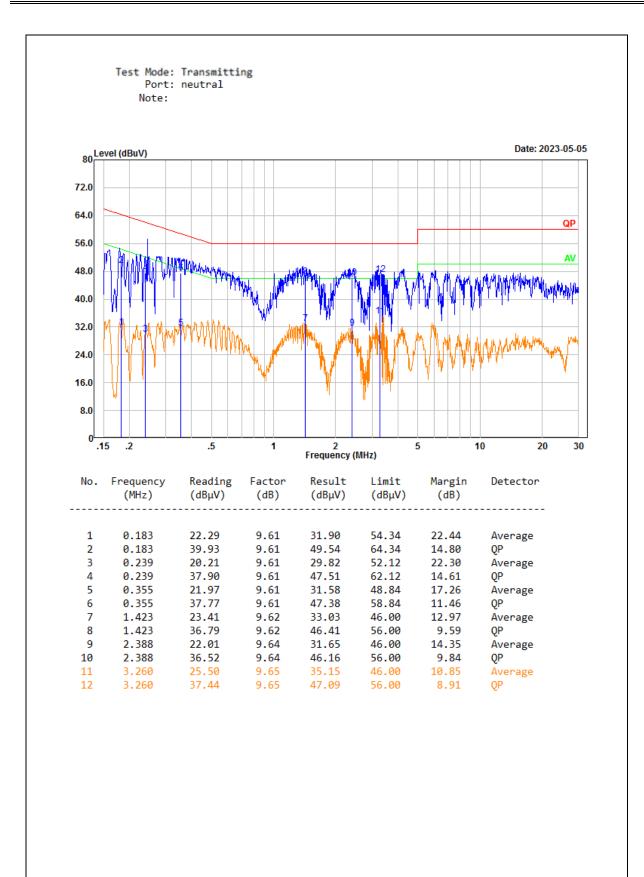
4. Test DATA AND RESULTS

4.1 AC Line Conducted Emissions

Serial Number:	250Y-1	Test Date:	2023/05/05
Test Site:	CE	Test Mode:	Transmitting (802.11b mode middle channel was the worst)
Tester:	David Huang	Test Result:	Pass

Environmental Conditions:


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2023/03/31	2024/03/30
R&S	EMI Test Receiver	ESR3	102726	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2022/08/07	2023/08/06
Audix	Test Software	E3	190306 (V9)	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

China Certification ICT Co., Ltd (Dongguan)

4.2 Radiation Spurious Emissions

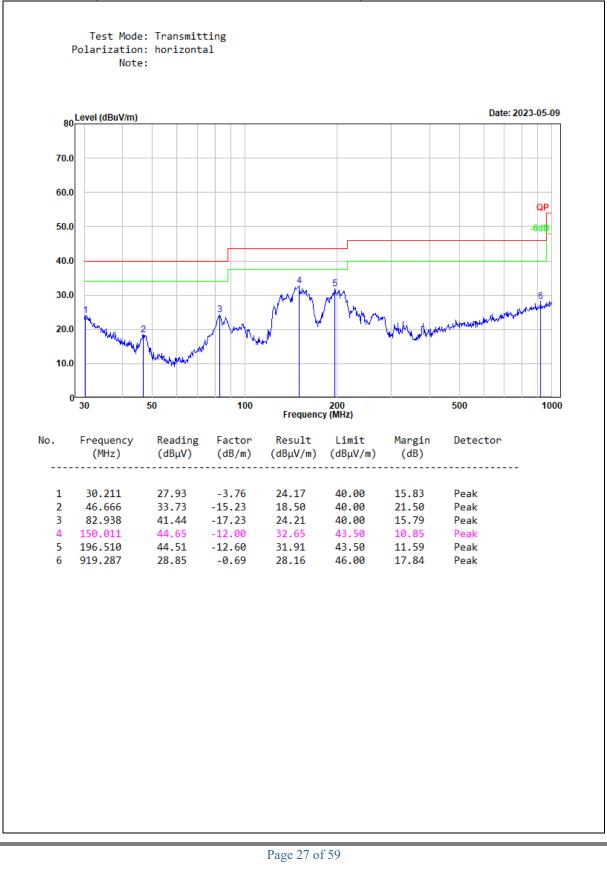
Serial Number:	250Y-1	Test Date:	2023/05/09~2023/05/22
Test Site:	966-2, 966-1	Test Mode:	Transmitting
Tester:	Vic Du, coco Tian	Test Result:	Pass

Environmental Conditions:								
Temperature: (°C)	26~27.2	Relative Humidity: (%)	62~64	ATM Pressure: (kPa)	100.2~100.7			

Test Equipment List and Details:

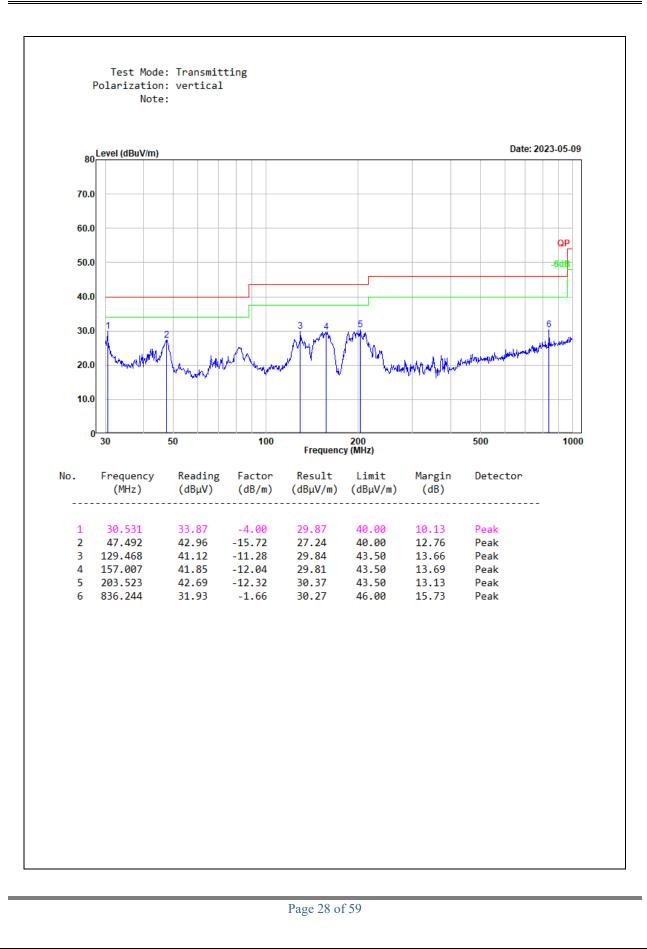
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Sunol Sciences Antenna		A082520-5	2020/10/19	2023/10/18
R&S	EMI Test Receiver	ESR3	102724	2022/07/15	2023/07/14
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2022/07/17	2023/07/16
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2022/07/17	2023/07/16
Sonoma	Amplifier	310N	186165	2022/07/17	2023/07/16
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020/10/13	2023/10/12
R&S	Spectrum Analyzer	FSV40	101591	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2022/08/07	2023/08/06
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2022/08/07	2023/08/06
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/09	2023/11/08
Audix	Test Software	E3	201021 (V9)	N/A	N/A
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/02/05	2024/02/04
Quinstar	Preamplifier	QLW-18405536- JO	15964001005	2022/9/16	2023/9/15
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2022/08/07	2023/08/06
E-Microwave	Band Rejection Filter	2400-2483.5MHz	OE01902424	2022/08/07	2023/08/06
Mini Circuits	High Pass Filter	VHF-6010+	31119	2022/08/07	2023/08/06

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Please refer to the below table and plots.

Note: The device can be mounted in multiple orientations, test was performed with X,Y, Z Axis according to C63.10 Figure 8, the worst orientation was photographed and it's data was recorded.


