198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 510663 Telephone: +86 (0) 20 82155555 Report No.: GZEM180400204401 Fax: +86 (0) 20 82075059 Page: 1 of 59 Email: ee.guangzhou@sgs.com FCC ID: 2AJ3G-RS-H2104AN ### TEST REPORT Application No.: GZEM1804002044CR Applicant: Zhuhai RaySharp Technology Co., Ltd. Address of Applicant: No. 100 of Technology Road 6, National Hi-Tech Zone, Zhuhai, Guangdong, P.R. China Manufacturer:The same as applicant.Address of Manufacturer:The same as applicant.Factory:The same as applicant.Address of Factory:The same as applicant. **Equipment Under Test (EUT):** FCC ID: 2AJ3G-RS-H2104AN EUT Name: Wireless Network Video Recorder Model No.: RS-H2104AN-N-LR, RS-H2104AN-N, RS-H2104AM-N, RS-H2104AO-N, RS-H2104AP-N, RS-H2104AQ-N, RS-H2104AR-N, RS-Hxxxxyy-zz-zz-zzz $(x=0-9; y=A-Z; z=A-Z \text{ or blank}) \text{ }^{\text{m}}$ Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical. Standard(s): 47 CFR Part 15, Subpart C 15.247 Date of Receipt: 2018-04-23 Date of Test: 2018-07-17 Date of Issue: 2018-10-10 Test Result: Pass\* Kobe Jian #### **EMC Laboratory Manager** The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sqs.com/en/Terms-and-Conditions.aspx">http://www.sqs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to Electronic does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. <sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above. Report No.: GZEM180400204401 Page: 2 of 59 | Revision Record | | | | | | | | |-----------------|---------|------------|----------|----------|--|--|--| | Version | Chapter | Date | Modifier | Remark | | | | | 01 | | 2018-10-10 | | Original | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Authorized for issue by: | | | |--------------------------|--------------------------------|------------| | Tested By | Jackson Wan | 2018-07-17 | | | Jackson_Yuan /Project Engineer | Date | | Checked By | Riday Liu | 2018-07-30 | | | Ricky_Liu /Reviewer | Date | Report No.: GZEM180400204401 Page: 3 of 59 ### 2 Test Summary | Radio Spectrum Technical Requirement | | | | | | | |------------------------------------------------------------------------------|-------------------------------------|--------|------------------------------------------------------|--------|--|--| | Item | Standard | Method | Requirement | Result | | | | Antenna<br>Requirement | 47 CFR Part 15,<br>Subpart C 15.247 | N/A | 47 CFR Part 15,<br>Subpart C 15.203 &<br>15.247(c) | Pass | | | | Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence | 47 CFR Part 15,<br>Subpart C 15.247 | N/A | 47 CFR Part 15,<br>Subpart C<br>15.247(a)(1),(g),(h) | Pass | | | | Radio Spectrum Matter Part | | | | | | |---------------------------------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------------|--------|--| | Item | Standard | Method | Requirement | Result | | | Conducted<br>Emissions at AC<br>Power Line (150kHz-<br>30MHz) | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 6.2 | 47 CFR Part 15,<br>Subpart C 15.207 | Pass | | | Conducted Peak<br>Output Power | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.5 | 47 CFR Part 15,<br>Subpart C<br>15.247(b)(1) | Pass | | | 20dB Bandwidth | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.7 | 47 CFR Part 15,<br>Subpart C<br>15.247(a)(1) | Pass | | | Carrier Frequencies<br>Separation | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.2 | 47 CFR Part 15,<br>Subpart C 15.247a(1) | Pass | | | Hopping Channel<br>Number | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.3 | 47 CFR Part 15,<br>Subpart C<br>15.247a(1)(iii) | Pass | | | Dwell Time | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.4 | 47 CFR Part 15,<br>Subpart C<br>15.247a(1)(iii) | Pass | | | Conducted Band<br>Edges Measurement | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.6 | 47 CFR Part 15,<br>Subpart C 15.247(d) | Pass | | | Conducted Spurious<br>Emissions | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.8 | 47 CFR Part 15,<br>Subpart C 15.247(d) | Pass | | | Radiated Emissions<br>which fall in the<br>restricted bands | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 6.10.5 | 47 CFR Part 15,<br>Subpart C 15.205 &<br>15.209 | Pass | | | Radiated Spurious<br>Emissions | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 6.4,6.5,6.6 | 47 CFR Part 15,<br>Subpart C 15.205 &<br>15.209 | Pass | | Report No.: GZEM180400204401 Page: 4 of 59 #### **¤** Declaration of EUT Family Grouping: **Model No.:** RS-H2104AN-N-LR, RS-H2104AN-N, RS-H2104AM-N, RS-H2104AO-N, RS-H2104AP-N, RS-H2104AQ-N, RS-H2104AR-N, According to the declaration from the applicant, the electrical circuit design, layout, components used and internal wiring were identical for all models, but different in model number, outer decoration and colour. Therefore only one model RS-H2104AN-N-LR was tested in this report. Report No.: GZEM180400204401 Page: 5 of 59 ### 3 Contents | | | Page | |---|----------------------------------------------------------------------------------|------| | 1 | Cover Page | 1 | | 2 | Test Summary | و | | | | | | 3 | Contents | 5 | | 4 | General Information | 7 | | | 4.1 Details of E.U.T | 7 | | | 4.2 Environment parameter | | | | 4.3 Description of Support Units | | | | 4.4 Measurement Uncertainty | | | | 4.5 Test Location | g | | | 4.6 Test Facility | | | | 4.7 Deviation from Standards | | | | 4.8 Abnormalities from Standard Conditions | 11 | | 5 | Equipment List | 12 | | 6 | Radio Spectrum Technical Requirement | 16 | | U | | | | | 6.1 Antenna Requirement | | | | 6.1.1 Test Requirement: | | | | 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence | | | | 6.2.1 Test Requirement: | | | | 6.2.2 Conclusion | | | 7 | | | | • | | | | | 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz) | | | | 7.1.1 E.U.T. Operation | | | | 7.1.2 Test Setup Diagram | | | | 7.1.5 Measurement Procedure and Data | | | | 7.2.1 E.U.T. Operation | | | | 7.2.2 Test Setup Diagram | | | | 7.2.3 Measurement Procedure and Data | | | | 7.3 20dB Bandwidth | | | | 7.3.1 E.U.T. Operation | 23 | | | 7.3.2 Test Setup Diagram | 23 | | | 7.3.3 Measurement Procedure and Data | 23 | | | 7.4 Carrier Frequencies Separation | | | | 7.4.1 E.U.T. Operation | | | | 7.4.2 Test Setup Diagram | | | | 7.4.3 Measurement Procedure and Data | | | | 7.5 Hopping Channel Number | | | | 7.5.1 E.U.T. Operation | | | | 7.5.2 Test Setup Diagram | | | | 7.5.5 Measurement Procedure and Data | | | | 7.6.1 E.U.T. Operation | | Report No.: GZEM180400204401 Page: 6 of 59 | | 7.6.2 Test Setup Diagram | 26 | |---|-----------------------------------------------------------|----| | | 7.6.3 Measurement Procedure and Data | 26 | | | 7.7 Conducted Band Edges Measurement | 27 | | | 7.7.1 E.U.T. Operation | 27 | | | 7.7.2 Test Setup Diagram | 27 | | | 7.7.3 Measurement Procedure and Data | 27 | | | 7.8 Conducted Spurious Emissions | 28 | | | 7.8.1 E.U.T. Operation | 28 | | | 7.8.2 Test Setup Diagram | 28 | | | 7.8.3 Measurement Procedure and Data | 28 | | | 7.9 Radiated Emissions which fall in the restricted bands | 29 | | | 7.9.1 E.U.T. Operation | | | | 7.9.2 Test Setup Diagram | 30 | | | 7.9.3 Measurement Procedure and Data | | | | 7.10 Radiated Spurious Emissions | | | | 7.10.1 E.U.T. Operation | 34 | | | 7.10.2 Test Setup Diagram | 35 | | | 7.10.3 Measurement Procedure and Data | 36 | | 8 | Appendix | 41 | | | 8.1 Appendix 15.247 | 41 | Report No.: GZEM180400204401 Page: 7 of 59 #### 4 General Information #### 4.1 Details of E.U.T. Power Supply: DC 12V (powered by AC/DC adapter supplied by Applicant for main unit) DC 3.0V (2 x 1.5V size "AAA" batteries) for remote control Test Voltage: DC 12V Cable: DC input ports (unshielded, 1.2m) HDMI ports (unshielded, <3m) LAN ports (unshielded, >3m) USB ports\*3 (unshielded, <3m) Micro SD ports (unshielded, <3m) Number of Antenna 2 (one for transceiver and the other for receiver only) Antenna Gain 2 dBi Antenna Type Integrated Antenna Modulation Type GFSK Number of Channels 20 Operation Frequency 2410MHz to 2477MHz Spectrum Spread Frequency Hopping Spread Spectrum(FHSS) Technology Software Version SecureCRT Portable V7.0.0.326 #### 4.2 Environment parameter | Environment Parameter | Selected Values During Tests | | | |-----------------------|------------------------------|------------|--| | Relative Humidity | Ambient | | | | Value | Temperature(°C) | Voltage(V) | | | TNVN | 25 | 12 | | | TLVN | -10 | 12 | | | THVN | 45 | 12 | | Note: VN: Normal Voltage TN: Normal Temperature TL: Low Extreme Test Temperature TH: High Extreme Test Temperature Report No.: GZEM180400204401 Page: 8 of 59 | Operation | Operation Frequency each of channel | | | | | | | |-----------|-------------------------------------|---------|-----------|---------|-----------|---------|-----------| | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | | 1 | 2410MHz | 6 | 2428MHz | 11 | 2445MHz | 16 | 2463MHz | | 2 | 2413MHz | 7 | 2431MHz | 12 | 2449MHz | 17 | 2466MHz | | 3 | 2417MHz | 8 | 2435MHz | 13 | 2452MHz | 18 | 2470MHz | | 4 | 2421MHz | 9 | 2438MHz | 14 | 2456MHz | 19 | 2473MHz | | 5 | 2424MHz | 10 | 2442MHz | 15 | 2459MHz | 20 | 2477MHz | Using test software was control EUT work in continuous transmitter and receiver mode, and select test channel as below: | Channel | Frequency | |----------------------------|-----------| | The lowest channel (CH1) | 2410MHz | | The middle channel (CH11) | 2445MHz | | The highest channel (CH20) | 2477MHz | ### 4.3 Description of Support Units | Description | Description Manufacturer | | Serial No. | |---------------|--------------------------|------------------------|-----------------| | Laptop | Lenovo | T430u | REF. No.SEA1800 | | AC/DC adapter | SGS | DC 5V | REF. No.SEA0500 | | Monitor | MITSUBISHI<br>ELECTRIC | MDL23ICV | 1X201244AC | | Mouse | SGS | SGS | None | | Keyboard | SGS | SGS | None | | Camera | Supplied by client | RS-CH226SX-RF-<br>28PW | None | Report No.: GZEM180400204401 Page: 9 of 59 #### 4.4 Measurement Uncertainty | No. | Item | Measurement Uncertainty | | | |-----|---------------------------------|---------------------------|--|--| | 1 | Radio Frequency | +/-5.5 x 10 <sup>-8</sup> | | | | 2 | Duty cycle | +/-0.57% | | | | 3 | Occupied Bandwidth | +/-3% | | | | 4 | RF Conducted power | +/-0.68dB | | | | 5 | RF Power Density | +/-1.50dB | | | | 6 | Conducted Spurious Emissions | +/-1.04dB | | | | 7 | RF Radiated Power | +/-4.5dB (below 1GHz) | | | | 8 | RF Radiated Power | +/-4.8dB (above 1GHz) | | | | 9 | Radiated Spurious Emission Test | +/-4.5dB (30MHz-1GHz) | | | | 10 | Radiated Spurious Emission Test | +/-4.8dB (1GHz-18GHz) | | | | 11 | Temperature | +/-0.4°C | | | | 12 | Humidity | +/-1.3% | | | | 13 | Supply Voltages | +/-1.5% | | | | 14 | Time | +/-3% | | | #### 4.5 Test Location All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663 Tel: +86 20 82155555 Fax: +86 20 82075059 No tests were sub-contracted. Report No.: GZEM180400204401 Page: 10 of 59 #### 4.6 Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### ● NVLAP (Lab Code: 200611-0) SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. #### ACMA SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation. #### ● SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES. #### ● CNAS (Lab Code: L0167) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories. #### ● FCC Recognized 2.948 Listed Test Firm(Registration No.: 282399) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002. #### FCC Recognized Accredited Test Firm(Registration No.: 486818) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: CN5016, Test Firm Registration Number: 486818, Jul 13, 2017. #### ● Industry Canada (Registration No.: 4620B-1) The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1. #### ● VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179) The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively. #### ● CBTL (Lab Code: TL129) SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01 and Rules of procedure IECEE 02, and the relevant IECEE CB-Scheme Operational documents. Report No.: GZEM180400204401 Page: 11 of 59 4.7 Deviation from Standards None 4.8 Abnormalities from Standard Conditions None Report No.: GZEM180400204401 Page: 12 of 59 ### 5 Equipment List | Conducted Peak Output Power | | | | | | | |-----------------------------|---------------------|----------|-----------------|------------|--------------|--| | Equipment | Manufacturer | Model No | Inventory<br>No | Cal Date | Cal Due Date | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | 20dB Bandwidth | | | | | | | | |------------------------|---------------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory<br>No | Cal Date | Cal Due Date | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | Carrier Frequencies Separation | | | | | | | | | |--------------------------------|-----------------------|--------|-----------------|------------|--------------|--|--|--| | Equipment | quipment Manufacturer | | Inventory<br>No | Cal Date | Cal Due Date | | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | | Hopping Channel Number | | | | | | | | |------------------------|---------------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory<br>No | Cal Date | Cal Due Date | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | Dwell Time | | | | | | | | | |------------------------|------------------------------|--------|-----------------|------------|--------------|--|--|--| | Equipment | ent Manufacturer Model No In | | Inventory<br>No | Cal Date | Cal Due Date | | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | Report No.: GZEM180400204401 Page: 13 of 59 | Conducted Band Edges Measurement | | | | | | | | | | |----------------------------------|---------------------|-----------------|-----------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory<br>No | Cal Date | Cal Due Date | | | | | | MXA Signal Analyzer | AgilentTechnologies | N9020A | SEM004-10 | 2018-03-10 | 2019-03-09 | | | | | | ESG Vector Signal<br>Generator | Keysight | E4438C | SEM006-03 | 2018-04-10 | 2019-04-10 | | | | | | EXG Analog Signal<br>Generator | AgilentTechnologies | N5171B | SEM006-04 | 2017-07-26 | 2020-07-25 | | | | | | Power Meter | AgilentTechnologies | U2021XA_C<br>h2 | SEM009-02 | 2017-09-19 | 2018-09-18 | | | | | | Power Meter | AgilentTechnologies | U2021XA_C<br>h3 | SEM009-03 | 2017-09-19 | 2018-09-18 | | | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | | | Conducted Spurious Emissions | | | | | | | | | |------------------------------|------------------------------------|--------|-----------|--------------|------------|--|--|--| | Equipment | Manufacturer Model No Inventory No | | Cal Date | Cal Due Date | | | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | | Conducted Emissions at AC Power Line (150kHz-30MHz) | | | | | | | | | | |-----------------------------------------------------|--------------------|-------------------|-----------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory<br>No | Cal Date | Cal Due Date | | | | | | Shielding Room | Zhong Yu | 8m x 3m x<br>3.8m | EMC0306 | N/A | N/A | | | | | | Two-Line V-Netwok | R&S | ENV216 | EMC0118 | 2018-01-19 | 2019-01-18 | | | | | | LISN | SCHAFFNER<br>CHASE | MN2050D/1 | EMC0102 | 2017-09-20 | 2018-09-19 | | | | | | EMI Test Receiver | Rohde & Schwarz | ESCS30 | EMC0506 | 2017-11-27 | 2018-11-26 | | | | | | Coaxial Cable | HangTianXing | 2m | EMC0107 | 2016-07-24 | 2018-07-23 | | | | | | Voltage Probe | SGS | N/A | EMC0106 | 2018-04-04 | 2020-04-03 | | | | | | Test Software E3c | Audix | Ver.<br>5.4.1221b | GZE100-62 | N/A | N/A | | | | | Report No.: GZEM180400204401 Page: 14 of 59 | Radiated Emissions which fall in the restricted bands | | | | | | | | | |-------------------------------------------------------|--------------------------------|-----------------------|-----------|------------|--------------|--|--|--| | Equipment | Manufacturer | Model No Inventory No | | Cal Date | Cal Due Date | | | | | EMI Test Receiver | Rohde & Schwarz | ESIB26 | EMC0522 | 2018-01-19 | 2019-01-18 | | | | | EMI Test Receiver | Rohde & Schwarz | ESCI | EMC0056 | 2018-01-19 | 2019-01-18 | | | | | Chamber cable | HangTianXing | N/A | EMC0542 | 2017-06-30 | 2019-06-30 | | | | | Trilog Broadband<br>Antenna 30MHz-1GHz | SCHWARZBECKME<br>SS-ELEKTRONIK | VULB 9160 | EMC2025 | 2016-09-08 | 2019-09-07 | | | | | Bi-log Type Antenna | Schaffner -Chase | CBL6112B | EMC0524 | 2016-09-08 | 2019-09-07 | | | | | Bi-log Type Antenna | Schaffner -Chase | CBL6143 | EMC0519 | 2017-05-04 | 2020-05-03 | | | | | Horn Antenna 1GHz-<br>18GHz | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120D | EMC2026 | 2016-09-09 | 2019-09-08 | | | | | 1GHz-26.5 GHz Pre-<br>Amplifier | Agilent | 8449B | EMC0521 | 2018-01-08 | 2019-01-07 | | | | | Amplifier | HP | 8447F | EMC2065 | 2018-06-01 | 2019-05-31 | | | | | Pre-Amplifier MH648A | ANRITSU CORP | MH648A | EMC2086 | 2017-11-20 | 2018-11-19 | | | | | Active Loop Antenna | EMCO | 6502 | EMC0523 | 2018-02-24 | 2019-02-23 | | | | | High Pass<br>Filter(915MHz) | FSY MICROWAVE | HM1465-9SS | EMC2079 | 2018-01-19 | 2019-01-18 | | | | | 2.4GHz Filter | Micro-Tronics | BRM 50702 | EMC2069 | 2018-01-08 | 2019-01-07 | | | | | 10m Semi-Anechoic<br>Chamber | ETS | N/A | EMC0530 | 2017-06-18 | 2019-06-18 | | | | | 966 Anechoic Chamber | C.R.T | 9m x 6m x<br>6m | EMC2142 | 2017-11-29 | 2018-11-28 | | | | | MXE EMI Receiver | Keysight | N9038A | EMC2139 | 2017-11-15 | 2018-11-14 | | | | | EXA Signal Analyzer | Keysight | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | Test Software E3 | | | GZE100-61 | N/A | N/A | | | | Report No.: GZEM180400204401 Page: 15 of 59 | Radiated Spurious Emissions | | | | | | | | | |----------------------------------------|--------------------------------|-----------------------|-----------|------------|--------------|--|--|--| | Equipment | Manufacturer | Model No Inventory No | | Cal Date | Cal Due Date | | | | | EMI Test Receiver | Rohde & Schwarz | ESIB26 | EMC0522 | 2018-01-19 | 2019-01-18 | | | | | EMI Test Receiver | Rohde & Schwarz | ESCI | EMC0056 | 2018-01-19 | 2019-01-18 | | | | | Chamber cable | HangTianXing | N/A | EMC0542 | 2017-06-30 | 2019-06-30 | | | | | Trilog Broadband<br>Antenna 30MHz-1GHz | SCHWARZBECKME<br>SS-ELEKTRONIK | VULB 9160 | EMC2025 | 2016-09-08 | 2019-09-07 | | | | | Bi-log Type Antenna | Schaffner -Chase | CBL6112B | EMC0524 | 2016-09-08 | 2019-09-07 | | | | | Bi-log Type Antenna | Schaffner -Chase | CBL6143 | EMC0519 | 2017-05-04 | 2020-05-03 | | | | | Horn Antenna 1GHz-<br>18GHz | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120D | EMC2026 | 2016-09-09 | 2019-09-08 | | | | | 1GHz-26.5 GHz Pre-<br>Amplifier | Agilent | 8449B | EMC0521 | 2018-01-08 | 2019-01-07 | | | | | Amplifier | HP | 8447F | EMC2065 | 2018-06-01 | 2019-05-31 | | | | | Pre-Amplifier MH648A | ANRITSU CORP | MH648A | EMC2086 | 2017-11-20 | 2018-11-19 | | | | | Active Loop Antenna | EMCO | 6502 | EMC0523 | 2018-02-24 | 2019-02-23 | | | | | High Pass<br>Filter(915MHz) | FSY MICROWAVE | HM1465-9SS | EMC2079 | 2018-01-19 | 2019-01-18 | | | | | 2.4GHz Filter | Micro-Tronics | BRM 50702 | EMC2069 | 2018-01-08 | 2019-01-07 | | | | | 10m Semi-Anechoic<br>Chamber | ETS | N/A | EMC0530 | 2017-06-18 | 2019-06-18 | | | | | 966 Anechoic Chamber | C.R.T | 9m x 6m x<br>6m | EMC2142 | 2017-11-29 | 2018-11-28 | | | | | MXE EMI Receiver | Keysight | N9038A | EMC2139 | 2017-11-15 | 2018-11-14 | | | | | EXA Signal Analyzer | Keysight | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | Test Software E3 | Audix | Ver.6.120110<br>a | GZE100-61 | N/A | N/A | | | | | General used equipment | | | | | | | | |------------------------|--------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory<br>No | Cal Date | Cal Due Date | | | | DMM | Fluke | 73 | EMC0006 | 2017-07-26 | 2018-07-25 | | | | DMM | Fluke | 73 | EMC0007 | 2017-07-26 | 2018-07-25 | | | Report No.: GZEM180400204401 Page: 16 of 59 ### 6 Radio Spectrum Technical Requirement #### 6.1 Antenna Requirement #### 6.1.1 Test Requirement: 47 CFR Part 15, Subpart C 15.203 & 15.247(c) #### 6.1.2 Conclusion #### Standard Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2 dBi. Test result: The unit does meet the FCC requirements. Report No.: GZEM180400204401 Page: 17 of 59 ### 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence #### 6.2.1 Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h) #### 6.2.2 Conclusion Standard Requirement: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1): According to Technical Specification, the pseudorandom sequence may be generated in transmitter before hopping to another channel so that the receiver can follow. Compliance for section 15.247(g): According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. Compliance for section 15.247(h): According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum bands. Report No.: GZEM180400204401 Page: 18 of 59 ### 7 Radio Spectrum Matter Test Results #### 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2 Limit: | Evanuation of aminaian (MH=) | Conducted limit(dBµV) | | | |--------------------------------------|----------------------------|-----------|--| | Frequency of emission (MHz) | Quasi-peak 66 to 56* 56 60 | Average | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | 0.5-5 | 56 | 46 | | | 5-30 | 60 | 50 | | | *Decreases with the logarithm of the | he frequency. | | | #### 7.1.1 E.U.T. Operation Operating Environment: Temperature: 24.8 °C Humidity: 48 % RH Atmospheric Pressure: 1020 mbar Test mode a: Normal working mode\_ Display and Recording #### 7.1.2 Test Setup Diagram Report No.: GZEM180400204401 Page: 19 of 59 #### 7.1.3 Measurement Procedure and Data - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. - 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, - 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. - 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor Report No.: GZEM180400204401 Page: 20 of 59 Mode:b; Line:Live Line | No<br>Model | | | | | | | | |--------------------------|--------------------------------|-----------------------------|------------------------------|------------------------------------|--------------------------------|-------------------------------|--------------| | Frequency<br>MHz<br>0,28 | read<br>level<br>dBuV<br>31,81 | Cable<br>Loss<br>dB<br>0,14 | LISN<br>Factor<br>dB<br>9,63 | Measured<br>level<br>dBuV<br>41,58 | Limit<br>Line<br>dBuV<br>60,81 | Over<br>limit<br>dB<br>-19,23 | Remark<br>QP | | 0,28 | 19,23 | 0,14 | 9,63 | 29,00 | 50,81 | -21,81 | AVERAGE | | 0,50 | 37,79 | 0,20 | 9,65 | 47,64 | 56,00 | -8,36 | QP | | 0,50 | 21,11 | 0,20 | 9,65 | 30,96 | 46,00 | -15,04 | AVERAGE | | 0,83 | 33,64 | 0,27 | 9,62 | 43,53 | 56,00 | -12,47 | QP | | 0,83 | 19,49 | 0,27 | 9,62 | 29,38 | 46,00 | -16,62 | AVERAGE | | 1,87 | 28,22 | 0,38 | 9,61 | 38,21 | 56,00 | -17,79 | QP | | 1,87 | 15,74 | 0,38 | 9,61 | 25,73 | 46,00 | -20,27 | AVERAGE | | 3,44 | 24,83 | 0,58 | 9,62 | 35,03 | 56,00 | -20,97 | QP | | 3,44 | 13,14 | 0,58 | 9,62 | 23,34 | 46,00 | -22,66 | AVERAGE | | 12,06 | 26,30 | 0,70 | 9,71 | 36,71 | 60,00 | -23,29 | QP | | 12,06 | 11,99 | 0,70 | 9,71 | 22,40 | 50,00 | -27,60 | AVERAGE | Report No.: GZEM180400204401 Page: 21 of 59 Mode:b; Line:Neutral Line | No<br>Model | NEUTH | ML | | | | | | |--------------------------|--------------------------------|-----------------------------|------------------------------|------------------------------------|--------------------------------|-------------------------------|--------------| | Frequency<br>MHz<br>0,26 | read<br>level<br>dBuV<br>26,12 | Cable<br>Loss<br>dB<br>0,13 | LISN<br>Factor<br>dB<br>9,58 | Measured<br>Tevel<br>dBuV<br>35,83 | Limit<br>Line<br>dBuV<br>61,34 | Over<br>limit<br>dB<br>-25,51 | Remark<br>QP | | 0,26 | 15,16 | 0,13 | 9,58 | 24,87 | 51,34 | -26,47 | AVERAGE | | 0,51 | 31,79 | 0,20 | 9,55 | 41,55 | 56,00 | -14,45 | QP | | 0,51 | 15,11 | 0,20 | 9,55 | 24,87 | 46,00 | -21,13 | AVERAGE | | 0,79 | 14,89 | 0,27 | 9,59 | 24,75 | 46,00 | -21,25 | AVERAGE | | 0,79 | 27,84 | 0,27 | 9,59 | 37,70 | 56,00 | -18,30 | QP | | 2,05 | 23,16 | 0,41 | 9,52 | 33,09 | 56,00 | -22,91 | QP | | 2,05 | 9,08 | 0,41 | 9,52 | 19,01 | 46,00 | -26,99 | AVERAGE | | 3,24 | 21,59 | 0,56 | 9,57 | 31,72 | 56,00 | -24,28 | QP | | 3,24 | 11,32 | 0,56 | 9,57 | 21,45 | 46,00 | -24,55 | AVERAGE | | 12,06 | 11,52 | 0,70 | 9,63 | 21,85 | 50,00 | -28,15 | AVERAGE | | 12,06 | 25,91 | 0,70 | 9,63 | 36,24 | 60,00 | -23,76 | QP | Report No.: GZEM180400204401 Page: 22 of 59 ### 7.2 Conducted Peak Output Power Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1) Test Method: ANSI C63.10 (2013) Section 7.8.5 Limit: | Frequency range (MHz) | Output power of the intentional radiator(wat | | | | | |-----------------------|--------------------------------------------------------|--|--|--|--| | | 1 for ≥50 hopping channels | | | | | | 902-928 | 0.25 for 25≤ hopping channels <50 | | | | | | | 1 for digital modulation | | | | | | | 1 for ≥75 non-overlapping hopping channels | | | | | | 2400-2483.5 | 0.125 for all other frequency hopping systems | | | | | | | 1 for digital modulation | | | | | | 5725-5850 | 1 for frequency hopping systems and digital modulation | | | | | #### 7.2.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.8 % RH Atmospheric Pressure: 1020 mbar Test mode b: TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK modulation. #### 7.2.2 Test Setup Diagram #### Ground Referen #### 7.2.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 23 of 59 #### 7.3 20dB Bandwidth Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1) Test Method: ANSI C63.10 (2013) Section 7.8.7 #### 7.3.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.8 % RH Atmospheric Pressure: 1020 mbar Test mode b: TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK modulation. #### 7.3.2 Test Setup Diagram Ground Reference Plane #### 7.3.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 24 of 59 #### 7.4 Carrier Frequencies Separation Test Requirement 47 CFR Part 15, Subpart C 15.247a(1) Test Method: ANSI C63.10 (2013) Section 7.8.2 Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W #### 7.4.