China Certification ICT Co., Ltd (Dongguan)

1) 30MHz-1GHz(802.11b mode middle channel was the worst)

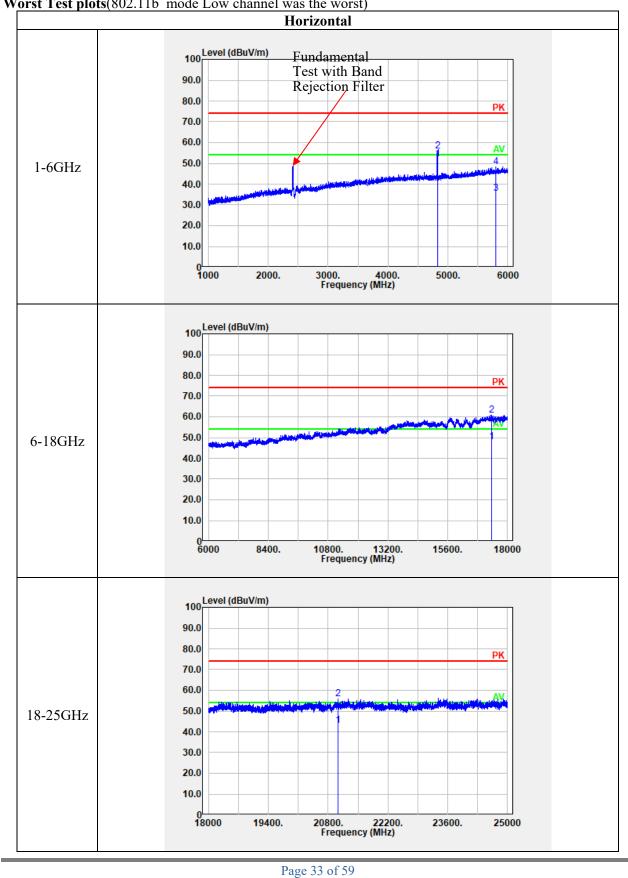
China Certification ICT Co., Ltd (Dongguan)

Report No.: CR230421646-00A

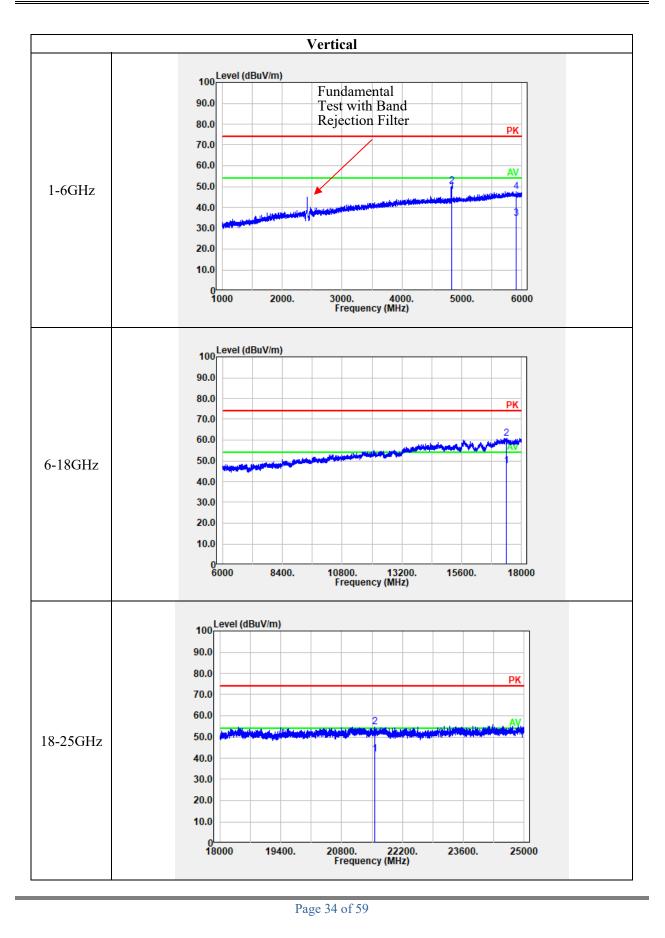
2) 1-25GHz: 802.11b Mode:

Frequency		eiver	Polar	Easter	Result	T invit	Manch
Frequency (MHz)	Reading (dBµV)	Detector	(H/V)	Factor (dB/m)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Cha	nnel: 2412 MH	Z		
2412.000	68.15	PK	Н	31.53	99.68	N/A	N/A
2412.000	62.20	AV	Н	31.53	93.73	N/A	N/A
2412.000	66.89	PK	V	31.53	98.42	N/A	N/A
2412.000	61.14	AV	V	31.53	92.67	N/A	N/A
2390.000	24.54	PK	Н	31.46	56.00	74.00	18.00
2390.000	12.62	AV	Н	31.46	44.08	54.00	9.92
4824.000	44.36	PK	Н	10.94	55.30	74.00	18.70
4824.000	41.25	AV	Н	10.94	52.19	54.00	1.81
7236.000	36.46	PK	Н	14.44	50.90	74.00	23.10
7236.000	24.58	AV	Н	14.44	39.02	54.00	14.98
	<u>.</u>		Middle Ch	annel: 2437 MI	Hz		
2437.000	68.17	РК	Н	31.60	99.77	N/A	N/A
2437.000	62.13	AV	Н	31.60	93.73	N/A	N/A
2437.000	66.88	РК	V	31.60	98.48	N/A	N/A
2437.000	61.23	AV	V	31.60	92.83	N/A	N/A
4874.000	44.55	РК	Н	11.05	55.60	74.00	18.40
4874.000	41.01	AV	Н	11.05	52.06	54.00	1.94
7311.000	36.81	РК	Н	14.80	51.61	74.00	22.39
7311.000	24.66	AV	Н	14.80	39.46	54.00	14.54
		•	High Cha	nnel: 2462MH	Z		
2462.000	66.91	PK	Н	31.63	98.54	N/A	N/A
2462.000	61.19	AV	Н	31.63	92.82	N/A	N/A
2462.000	66.26	PK	V	31.63	97.89	N/A	N/A
2462.000	60.39	AV	V	31.63	92.02	N/A	N/A
2483.500	24.97	PK	Н	31.64	56.61	74.00	17.39
2483.500	13.12	AV	Н	31.64	44.76	54.00	9.24
4924.000	44.17	PK	Н	11.18	55.35	74.00	18.65
4924.000	40.43	AV	Н	11.18	51.61	54.00	2.39
7386.000	36.91	PK	Н	14.89	51.80	74.00	22.20
7386.000	24.74	AV	Н	14.89	39.63	54.00	14.37

802.11g Mode:


Frequency (MHz)Reading (dBµV)DetectorPolar (H/V)Factor (dB/m)Result (dBµV/m)Limit (dBµV/m)Low Channel: 2412 MHz2412.00071.79PKH31.53103.32N/A2412.00061.92AVH31.5393.45N/A2412.00071.21PKV31.53102.74N/A2412.00061.66AVV31.5393.19N/A2390.00030.01PKH31.4661.4774.002390.00014.77AVH10.9459.5874.004824.00048.64PKH10.9459.5874.00Middle Channel: 2437 MHz2437.00070.84PKH31.60102.44N/A2437.00070.3PKV31.6091.63N/A2437.00060.26AVV31.6091.86N/A2437.00060.26AVV31.6091.86N/A2437.00036.18AVH11.0547.2354.007311.00036.68PKH11.48039.4654.007462.0069.14PKH31.63100.77N/A2462.00069.14PKH31.6391.07N/A2437.0003		Receiver		Delar	Fastan	Docult	Limit	Mangin	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	Detector	(H/V)	(dB/m)	(dBµV/m)		Margin (dB)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Low Channel: 2412 MHz								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.000	71.79	PK	Н	31.53	103.32	N/A	N/A	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.000	61.92	AV		31.53	93.45	N/A	N/A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.000	71.21	PK		31.53	102.74		N/A	
2390.000 14.77 AV H 31.46 46.23 54.00 4824.000 48.64 PK H 10.94 59.58 74.00 4824.000 35.24 AV H 10.94 46.18 54.00 7236.000 37.49 PK H 14.44 51.93 74.00 7236.000 25.24 AV H 14.44 39.68 54.00 7236.000 25.24 AV H 14.44 39.68 54.00 7236.000 25.24 AV H 31.60 102.44 N/A 2437.000 61.36 AV H 31.60 92.96 N/A 2437.000 70.03 PK V 31.60 91.86 N/A 2437.000 60.26 AV V 31.60 91.86 N/A 4874.000 36.18 AV H 11.05 60.56 74.00 7311.000 24.66 AV H 14.80<	2.000	61.66	AV	V	31.53	93.19	N/A	N/A	
4824.000 48.64 PK H 10.94 59.58 74.00 4824.000 35.24 AV H 10.94 46.18 54.00 7236.000 37.49 PK H 14.44 51.93 74.00 7236.000 25.24 AV H 14.44 39.68 54.00 7236.000 25.24 AV H 14.44 39.68 54.00 Middle Channel: 2437 MHz 2437.000 70.84 PK H 31.60 102.44 N/A 2437.000 61.36 AV H 31.60 92.96 N/A 2437.000 70.03 PK V 31.60 101.63 N/A 2437.000 60.26 AV V 31.60 91.86 N/A 4874.000 36.18 AV H 11.05 47.23 54.00 7311.000 36.68 PK H 14.80 39.46 54.00 7462.000	0.000	30.01	PK	Н	31.46	61.47	74.00	12.53	
4824.000 35.24 AV H 10.94 46.18 54.00 7236.000 37.49 PK H 14.44 51.93 74.00 7236.000 25.24 AV H 14.44 39.68 54.00 7236.000 25.24 AV H 14.44 39.68 54.00 Middle Channel: 2437 MHz 2437.000 70.84 PK H 31.60 102.44 N/A 2437.000 61.36 AV H 31.60 92.96 N/A 2437.000 70.03 PK V 31.60 101.63 N/A 2437.000 60.26 AV V 31.60 91.86 N/A 4874.000 49.51 PK H 11.05 60.56 74.00 4874.000 36.18 AV H 14.80 51.48 74.00 7311.000 24.66 AV H 14.80 39.46 54.00 High Cha	0.000	14.77	AV	Н	31.46	46.23	54.00	7.77	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.000	48.64	PK	Н	10.94	59.58	74.00	14.42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.000	35.24	AV	Н	10.94	46.18	54.00	7.82	
Middle Channel: 2437 MHz 2437.000 70.84 PK H 31.60 102.44 N/A 2437.000 61.36 AV H 31.60 92.96 N/A 2437.000 70.03 PK V 31.60 101.63 N/A 2437.000 70.03 PK V 31.60 101.63 N/A 2437.000 60.26 AV V 31.60 91.86 N/A 2437.000 60.26 AV V 31.60 91.86 N/A 4874.000 49.51 PK H 11.05 60.56 74.00 4874.000 36.18 AV H 11.05 47.23 54.00 7311.000 36.68 PK H 14.80 39.46 54.00 7311.000 24.66 AV H 14.80 39.46 54.00 2462.000 60.40 AV H 31.63 101.65 N/A 2462.000 69.14	6.000	37.49	PK	Н	14.44	51.93	74.00	22.07	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.000	25.24	AV	Н	14.44	39.68	54.00	14.32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]	Middle Ch	annel: 2437 MI	Hz			
2437.000 70.03 PK V 31.60 101.63 N/A 2437.000 60.26 AV V 31.60 91.86 N/A 4874.000 49.51 PK H 11.05 60.56 74.00 4874.000 36.18 AV H 11.05 47.23 54.00 4874.000 36.68 PK H 14.80 51.48 74.00 7311.000 36.68 PK H 14.80 39.46 54.00 7311.000 24.66 AV H 14.80 39.46 54.00 High Channel: 2462MHz 2462.000 70.02 PK H 31.63 101.65 N/A 2462.000 60.40 AV H 31.63 92.03 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2483.500	7.000	70.84	PK	Н	31.60	102.44	N/A	N/A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.000	61.36	AV		31.60	92.96		N/A	
4874.000 49.51 PK H 11.05 60.56 74.00 4874.000 36.18 AV H 11.05 47.23 54.00 7311.000 36.68 PK H 14.80 51.48 74.00 7311.000 24.66 AV H 14.80 39.46 54.00 7311.000 24.66 AV H 14.80 39.46 54.00 High Channel: 2462MHz 2462.000 60.40 AV H 31.63 101.65 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2483.500 30.12 PK H 31.64 61.76 74.00 2483.500 <td>7.000</td> <td>70.03</td> <td>PK</td> <td></td> <td>31.60</td> <td>101.63</td> <td>N/A</td> <td>N/A</td>	7.000	70.03	PK		31.60	101.63	N/A	N/A	
4874.000 36.18 AV H 11.05 47.23 54.00 7311.000 36.68 PK H 14.80 51.48 74.00 7311.000 24.66 AV H 14.80 39.46 54.00 7311.000 24.66 AV H 14.80 39.46 54.00 High Channel: 2462MHz 2462.000 70.02 PK H 31.63 101.65 N/A 2462.000 60.40 AV H 31.63 100.77 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2483.500 30.12 PK H 31.64 61.76 74.00 2483.500 14.95 AV H 31.64 46.59 54.00 4924.000 <td>7.000</td> <td>60.26</td> <td>AV</td> <td>V</td> <td>31.60</td> <td>91.86</td> <td>N/A</td> <td>N/A</td>	7.000	60.26	AV	V	31.60	91.86	N/A	N/A	
7311.000 36.68 PK H 14.80 51.48 74.00 7311.000 24.66 AV H 14.80 39.46 54.00 High Channel: 2462MHz 2462.000 70.02 PK H 31.63 101.65 N/A 2462.000 60.40 AV H 31.63 92.03 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2463.500 30.12 PK H 31.64 61.76 74.00 2483.500 14.95 AV H 31.64 60.35 74.00 2483.500 14.95 AV H 31.64 46.59 54.00 4924.000 49.17 PK H 11.18 60.35 74.00	4.000	49.51	PK	Н	11.05	60.56	74.00	13.44	
7311.000 24.66 AV H 14.80 39.46 54.00 High Channel: 2462MHz 2462.000 70.02 PK H 31.63 101.65 N/A 2462.000 60.40 AV H 31.63 92.03 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2483.500 30.12 PK H 31.64 61.76 74.00 2483.500 14.95 AV H 31.64 46.59 54.00 4924.000 49.17 PK H 11.18 60.35 74.00	4.000	36.18	AV	Н	11.05	47.23	54.00	6.77	
High Channel: 2462MHz 2462.000 70.02 PK H 31.63 101.65 N/A 2462.000 60.40 AV H 31.63 92.03 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 69.14 PK V 31.63 100.77 N/A 2462.000 59.44 AV V 31.63 91.07 N/A 2483.500 30.12 PK H 31.64 61.76 74.00 2483.500 14.95 AV H 31.64 46.59 54.00 4924.000 49.17 PK H 11.18 60.35 74.00	1.000	36.68	PK	Н	14.80	51.48	74.00	22.52	
2462.00070.02PKH31.63101.65N/A2462.00060.40AVH31.6392.03N/A2462.00069.14PKV31.63100.77N/A2462.00059.44AVV31.6391.07N/A2462.00059.44AVV31.6391.07N/A2483.50030.12PKH31.6461.7674.002483.50014.95AVH31.6446.5954.004924.00049.17PKH11.1860.3574.00	1.000	24.66	AV	Н	14.80	39.46	54.00	14.54	
2462.00060.40AVH31.6392.03N/A2462.00069.14PKV31.63100.77N/A2462.00059.44AVV31.6391.07N/A2483.50030.12PKH31.6461.7674.002483.50014.95AVH31.6446.5954.004924.00049.17PKH11.1860.3574.00				High Cha	nnel: 2462MH	Z			
2462.00069.14PKV31.63100.77N/A2462.00059.44AVV31.6391.07N/A2483.50030.12PKH31.6461.7674.002483.50014.95AVH31.6446.5954.004924.00049.17PKH11.1860.3574.00	2.000	70.02	PK	Н	31.63	101.65	N/A	N/A	
2462.00059.44AVV31.6391.07N/A2483.50030.12PKH31.6461.7674.002483.50014.95AVH31.6446.5954.004924.00049.17PKH11.1860.3574.00	2.000	60.40	AV	Н	31.63	92.03	N/A	N/A	
2483.50030.12PKH31.6461.7674.002483.50014.95AVH31.6446.5954.004924.00049.17PKH11.1860.3574.00	2.000	69.14	PK	V	31.63	100.77	N/A	N/A	
2483.50014.95AVH31.6446.5954.004924.00049.17PKH11.1860.3574.00	2.000	59.44	AV	V	31.63	91.07	N/A	N/A	
4924.000 49.17 PK H 11.18 60.35 74.00			PK			61.76		12.24	
								7.41	
4924 000 35 67 AV H 11 18 46 85 54 00	4.000	49.17	PK	Н	11.18	60.35	74.00	13.65	
	4.000	35.67	AV	Н	11.18	46.85	54.00	7.15	
7386.000 37.05 PK H 14.89 51.94 74.00	6.000	37.05	PK	Н	14.89	51.94	74.00	22.06	
7386.000 25.04 AV H 14.89 39.93 54.00	6.000	25.04	AV	Н	14.89	39.93	54.00	14.07	