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.8 % RH Atmospheric Pressure: 1020 mbar Test mode c:TX Hop mode Keep the EUT in frequency hopping mode with GFSK modulation. #### 7.4.2 Test Setup Diagram Ground Reference Plane #### 7.4.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 25 of 59 #### 7.5 Hopping Channel Number Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.3 Limit: | Frequency range (MHz) | Number of hopping channels (minimum) | | | | | |-----------------------|--------------------------------------|--|--|--|--| | 000 000 | 50 for 20dB bandwidth <250kHz | | | | | | 902-928 | 25 for 20dB bandwidth ≥250kHz | | | | | | 2400-2483.5 | 15 | | | | | | 5725-5850 | 75 | | | | | #### 7.5.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.9 % RH Atmospheric Pressure: 1020 mbar Test mode c:TX\_Hop mode\_Keep the EUT in frequency hopping mode with GFSK modulation. #### 7.5.2 Test Setup Diagram Ground Reference Plane #### 7.5.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 26 of 59 #### 7.6 Dwell Time Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.4 Limit: | Frequency(MHz) | Limit | |----------------|---------------------------------------------------------------------------| | 902-928 | 0.4S within a 20S period(20dB bandwidth<250kHz) | | 902-928 | 0.4S within a 10S period(20dB bandwidth≥250kHz) | | 2400-2483.5 | 0.4S within a period of 0.4S multiplied by the number of hopping channels | | 5725-5850 | 0.4S within a 30S period | #### 7.6.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.9 % RH Atmospheric Pressure: 1020 mbar Test mode c:TX\_Hop mode\_Keep the EUT in frequency hopping mode with GFSK modulation. #### 7.6.2 Test Setup Diagram #### 7.6.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 27 of 59 #### 7.7 Conducted Band Edges Measurement Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.6 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c) #### 7.7.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.9 % RH Atmospheric Pressure: 1020 mbar Test mode b: TX non-Hop mode Keep the EUT in continuously transmitting mode with GFSK modulation. c:TX Hop mode Keep the EUT in frequency hopping mode with GFSK modulation. #### 7.7.2 Test Setup Diagram #### Ground Reference Plane #### 7.7.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 28 of 59 #### 7.8 Conducted Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.8 Limit: In any 100 kHz bandwidth outside In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c) #### 7.8.1 E.U.T. Operation Operating Environment: Temperature: 23.8 °C Humidity: 60.9 % RH Atmospheric Pressure: 1020 mbar Test mode b: TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK modulation. #### 7.8.2 Test Setup Diagram **Ground Reference Plane** #### 7.8.3 Measurement Procedure and Data Report No.: GZEM180400204401 Page: 29 of 59 #### 7.9 Radiated Emissions which fall in the restricted bands Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.10.5 Measurement Distance: 3m Limit: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | |-----------------|-----------------------------------|-------------------------------|--|--| | 0.009-0.490 | 2400/F(kHz) | 300 | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | 1.705-30.0 | 30 | 30 | | | | 30-88 | 100 | 3 | | | | 88-216 | 150 | 3 | | | | 216-960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. #### 7.9.1 E.U.T. Operation Operating Environment: Temperature: 26 °C Humidity: 54 % RH Atmospheric Pressure: 1020 mbar Test mode b: TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK modulation. Report No.: GZEM180400204401 Page: 30 of 59 #### 7.9.2 Test Setup Diagram Report No.: GZEM180400204401 Page: 31 of 59 #### 7.9.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. - Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor - Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor Report No.: GZEM180400204401 Page: 32 of 59 Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |---|----------|-------|---------|-------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | - | | | 1 | 2310.000 | 33.00 | 26.25 | 5.03 | 37.44 | 26.84 | 54.00 | -27.16 | HORIZONTAL | Average | | 2 | 2310.000 | 44.47 | 26.25 | 5.03 | 37.44 | 38.31 | 74.00 | -35.69 | HORIZONTAL | Peak | | 3 | 2390.000 | 33.21 | 26.43 | 4.88 | 37.42 | 27.10 | 54.00 | -26.90 | HORIZONTAL | Average | | 4 | 2390.000 | 46.35 | 26.43 | 4.88 | 37.42 | 40.24 | 74.00 | -33.76 | HORIZONTAL | Peak | | 5 | 2483.500 | 32.14 | 26.58 | 5.23 | 37.40 | 26.55 | 54.00 | -27.45 | HORIZONTAL | Average | | 6 | 2483.500 | 44.53 | 26.58 | 5.23 | 37.40 | 38.94 | 74.00 | -35.06 | HORIZONTAL | Peak | | 7 | 2500.000 | 32.86 | 26.60 | 4.95 | 37.39 | 27.02 | 54.00 | -26.98 | HORIZONTAL | Average | | 8 | 2500.000 | 45.97 | 26.60 | 4.95 | 37.39 | 40.13 | 74.00 | -33.87 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low | | Freq | | Antenna<br>Factor | | | | Limit<br>Line | | Pol/Phase | Remark | |---|----------|-------|-------------------|------|-------|--------|---------------|--------|-----------|---------| | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | 15 | - | | 1 | 2310.000 | 32.48 | 26.25 | 5.03 | 37.44 | 26.32 | 54.00 | -27.68 | VERTICAL | Average | | 2 | 2310.000 | 44.79 | 26.25 | 5.03 | 37.44 | 38.63 | 74.00 | -35.37 | VERTICAL | Peak | | 3 | 2390.000 | 32.42 | 26.43 | 4.88 | 37.42 | 26.31 | 54.00 | -27.69 | VERTICAL | Average | | 4 | 2390.000 | 45.00 | 26.43 | 4.88 | 37.42 | 38.89 | 74.00 | -35.11 | VERTICAL | Peak | | 5 | 2483.500 | 31.82 | 26.58 | 5.23 | 37.40 | 26.23 | 54.00 | -27.77 | VERTICAL | Average | | 6 | 2483.500 | 45.75 | 26.58 | 5.23 | 37.40 | 40.16 | 74.00 | -33.84 | VERTICAL | Peak | | 7 | 2500.000 | 34.23 | 26.60 | 4.95 | 37.39 | 28.39 | 54.00 | -25.61 | VERTICAL | Average | | 8 | 2500.000 | 45.64 | 26.60 | 4.95 | 37.39 | 39.80 | 74.00 | -34.20 | VERTICAL | Peak | Report No.: GZEM180400204401 Page: 33 of 59 Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |---|----------|-------|---------|-------|--------|--------|--------|--------|------------|---------| | | Freq | | | | | | | | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | - | | | 1 | 2310.000 | 32.58 | 26.25 | 5.03 | 37.44 | 26.42 | 54.00 | -27.58 | HORIZONTAL | Average | | 2 | 2310.000 | 46.30 | 26.25 | 5.03 | 37.44 | 40.14 | 74.00 | -33.86 | HORIZONTAL | Peak | | 3 | 2390.000 | 32.08 | 26.43 | 4.88 | 37.42 | 25.97 | 54.00 | -28.03 | HORIZONTAL | Average | | 4 | 2390.000 | 45.53 | 26.43 | 4.88 | 37.42 | 39.42 | 74.00 | -34.58 | HORIZONTAL | Peak | | 5 | 2483.500 | 