802.11n ht20 Mode:


Б	Receiver		Dela	Б (D	T '		
Frequency (MHz)	Reading (dBµV)	Detector	- Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel: 2412 MHz								
2412.000	75.21	PK	Н	31.53	106.74	N/A	N/A	
2412.000	62.72	AV	Н	31.53	94.25	N/A	N/A	
2412.000	74.28	PK	V	31.53	105.81	N/A	N/A	
2412.000	61.99	AV	V	31.53	93.52	N/A	N/A	
2390.000	33.68	PK	Н	31.46	65.14	74.00	8.86	
2390.000	16.82	AV	Н	31.46	48.28	54.00	5.72	
4824.000	50.76	PK	Н	10.94	61.70	74.00	12.30	
4824.000	34.44	AV	Н	10.94	45.38	54.00	8.62	
7236.000	37.39	PK	Н	14.44	51.83	74.00	22.17	
7236.000	25.41	AV	Н	14.44	39.85	54.00	14.15	
Middle Channel: 2437 MHz								
2437.000	74.13	PK	Н	31.60	105.73	N/A	N/A	
2437.000	62.23	AV	Н	31.60	93.83	N/A	N/A	
2437.000	72.97	PK	V	31.60	104.57	N/A	N/A	
2437.000	60.54	AV	V	31.60	92.14	N/A	N/A	
4874.000	50.80	PK	Н	11.05	61.85	74.00	12.15	
4874.000	34.55	AV	Н	11.05	45.60	54.00	8.40	
7311.000	36.94	PK	Н	14.80	51.74	74.00	22.26	
7311.000	25.03	AV	Н	14.80	39.83	54.00	14.17	
			High Cha	nnel: 2462MH	Z			
2462.000	73.12	PK	Н	31.63	104.75	N/A	N/A	
2462.000	60.77	AV	Н	31.63	92.40	N/A	N/A	
2462.000	73.11	PK	V	31.63	104.74	N/A	N/A	
2462.000	60.69	AV	V	31.63	92.32	N/A	N/A	
2483.500	34.55	PK	Н	31.64	66.19	74.00	7.81	
2483.500	16.51	AV	Н	31.64	48.15	54.00	5.85	
4924.000	51.02	PK	Н	11.18	62.20	74.00	11.80	
4924.000	35.06	AV	Н	11.18	46.24	54.00	7.76	
7386.000	37.41	PK	Н	14.89	52.30	74.00	21.70	
7386.000	25.41	AV	Н	14.89	40.30	54.00	13.70	

802.11n ht40 Mode:

Б	Receiver		Dili	Б (D14	T • •/	M ·	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel: 2422 MHz								
2422.000	66.35	PK	Н	31.56	97.91	N/A	N/A	
2422.000	57.04	AV	Н	31.56	88.60	N/A	N/A	
2422.000	65.29	PK	V	31.56	96.85	N/A	N/A	
2422.000	56.22	AV	V	31.56	87.78	N/A	N/A	
2390.000	35.20	PK	Н	31.46	66.66	74.00	7.34	
2390.000	15.15	AV	Н	31.46	46.61	54.00	7.39	
4844.000	39.38	PK	Н	10.96	50.34	74.00	23.66	
4844.000	27.64	AV	Н	10.96	38.60	54.00	15.40	
7266.000	36.71	PK	Н	14.63	51.34	74.00	22.66	
7266.000	24.65	AV	Н	14.63	39.28	54.00	14.72	
Middle Channel: 2437 MHz								
2437.000	65.66	PK	Н	31.60	97.26	N/A	N/A	
2437.000	56.40	AV	Н	31.60	88.00	N/A	N/A	
2437.000	64.52	PK	V	31.60	96.12	N/A	N/A	
2437.000	55.59	AV	V	31.60	87.19	N/A	N/A	
4874.000	36.41	PK	Н	11.05	47.46	74.00	26.54	
4874.000	24.55	AV	Н	11.05	35.60	54.00	18.40	
7311.000	36.68	PK	Н	14.80	51.48	74.00	22.52	
7311.000	24.72	AV	Н	14.80	39.52	54.00	14.48	
	_	_	High Cha	nnel: 2452MH	Z			
2452.000	64.66	PK	Н	31.63	96.29	N/A	N/A	
2452.000	56.16	AV	Н	31.63	87.79	N/A	N/A	
2452.000	63.78	PK	V	31.63	95.41	N/A	N/A	
2452.000	54.80	AV	V	31.63	86.43	N/A	N/A	
2483.500	31.52	PK	Н	31.64	63.16	74.00	10.84	
2483.500	13.85	AV	Н	31.64	45.49	54.00	8.51	
4904.000	36.87	PK	Н	11.14	48.01	74.00	25.99	
4904.000	24.78	AV	Н	11.14	35.92	54.00	18.08	
7356.000	36.83	PK	Н	14.80	51.63	74.00	22.37	
7356.000	24.71	AV	Н	14.80	39.51	54.00	14.49	

Worst Test plots(802.11b mode Low channel was the worst)

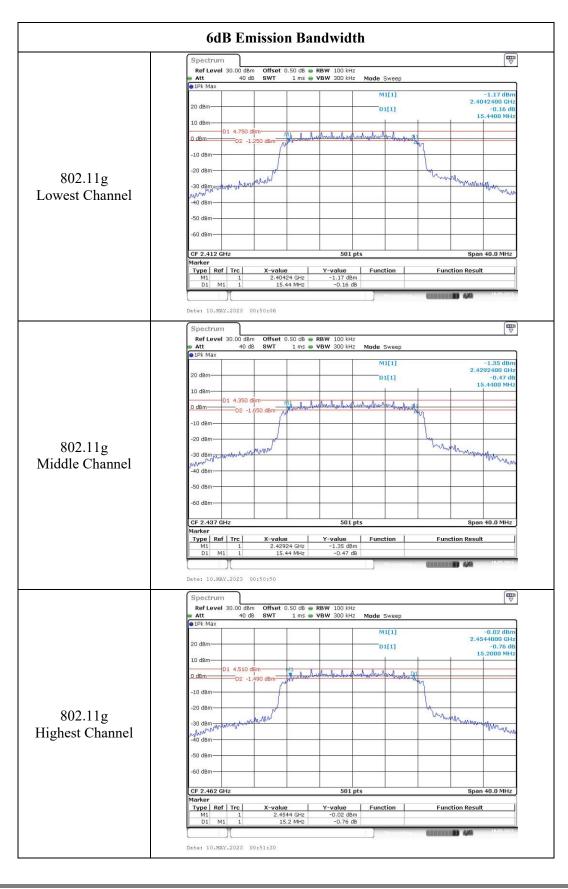
	ub Emission Danawiath.		
Serial Number:	250Y-1	Test Date:	2023/05/10~2023/05/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

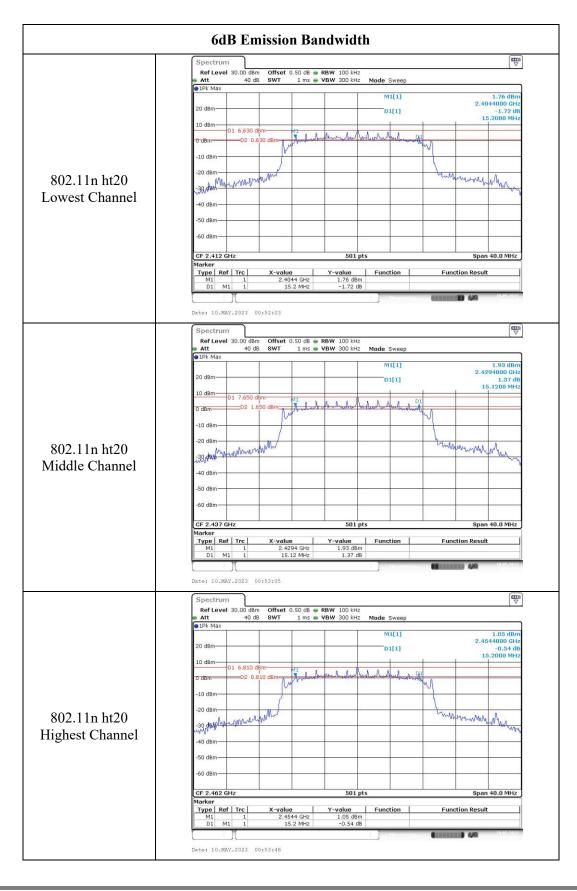
4.3 Minimum 6 dB Emission Bandwidth:

Environmental Conditions:							
Temperature: (°C)	24.1~24.4	Relative Humidity: (%)	50~53	ATM Pressure: (kPa)	100.2~100.7		

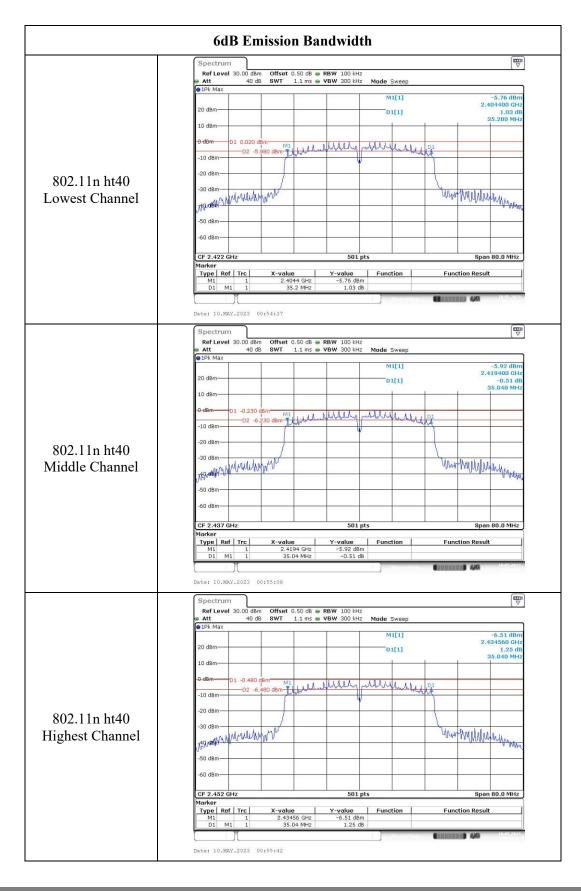

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Test Modes	Test Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
	2412	12.00	0.5
802.11b	2437	12.16	0.5
	2462	12.00	0.5
	2412	15.44	0.5
802.11g	2437	15.44	0.5
	2462	15.20	0.5
	2412	15.20	0.5
802.11n ht20	2437	15.12	0.5
	2462	15.20	0.5
	2422	35.20	0.5
802.11n ht40	2437	35.04	0.5
	2452	35.04	0.5

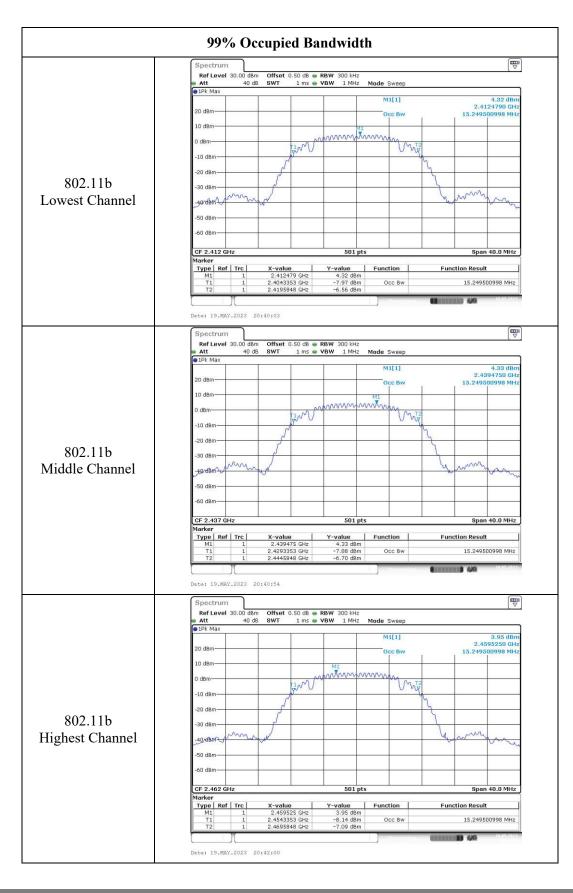


Page 36 of 59

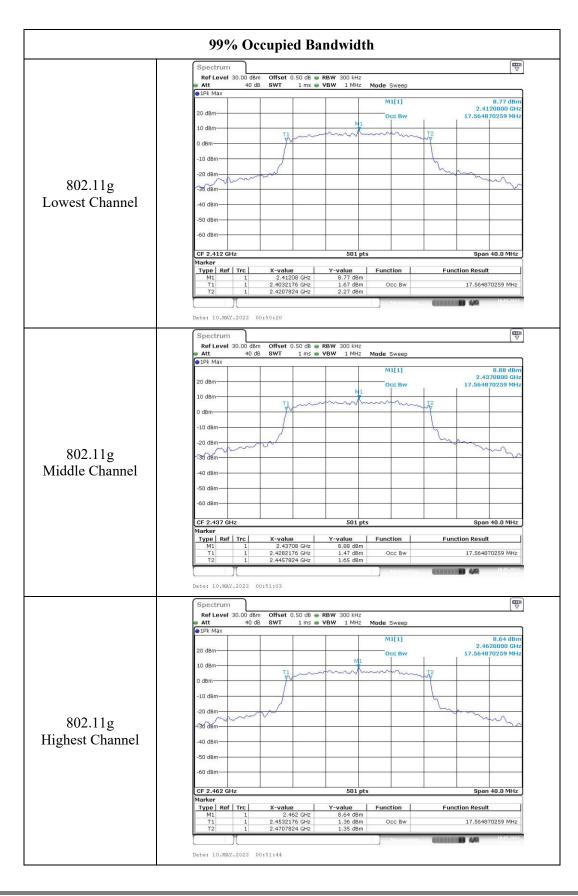
Page 38 of 59

4.4 99% Occupied Bandwidth:

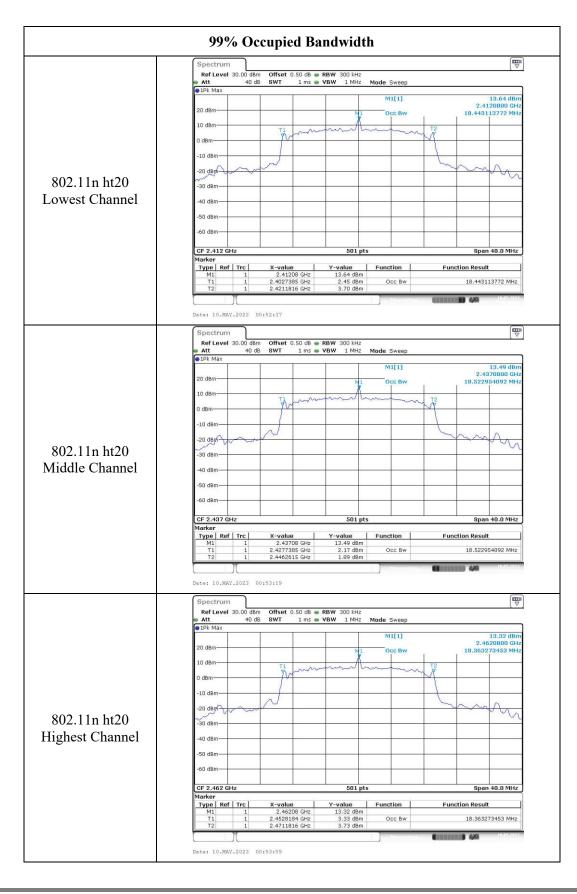
Serial Number:	250Y-1	Test Date:	2023/05/10~2023/05/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	N/A

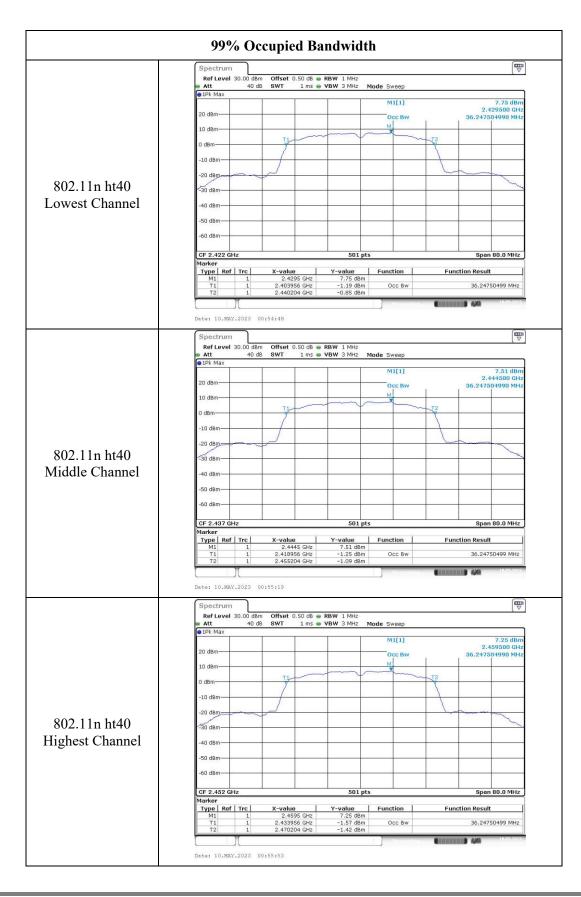

Environmental Conditions:					
Temperature: (°C)	24.1~24.4	Relative Humidity: (%)	50~53	ATM Pressure: (kPa)	100.2~100.7

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Modes	Test Channel	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)
	Lowest	2412	15.250
802.11b	Middle	2437	15.250
	Highest	2462	15.250
	Lowest	2412	17.565
802.11g	Middle	2437	17.565
	Highest	2462	17.565
	Lowest	2412	18.443
802.11n ht20	Middle	2437	18.523
	Highest	2462	18.363
	Lowest	2422	36.248
802.11n ht40	Middle	2437	36.248
	Highest	2452	36.248


Page 41 of 59

Page 42 of 59

Page 43 of 59

Page 44 of 59

4.5 Maximum Conducted Output Power:

Serial Number:	250Y-1	Test Date:	2023/05/10~2023/05/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

Er	Environmental Conditions:					
	Temperature: (℃)	24.1~24.4	Relative Humidity: (%)	50~53	ATM Pressure: (kPa)	100.2~100.7

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2021XA	MY54080015	2022/07/15	2023/07/14
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

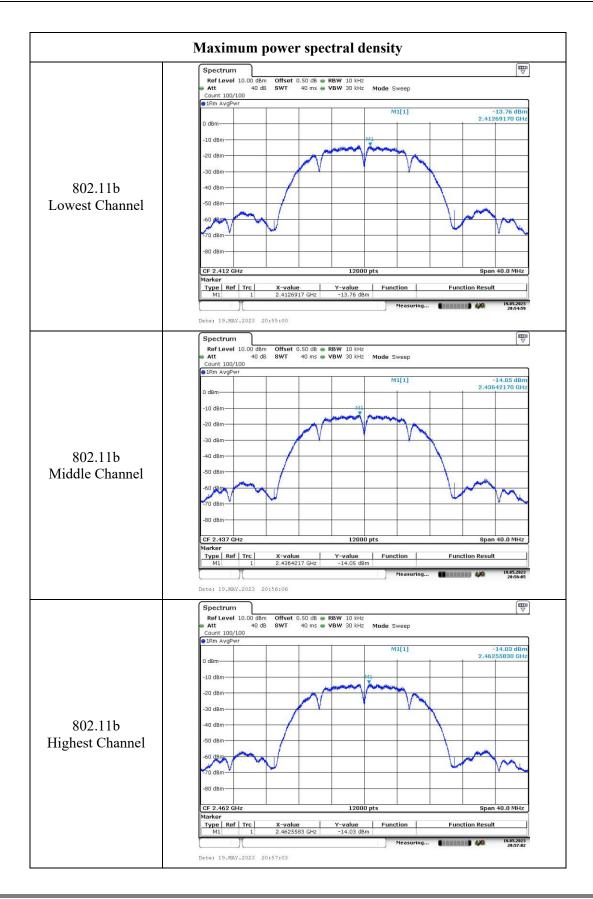
Test Modes	Test Frequency (MHz)	Maximum Conducted Average Output Power (dBm)	Limit (dBm)
	2412	14.27	30
802.11b	2437	14.43	30
	2462	14.34	30
	2412	15.86	30
802.11g	2437	15.93	30
	2462	15.80	30
	2412	16.75	30
802.11n ht20	2437	16.50	30
	2462	16.62	30
	2422	13.32	30
802.11n ht40	2437	13.15	30
	2452	12.93	30

4.6 Maximum Power Spectral Density:

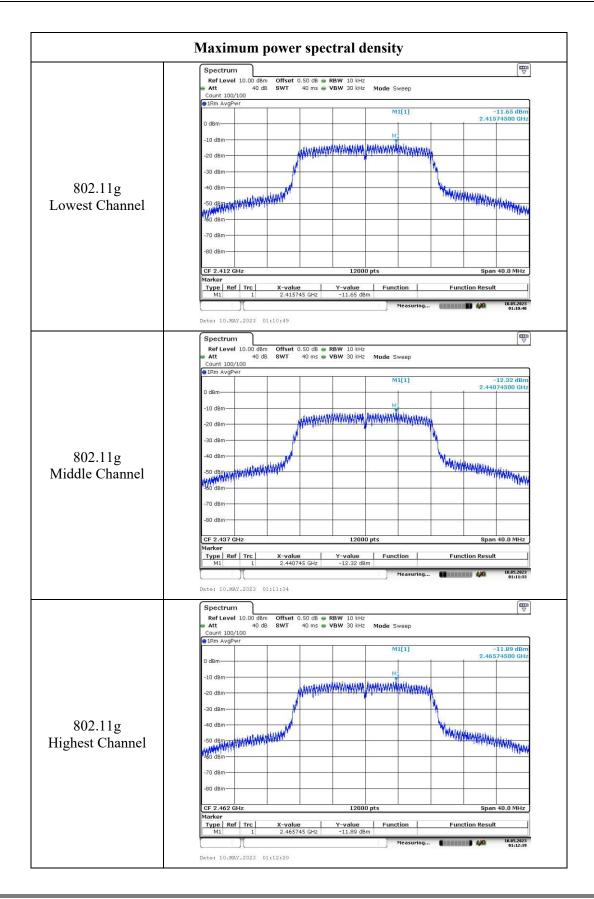
Serial Number:	250Y-1	Test Date:	2023/05/10~2023/05/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