35.78 | 26.58 | 5.23 | 37.40 | 30.19 | 54.00 | -23.81 | HORIZONTAL | Average | | 6 | 2483.500 | 46.90 | 26.58 | 5.23 | 37.40 | 41.31 | 74.00 | -32.69 | HORIZONTAL | Peak | | 7 | 2500.000 | 33.16 | 26.60 | 4.95 | 37.39 | 27.32 | 54.00 | -26.68 | HORIZONTAL | Average | | 8 | 2500.000 | 44.94 | 26.60 | 4.95 | 37.39 | 39.10 | 74.00 | -34.90 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High | | F | | Antenna | | | | Limit | | D-1 /Dh | Damask | |---|----------|-------|---------|------|--------|--------|--------|--------|-----------|---------| | | rreq | rever | ractor | LOSS | ractor | rever | Line | Limit | Pol/Phase | Kemark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | 1 | | | 1 | 2310.000 | 32.90 | 26.25 | 5.03 | 37.44 | 26.74 | 54.00 | -27.26 | VERTICAL | Average | | 2 | 2310.000 | 44.37 | 26.25 | 5.03 | 37.44 | 38.21 | 74.00 | -35.79 | VERTICAL | Peak | | 3 | 2390.000 | 31.89 | 26.43 | 4.88 | 37.42 | 25.78 | 54.00 | -28.22 | VERTICAL | Average | | 4 | 2390.000 | 45.36 | 26.43 | 4.88 | 37.42 | 39.25 | 74.00 | -34.75 | VERTICAL | Peak | | 5 | 2483.500 | 32.85 | 26.58 | 5.23 | 37.40 | 27.26 | 54.00 | -26.74 | VERTICAL | Average | | 6 | 2483.500 | 45.13 | 26.58 | 5.23 | 37.40 | 39.54 | 74.00 | -34.46 | VERTICAL | Peak | | 7 | 2500.000 | 33.63 | 26.60 | 4.95 | 37.39 | 27.79 | 54.00 | -26.21 | VERTICAL | Average | | 8 | 2500.000 | 45.56 | 26.60 | 4.95 | 37.39 | 39.72 | 74.00 | -34.28 | VERTICAL | Peak | Report No.: GZEM180400204401 Page: 34 of 59 #### 7.10 Radiated Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6 Measurement Distance: 3m Limit: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | |-----------------|-----------------------------------|-------------------------------|--|--| | 0.009-0.490 | 2400/F(kHz) | 300 | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | 1.705-30.0 | 30 | 30 | | | | 30-88 | 100 | 3 | | | | 88-216 | 150 | 3 | | | | 216-960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. #### 7.10.1 E.U.T. Operation Operating Environment: Temperature: 26 °C Humidity: 57 % RH Atmospheric Pressure: 1020 mbar Test mode b: TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK modulation. Report No.: GZEM180400204401 Page: 35 of 59 #### 7.10.2Test Setup Diagram Report No.: GZEM180400204401 Page: 36 of 59 #### 7.10.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. #### Remark: - 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor - 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown Report No.: GZEM180400204401 Page: 37 of 59 Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low | | Freq | | Antenna<br>Factor | | Artest Arts | | | | Pol/Phase | Remark | |---|---------|-------|-------------------|------|-------------|--------|--------|--------|------------|--------| | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 30.962 | 24.97 | 12.22 | 0.07 | 21.63 | 15.63 | 40.00 | -24.37 | HORIZONTAL | QP | | 2 | 47.492 | 22.93 | 12.94 | 0.65 | 24.67 | 11.85 | 40.00 | -28.15 | HORIZONTAL | QP | | 3 | 96.775 | 31.14 | 9.11 | 0.85 | 27.03 | 14.07 | 43.50 | -29.43 | HORIZONTAL | QP | | 4 | 170.793 | 25.94 | 12.99 | 1.31 | 28.09 | 12.15 | 43.50 | -31.35 | HORIZONTAL | QP | | 5 | 541.373 | 29.13 | 19.15 | 2.19 | 29.73 | 20.74 | 46.00 | -25.26 | HORIZONTAL | QP | | 6 | 801.786 | 28.92 | 22.72 | 2.77 | 28.67 | 25.74 | 46.00 | -20.26 | HORIZONTAL | QP | Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |----|-----------|-------|---------|-------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 4817.780 | 52.64 | 30.82 | 6.01 | 36.94 | 52.53 | 54.00 | -1.47 | HORIZONTAL | Average | | 2 | 4817.780 | 57.86 | 30.82 | 6.01 | 36.94 | 57.75 | 74.00 | -16.25 | HORIZONTAL | Peak | | 3 | 5847.517 | 34.50 | 32.20 | 7.44 | 37.00 | 37.14 | 54.00 | -16.86 | HORIZONTAL | Average | | 4 | 5847.517 | 43.72 | 32.20 | 7.44 | 37.00 | 46.36 | 74.00 | -27.64 | HORIZONTAL | Peak | | 5 | 7230.150 | 43.75 | 35.50 | 7.35 | 36.93 | 49.67 | 54.00 | -4.33 | HORIZONTAL | Average | | 6 | 7230.150 | 48.91 | 35.50 | 7.35 | 36.93 | 54.83 | 74.00 | -19.17 | HORIZONTAL | Peak | | 7 | 8319.836 | 33.42 | 36.22 | 8.15 | 36.92 | 40.87 | 54.00 | -13.13 | HORIZONTAL | Average | | 8 | 8319.836 | 42.40 | 36.22 | 8.15 | 36.92 | 49.85 | 74.00 | -24.15 | HORIZONTAL | Peak | | 9 | 9640.916 | 31.26 | 37.54 | 8.18 | 37.08 | 39.90 | 54.00 | -14.10 | HORIZONTAL | Average | | 10 | 9640.916 | 42.69 | 37.54 | 8.18 | 37.08 | 51.33 | 74.00 | -22.67 | HORIZONTAL | Peak | | 11 | 12050.250 | 29.21 | 39.46 | 10.71 | 37.17 | 42.21 | 54.00 | -11.79 | HORIZONTAL | Average | | 12 | 12050.250 | 40.76 | 39.46 | 10.71 | 37.17 | 53.76 | 74.00 | -20.24 | HORIZONTAL | Peak | Report No.: GZEM180400204401 Page: 38 of 59 Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low | | Freq | | Antenna<br>Factor | | | | | | Pol/Phase | Remark | |---|---------|-------|-------------------|------|-------|--------|--------|--------|-----------|--------| | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 30.962 | 24.29 | 12.22 | 0.07 | 21.63 | 14.95 | 40.00 | -25.05 | VERTICAL | QP | | 2 | 50.409 | 24.23 | 12.98 | 0.60 | 24.88 | 12.93 | 40.00 | -27.07 | VERTICAL | QP | | 3 | 96.099 | 29.38 | 8.97 | 0.85 | 27.01 | 12.19 | 43.50 | -31.31 | VERTICAL | QP | | 4 | 152.130 | 26.32 | 13.31 | 1.21 | 28.12 | 12.72 | 43.50 | -30.78 | VERTICAL | QP | | 5 | 492.469 | 28.07 | 18.14 | 2.13 | 29.51 | 18.83 | 46.00 | -27.17 | VERTICAL | QP | | 6 | 925.756 | 28.04 | 24.23 | 3.70 | 28.37 | 27.60 | 46.00 | -18.40 | VERTICAL | QP | Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low | | ReadAntenna | | ReadAntenna Cable Preamp | | | | | Over | | | |----|-------------|-------|--------------------------|-------|--------|--------|--------|--------|-----------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | 1 | | | 1 | 4820.962 | 51.39 | 30.82 | 6.01 | 36.94 | 51.28 | 54.00 | -2.72 | VERTICAL | Average | | 2 | 4820.962 | 55.67 | 30.82 | 6.01 | 36.94 | 55.56 | 74.00 | -18.44 | VERTICAL | Peak | | 3 | 5813.812 | 34.50 | 32.17 | 7.46 | 37.00 | 37.13 | 54.00 | -16.87 | VERTICAL | Average | | 4 | 5813.812 | 43.44 | 32.17 | 7.46 | 37.00 | 46.07 | 74.00 | -27.93 | VERTICAL | Peak | | 5 | 7226.680 | 46.84 | 35.50 | 7.35 | 36.93 | 52.76 | 54.00 | -1.24 | VERTICAL | Average | | 6 | 7226.680 | 50.89 | 35.50 | 7.35 | 36.93 | 56.81 | 74.00 | -17.19 | VERTICAL | Peak | | 7 | 8638.399 | 32.36 | 36.20 | 7.96 | 36.95 | 39.57 | 54.00 | -14.43 | VERTICAL | Average | | 8 | 8638.399 | 41.78 | 36.20 | 7.96 | 36.95 | 48.99 | 74.00 | -25.01 | VERTICAL | Peak | | 9 | 9640.257 | 36.03 | 37.54 | 