Environmental Conditions: Temperature: 24.1~24.4 Relative Humidity: 50~53 ATM Pressure: 100.2~100.7 (°C) 24.1~24.4 (%) 50~53 ATM Pressure: 100.2~100.7

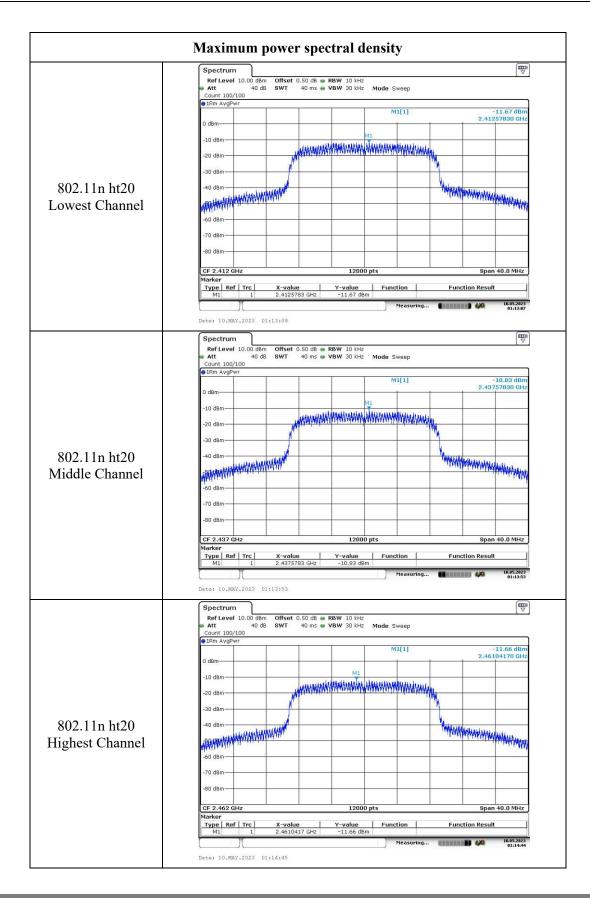
Test Equipment List and Details:

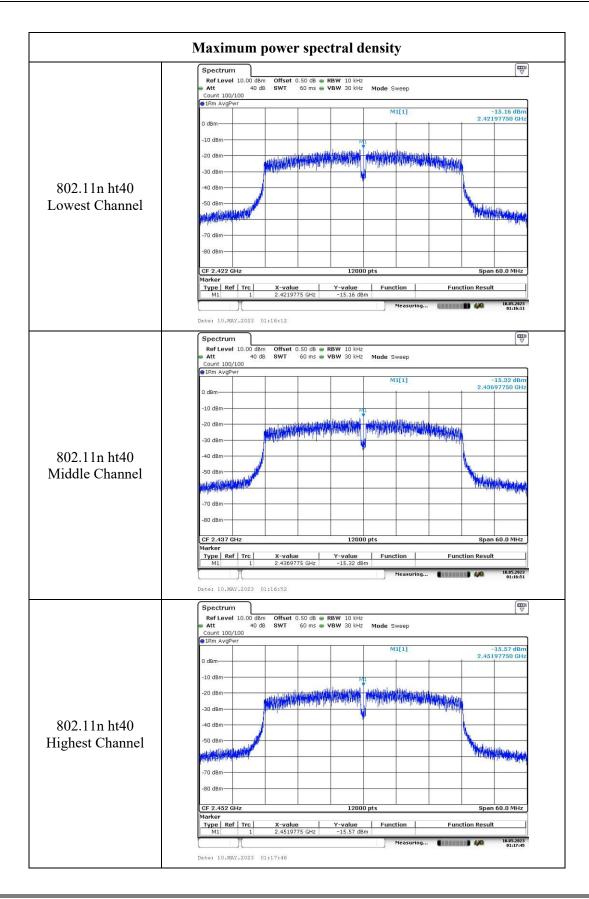

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Test Channel	Test Frequency (MHz)	Reading (dBm/10kHz)	Duty Factor (dB)	Power Spectral Density (dBm/10kHz)	Limit (dBm/3kHz)
	2412	-13.76	/	-13.76	8.00
802.11b	2437	-14.05	/	-14.05	8.00
	2462	-14.03	/	-14.03	8.00
	2412	-11.65	/	-11.65	8.00
802.11g	2437	-12.32	/	-12.32	8.00
	2462	-11.89	/	-11.89	8.00
	2412	-11.67	/	-11.67	8.00
802.11n ht20	2437	-10.83	/	-10.83	8.00
	2462	-11.66	/	-11.66	8.00
802.11n ht40	2422	-15.16	/	-15.16	8.00
	2437	-15.32	/	-15.32	8.00
	2452	-15.57	/	-15.57	8.00


Note: Duty cycle \geq 98%, ANSI C63.10-2013 Section 11.10.3 was used for test.


Page 47 of 59

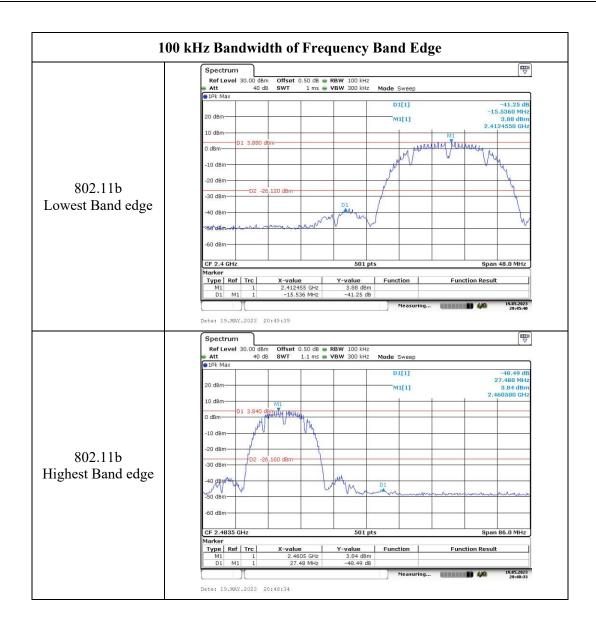
Page 48 of 59

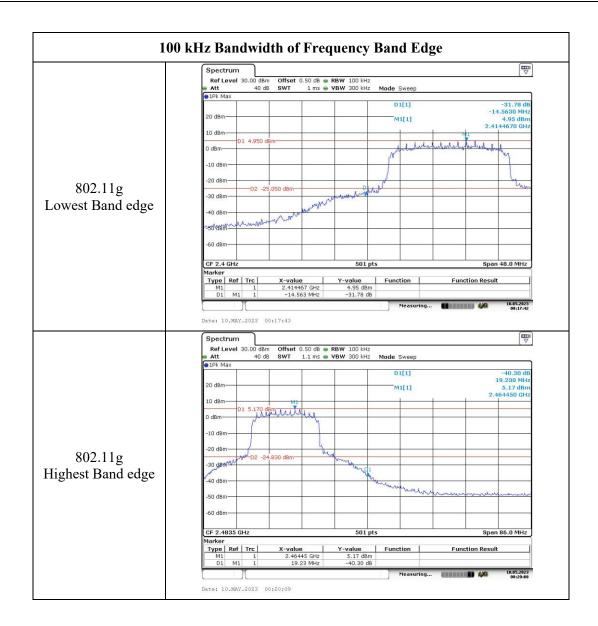
Page 49 of 59

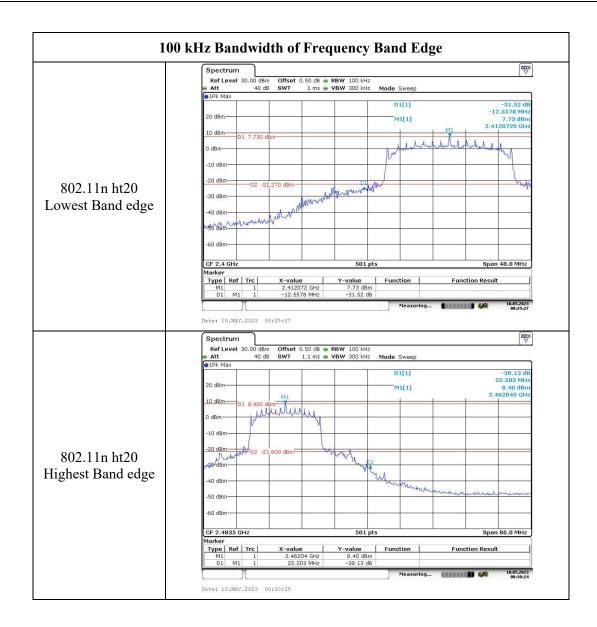
Page 50 of 59

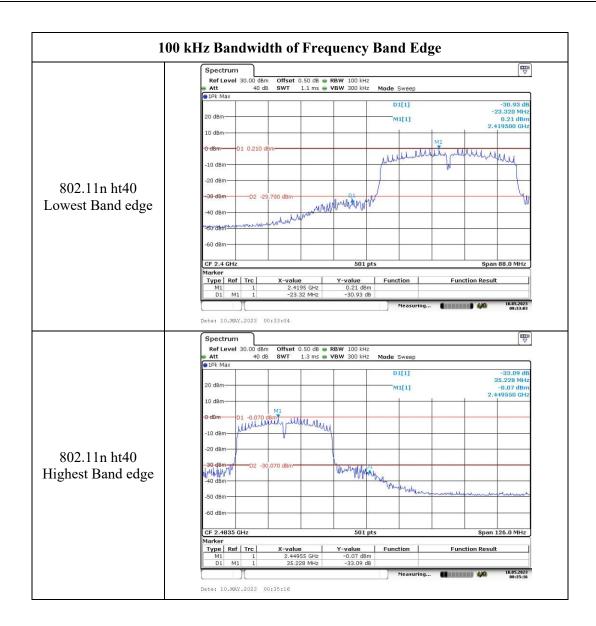
4.7 100 kHz Bandwidth of Frequency Band Edge:

Serial Number:	250Y-1	Test Date:	2023/05/10~2023/05/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass


Environmental Conditions:


Liivii onmentai	conditions.					
Temperature: (℃)	24.1~24.4	Relative Humidity: (%)	50~53	ATM Pressure: (kPa)	100.2~100.7	1


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14	
YINSAIGE	YINSAIGE Coaxial Cable		SJ0100001	Each time	N/A	
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

4.8 Duty Cycle:

Serial Number:	Serial Number:250Y-1Test Site:RF		2023/05/10~2023/05/19
Test Site:			Transmitting
Tester:	Morpheus Shi	Test Result:	N/A

Environmental Conditions:

Liivii onnientai	conditions.					1
Temperature: (℃)	24.1~24.4	Relative Humidity: (%)	50~53	ATM Pressure: (kPa)	100.2~100.7	

Test Equipment List and Details:

Manufacturer	Description	Description Model		Calibration Date	Calibration Due Date	
R&S	R&S Spectrum Analyzer		101474	2022/07/15	2023/07/14	
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A	
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)	Duty Factor (dB)
802.11b	100	100	100.00	10	/
802.11g	100	100	100.00	10	/
802.11n ht20	100	100	100.00	10	/
802.11n ht40	100	100	100.00	10	/

	Duty (Cycle						
	Spectrum							
	Ref Level 30.00 dBm Offset 0	Ref Level 30.00 dBm Offset 0.50 dB 🖷 RBW 10 MHz						
	Att 40 dB SWT 3 SGL	att 40 dB ● SWT 100 ms ● VBW 10 MHz						
	1Pk Cirw							
			M1[1]	15.65 dBm 25.400 ms				
	20 dBm							
	10 dBm							
	0 dBm		_					
802.11b	-10 dBm							
	-20 dBm							
	-30 dBm							
	-40 dBm							
	-50 dBm							
	-60 dBm							
	CF 2.437 GHz	501 pts		10.0 ms/				
	Marker		- 17					
	Type Ref Trc X-value M1 1 25	.4 ms 15.65 dBm	Inction Function	on Result				
			Ready Contract	19.05.2023 20:50:30				
	Date: 19.MAY.2023 20:50:31			173320300				
	Spectrum Ref Level 30.00 dBm Offset 0	1.50 dB 👜 RBW 10 MHz						
		100 ms 👄 VBW 10 MHz						
802.11g	SGL IPk Cirw]				
	MI		M1[1]	20.93 dBm 12.600 ms				
	20'dBm							
	10 dBm-							
	0 dBm-							
	-10 dBm							
	-20 dBm							
	-30 dBm							
	-40 dBm-							
	-50 dBm							
	-60 dBm		+ +					
	CF 2.437 GHz	501 pts		10.0 ms/				
	Marker							
	Type Ref Trc X-value M1 1 12	M1 1 12.6 ms 20.93 dBm						
			Ready Contract	10.05.2023 00:59:50				
	Date: 10.MAY.2023 00:59:51							
	Spectrum							
	Ref Level 30.00 dBm Offset 0	.50 dB 🖷 RBW 10 MHz		[♥]				
	Att 40 dB SWT : SGL	100 ms 👄 VBW 10 MHz						
	1Pk Clrw		M1[1]	01.25.10				
	20 dBm-		M1[1]	21.75 dBm 61.800 ms				
	10 dBm							
	10 000							
	0 dBm							
	0 dBm							
802.11n ht20	0 dBm							
802.11n ht20	0 dBm							
802.11n ht20	0 dBm							
802.11n ht20	0 dBm							
802.11n ht20	0 dBm							
802.11n ht20	0 dBm							
802.11n ht20	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm	501 pts		10.0 ms/				
802.11n ht20	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 d	Y-value Fi	Inction Function	10.0 ms/				
802.11n ht20	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 d		Inction Function Ready	on Result				

Page 57 of 59

China Certification ICT Co., Ltd (Dongguan)

Report No.: CR230421646-00A

	Spectrum
	Ref Level 30.00 dBm Offset 0.50 dB RBW 10 MHz
	Att 40 dB ● SWT 100 ms ● VBW 10 MHz
	SGL PIPK Cirw
	• IPk Cirw M1[1] 17.96 dB
	17,600 n
	20 dBm
	10 dBm
	0 dBm
	5 dbii
	-10 dBm
	-20 dBm
302.11n ht40	-20 doint
02.1111 IIt+0	-30 dBm-
	-40 dBm-
	-50 dBm
	-60 dBm-
	CF 2.437 GHz 501 pts 10.0 ms,
	Marker
	Type Ref Trc X-value Y-value Function Function Result M1 1 17.6 ms 17.96 dBm 1

5. RF EXPOSURE EVALUATION

5.1 MPE-Based Exemption

5.1.1 Applicable Standard

According to §1.1307(b)(3)(i)

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	$3,450 \text{ R}^2/\text{f}^2.$
30-300	3.83 R^2 .
300-1,500	$0.0128 \text{ R}^2 \text{f.}$
1,500-100,000	19.2R ² .

5.1.2 Measurement Result

				Exemption ERP		Maximum			
Operation Modes	Frequency (MHz)	λ/2π (mm)	Distance (mm)	(mW)	(dBm)	Conducted Power including Tune-up Tolerance (dBm)	Antenna Gain (dBi)	ERP (dBm)	MPE- Based Exemption
WLAN 2.4G	2412-2462	19.40	200	768	28.85	17.0	0.04	14.89	Compliant

Note:

The Maximum Conducted Power including Tune-up Tolerance was declared by manufacturer.

Result: The device compliant the MPE-Based Exemption at 20cm distances.

==== END OF REPORT ====