8.18 | 37.08 | 44.67 | 54.00 | -9.33 | VERTICAL | Average | | 10 | 9640.257 | 43.70 | 37.54 | 8.18 | 37.08 | 52.34 | 74.00 | -21.66 | VERTICAL | Peak | | 11 | 12050.520 | 37.81 | 39.46 | 10.71 | 37.17 | 50.81 | 54.00 | -3.19 | VERTICAL | Average | | 12 | 12050.520 | 41.75 | 39.46 | 10.71 | 37.17 | 54.75 | 74.00 | -19.25 | VERTICAL | Peak | Report No.: GZEM180400204401 Page: 39 of 59 Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:middle | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |----|-----------|-------|---------|-------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | - | | | 1 | 3823.371 | 40.37 | 29.08 | 7.83 | 36.91 | 40.37 | 54.00 | -13.63 | HORIZONTAL | Average | | 2 | 3823.371 | 46.23 | 29.08 | 7.83 | 36.91 | 46.23 | 74.00 | -27.77 | HORIZONTAL | Peak | | 3 | 4888.151 | 59.85 | 30.95 | 6.86 | 36.95 | 60.71 | 74.00 | -13.29 | HORIZONTAL | Peak | | 4 | 4888.760 | 53.00 | 30.95 | 6.86 | 36.95 | 53.86 | 54.00 | -0.14 | HORIZONTAL | Average | | 5 | 6679.040 | 34.37 | 34.57 | 7.16 | 36.97 | 39.13 | 54.00 | -14.87 | HORIZONTAL | Average | | 6 | 6679.040 | 43.67 | 34.57 | 7.16 | 36.97 | 48.43 | 74.00 | -25.57 | HORIZONTAL | Peak | | 7 | 7335.474 | 41.73 | 35.74 | 7.39 | 36.92 | 47.94 | 54.00 | -6.06 | HORIZONTAL | Average | | 8 | 7335.474 | 46.91 | 35.74 | 7.39 | 36.92 | 53.12 | 74.00 | -20.88 | HORIZONTAL | Peak | | 9 | 9780.603 | 35.71 | 37.74 | 8.37 | 37.09 | 44.73 | 54.00 | -9.27 | HORIZONTAL | Average | | 10 | 9780.603 | 43.15 | 37.74 | 8.37 | 37.09 | 52.17 | 74.00 | -21.83 | HORIZONTAL | Peak | | 11 | 12225.850 | 34.53 | 39.21 | 10.98 | 37.06 | 47.66 | 54.00 | -6.34 | HORIZONTAL | Average | | 12 | 12225.850 | 42.46 | 39.21 | 10.98 | 37.06 | 55.59 | 74.00 | -18.41 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:middle | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |-----------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | \$1 <del></del> | | 3823.371 | 37.52 | 29.08 | 7.83 | 36.91 | 37.52 | 54.00 | -16.48 | VERTICAL | Average | | 3823.371 | 46.23 | 29.08 | 7.83 | 36.91 | 46.23 | 74.00 | -27.77 | VERTICAL | Peak | | 4888.151 | 52.99 | 30.95 | 6.86 | 36.95 | 53.85 | 54.00 | -0.15 | VERTICAL | Average | | 4888.151 | 58.91 | 30.95 | 6.86 | 36.95 | 59.77 | 74.00 | -14.23 | VERTICAL | Peak | | 6377.195 | 32.29 | 33.91 | 6.99 | 36.99 | 36.20 | 54.00 | -17.80 | VERTICAL | Average | | 6377.195 | 43.59 | 33.91 | 6.99 | 36.99 | 47.50 | 74.00 | -26.50 | VERTICAL | Peak | | 7335.474 | 46.11 | 35.74 | 7.39 | 36.92 | 52.32 | 54.00 | -1.68 | VERTICAL | Average | | 7335.474 | 52.17 | 35.74 | 7.39 | 36.92 | 58.38 | 74.00 | -15.62 | VERTICAL | Peak | | 9780.603 | 41.61 | 37.74 | 8.37 | 37.09 | 50.63 | 54.00 | -3.37 | VERTICAL | Average | | 9780.603 | 47.42 | 37.74 | 8.37 | 37.09 | 56.44 | 74.00 | -17.56 | VERTICAL | Peak | | 12225.850 | 36.01 | 39.21 | 10.98 | 37.06 | 49.14 | 54.00 | -4.86 | VERTICAL | Average | | 12225.850 | 42.56 | 39.21 | 10.98 | 37.06 | 55.69 | 74.00 | -18.31 | VERTICAL | Peak | | | 3823.371<br>3823.371<br>4888.151<br>4888.151<br>6377.195<br>6377.195<br>7335.474<br>7335.474<br>9780.603<br>9780.603<br>12225.850 | MHz dBuV 3823.371 37.52 3823.371 46.23 4888.151 52.99 4888.151 58.91 6377.195 32.29 6377.195 43.59 7335.474 46.11 7335.474 52.17 9780.603 41.61 9780.603 47.42 12225.850 36.01 | MHz dBuV dB/m 3823.371 37.52 29.08 3823.371 46.23 29.08 4888.151 52.99 30.95 4888.151 58.91 30.95 6377.195 32.29 33.91 6377.195 43.59 33.91 7335.474 46.11 35.74 7335.474 52.17 35.74 9780.603 47.42 37.74 9780.603 47.42 37.74 12225.850 36.01 39.21 | Freq Level Factor Loss MHz dBuV dB/m dB 3823.371 37.52 29.08 7.83 3823.371 46.23 29.08 7.83 4888.151 52.99 30.95 6.86 6377.195 32.29 33.91 6.99 6377.195 43.59 33.91 6.99 7335.474 46.11 35.74 7.39 9780.603 41.61 37.74 8.37 9780.603 47.42 37.74 8.37 12225.850 36.01 39.21 10.98 | MHz dBuV dB/m dB dB 3823.371 37.52 29.08 7.83 36.91 3823.371 46.23 29.08 7.83 36.91 4888.151 52.99 30.95 6.86 36.95 4888.151 58.91 30.95 6.86 36.95 6377.195 32.29 33.91 6.99 36.99 6377.195 43.59 33.91 6.99 36.99 7335.474 46.11 35.74 7.39 36.92 9780.603 41.61 37.74 8.37 37.09 9780.603 47.42 37.74 8.37 37.09 12225.850 36.01 39.21 10.98 37.06 | Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 3823.371 37.52 29.08 7.83 36.91 37.52 3823.371 46.23 29.08 7.83 36.91 46.23 4888.151 52.99 30.95 6.86 36.95 53.85 4888.151 58.91 30.95 6.86 36.95 59.77 6377.195 32.29 33.91 6.99 36.99 36.20 6377.195 43.59 33.91 6.99 36.99 47.50 7335.474 46.11 35.74 7.39 36.92 52.32 7335.474 52.17 35.74 7.39 36.92 58.38 9780.603 41.61 37.74 8.37 37.09 56.44 12225.850 36.01 39.21 10.98 37.06 49.14 | Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 3823.371 37.52 29.08 7.83 36.91 37.52 54.00 3823.371 46.23 29.08 7.83 36.91 46.23 74.00 4888.151 52.99 30.95 6.86 36.95 53.85 54.00 4888.151 58.91 30.95 6.86 36.95 59.77 74.00 6377.195 32.29 33.91 6.99 36.99 36.20 54.00 6377.195 43.59 33.91 6.99 36.99 47.50 74.00 7335.474 46.11 35.74 7.39 36.92 52.32 54.00 9780.603 41.61 37.74 8.37 37.09 50.63 54.00 9780.603 47.42 37.74 8.37 37.09 56.44 74.00 12225.850 36.01 | Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 3823.371 37.52 29.08 7.83 36.91 37.52 54.00 -16.48 3823.371 46.23 29.08 7.83 36.91 46.23 74.00 -27.77 4888.151 52.99 30.95 6.86 36.95 53.85 54.00 -0.15 4888.151 58.91 30.95 6.86 36.95 59.77 74.00 -14.23 6377.195 32.29 33.91 6.99 36.99 36.20 54.00 -17.80 6377.195 43.59 33.91 6.99 36.99 47.50 74.00 -26.50 7335.474 46.11 35.74 7.39 36.92 52.32 54.00 -1.68 7335.474 52.17 35.74 7.39 36.92 58.38 74.00 -15.62 | Freq Level Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 3823.371 37.52 29.08 7.83 36.91 37.52 54.00 -16.48 VERTICAL 3823.371 46.23 29.08 7.83 36.91 46.23 74.00 -27.77 VERTICAL 4888.151 52.99 30.95 6.86 36.95 53.85 54.00 -0.15 VERTICAL 4888.151 58.91 30.95 6.86 36.95 59.77 74.00 -14.23 VERTICAL 6377.195 32.29 33.91 6.99 36.99 36.20 54.00 -17.80 VERTICAL 6377.195 43.59 33.91 6.99 36.99 47.50 74.00 -26.50 VERTICAL 7335.474 46.11 35.74 7.39 36.92 52.32 54.00 -1.68 VERTICAL 9780.603 | Report No.: GZEM180400204401 Page: 40 of 59 Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |----|-----------|-------|---------|-------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 3671.746 | 35.58 | 28.39 | 6.93 | 36.93 | 33.97 | 54.00 | -20.03 | HORIZONTAL | Average | | 2 | 3671.746 | 45.50 | 28.39 | 6.93 | 36.93 | 43.89 | 74.00 | -30.11 | HORIZONTAL | Peak | | 3 | 4952.850 | 50.88 | 31.05 | 7.84 | 36.96 | 52.81 | 54.00 | -1.19 | HORIZONTAL | Average | | 4 | 4952.850 | 56.54 | 31.05 | 7.84 | 36.96 | 58.47 | 74.00 | -15.53 | HORIZONTAL | Peak | | 5 | 7431.524 | 31.65 | 35.92 | 7.43 | 36.92 | 38.08 | 54.00 | -15.92 | HORIZONTAL | Average | | 6 | 7431.524 | 42.60 | 35.92 | 7.43 | 36.92 | 49.03 | 74.00 | -24.97 | HORIZONTAL | Peak | | 7 | 8917.462 | 30.38 | 36.45 | 8.14 | 37.00 | 37.97 | 54.00 | -16.03 | HORIZONTAL | Average | | 8 | 8917.462 | 41.96 | 36.45 | 8.14 | 37.00 | 49.55 | 74.00 | -24.45 | HORIZONTAL | Peak | | 9 | 9908.349 | 39.89 | 37.89 | 8.57 | 37.10 | 49.25 | 54.00 | -4.75 | HORIZONTAL | Average | | 10 | 9908.349 | 44.24 | 37.89 | 8.57 | 37.10 | 53.60 | 74.00 | -20.40 | HORIZONTAL | Peak | | 11 | 12385.740 | 32.08 | 38.93 | 11.17 | 36.93 | 45.25 | 54.00 | -8.75 | HORIZONTAL | Average | | 12 | 12385.740 | 40.26 | 38.93 | 11.17 | 36.93 | 53.43 | 74.00 | -20.57 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | - | | | 4952.640 | 50.97 | 31.05 | 7.84 | 36.96 | 52.90 | 54.00 | -1.10 | VERTICAL | Average | | 4959.307 | 55.93 | 31.05 | 7.84 | 36.96 | 57.86 | 74.00 | -16.14 | VERTICAL | Peak | | 7431.914 | 44.33 | 35.92 | 7.43 | 36.92 | 50.76 | 54.00 | -3.24 | VERTICAL | Average | | 7431.914 | 47.40 | 35.92 | 7.43 | 36.92 | 53.83 | 74.00 | -20.17 | VERTICAL | Peak | | 8638.399 | 30.81 | 36.20 | 7.96 | 36.95 | 38.02 | 54.00 | -15.98 | VERTICAL | Average | | 8638.399 | 41.41 | 36.20 | 7.96 | 36.95 | 48.62 | 74.00 | -25.38 | VERTICAL | Peak | | 9908.349 | 40.97 | 37.89 | 8.57 | 37.10 | 50.33 | 54.00 | -3.67 | VERTICAL | Average | | 9908.349 | 46.76 | 37.89 | 8.57 | 37.10 | 56.12 | 74.00 | -17.88 | VERTICAL | Peak | | 12385.740 | 36.70 | 38.93 | 11.17 | 36.93 | 49.87 | 54.00 | -4.13 | VERTICAL | Average | | 12385.740 | 42.00 | 38.93 | 11.17 | 36.93 | 55.17 | 74.00 | -18.83 | VERTICAL | Peak | | 13211.690 | 37.34 | 39.37 | 12.24 | 35.82 | 53.13 | 74.00 | -20.87 | VERTICAL | Peak | | 13211.690 | 26.13 | 39.37 | 12.24 | 35.82 | 41.92 | 54.00 | -12.08 | VERTICAL | Average | | | MHz<br>4952.640<br>4959.307<br>7431.914<br>7431.914<br>8638.399<br>8638.399<br>9908.349<br>9908.349<br>12385.740<br>12385.740<br>13211.690 | MHz dBuV 4952.640 50.97 4959.307 55.93 7431.914 44.33 7431.914 47.40 8638.399 30.81 8638.399 41.41 9908.349 40.97 9908.349 40.97 9908.349 46.76 12385.740 36.70 12385.740 42.00 13211.690 37.34 | MHz dBuV dB/m 4952.640 50.97 31.05 4959.307 55.93 31.05 7431.914 44.33 35.92 7431.914 47.40 35.92 8638.399 30.81 36.20 8638.399 41.41 36.20 9908.349 40.97 37.89 9908.349 46.76 37.89 12385.740 36.70 38.93 12385.740 42.00 38.93 13211.690 37.34 39.37 | MHz dBuV dB/m dB 4952.640 50.97 31.05 7.84 4959.307 55.93 31.05 7.84 7431.914 44.33 35.92 7.43 7431.914 47.40 35.92 7.43 8638.399 30.81 36.20 7.96 8638.399 41.41 36.20 7.96 9908.349 40.97 37.89 8.57 9908.349 40.97 37.89 8.57 9908.349 46.76 37.89 8.57 12385.740 36.70 38.93 11.17 12385.740 42.00 38.93 11.17 13211.690 37.34 39.37 12.24 | MHz dBuV dB/m dB dB 4952.640 50.97 31.05 7.84 36.96 4959.307 55.93 31.05 7.84 36.96 7431.914 44.33 35.92 7.43 36.92 7431.914 47.40 35.92 7.43 36.92 8638.399 30.81 36.20 7.96 36.95 8638.399 41.41 36.20 7.96 36.95 9908.349 40.97 37.89 8.57 37.10 9908.349 46.76 37.89 8.57 37.10 12385.740 36.70 38.93 11.17 36.93 13211.690 37.34 39.37 12.24 35.82 | Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 4952.640 50.97 31.05 7.84 36.96 52.90 4959.307 55.93 31.05 7.84 36.96 57.86 7431.914 44.33 35.92 7.43 36.92 50.76 7431.914 47.40 35.92 7.43 36.92 53.83 8638.399 30.81 36.20 7.96 36.95 38.02 8638.399 41.41 36.20 7.96 36.95 48.62 9908.349 40.97 37.89 8.57 37.10 50.33 9908.349 46.76 37.89 8.57 37.10 56.12 12385.740 36.70 38.93 11.17 36.93 49.87 12385.740 42.00 38.93 11.17 36.93 55.17 13211.690 37.34 39.37 12.24 35.82 53.13 < | Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 4952.640 50.97 31.05 7.84 36.96 52.90 54.00 4959.307 55.93 31.05 7.84 36.96 57.86 74.00 7431.914 44.33 35.92 7.43 36.92 50.76 54.00 7431.914 47.40 35.92 7.43 36.92 53.83 74.00 8638.399 30.81 36.20 7.96 36.95 38.02 54.00 8638.399 41.41 36.20 7.96 36.95 48.62 74.00 9908.349 40.97 37.89 8.57 37.10 50.33 54.00 12385.740 36.70 38.93 11.17 36.93 49.87 54.00 13211.690 37.34 39.37 12.24 35.82 53.13 74.00 | Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 4952.640 50.97 31.05 7.84 36.96 52.90 54.00 -1.10 4959.307 55.93 31.05 7.84 36.96 57.86 74.00 -16.14 7431.914 44.33 35.92 7.43 36.92 50.76 54.00 -3.24 7431.914 47.40 35.92 7.43 36.92 53.83 74.00 -20.17 8638.399 30.81 36.20 7.96 36.95 38.02 54.00 -15.98 8638.399 41.41 36.20 7.96 36.95 48.62 74.00 -25.38 9908.349 40.97 37.89 8.57 37.10 50.33 54.00 -3.67 9908.349 46.76 37.89 8.57 37.10 56.12 74.00 -17.88 <td>Freq Level Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 4952.640 50.97 31.05 7.84 36.96 52.90 54.00 -1.10 VERTICAL 4959.307 55.93 31.05 7.84 36.96 57.86 74.00 -16.14 VERTICAL 7431.914 44.33 35.92 7.43 36.92 50.76 54.00 -3.24 VERTICAL 7431.914 47.40 35.92 7.43 36.92 53.83 74.00 -20.17 VERTICAL 8638.399 30.81 36.20 7.96 36.95 38.02 54.00 -15.98 VERTICAL 8638.399 41.41 36.20 7.96 36.95 48.62 74.00 -25.38 VERTICAL 9908.349 40.97 37.89 8.57 37.10 50.33 54.00 -3.67 VERTICAL 12385.740</td> | Freq Level Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 4952.640 50.97 31.05 7.84 36.96 52.90 54.00 -1.10 VERTICAL 4959.307 55.93 31.05 7.84 36.96 57.86 74.00 -16.14 VERTICAL 7431.914 44.33 35.92 7.43 36.92 50.76 54.00 -3.24 VERTICAL 7431.914 47.40 35.92 7.43 36.92 53.83 74.00 -20.17 VERTICAL 8638.399 30.81 36.20 7.96 36.95 38.02 54.00 -15.98 VERTICAL 8638.399 41.41 36.20 7.96 36.95 48.62 74.00 -25.38 VERTICAL 9908.349 40.97 37.89 8.57 37.10 50.33 54.00 -3.67 VERTICAL 12385.740 | Report No.: GZEM180400204401 Page: 41 of 59 ### 8 Appendix ### 8.1 Appendix 15.247 #### 1.20 dB Bandwidth | Test Mode | Test Channel | EBW[MHz] | 2/3 EBW[MHz] | Verdict | |-----------|--------------|----------|--------------|---------| | GFSK | 2410 | 4.547 | 3.031 | PASS | | GFSK | 2445 | 4.531 | 3.021 | PASS | | GFSK | 2477 | 4.423 | 2.949 | PASS | Report No.: GZEM180400204401 Page: 42 of 59 Report No.: GZEM180400204401 Page: 43 of 59 #### 2.Conducted Peak Output Power | Test Mode | Test Channel | Power[dBm] | Limit[dBm] | Verdict | |-----------|--------------|------------|------------|---------| | GFSK | 2410 | 15.411 | 21 | PASS | | GFSK | 2445 | 16.169 | 21 | PASS | | GFSK | 2477 | 15.774 | 21 | PASS | Report No.: GZEM180400204401 Page: 44 of 59 Report No.: GZEM180400204401 Page: 45 of 59 ### 3. Carrier Frequency Separation | Test Mode | Test Channel | Result[MHz] | Limit[MHz] | Verdict | |-----------|--------------|-------------|------------|---------| | GFSK | 2410 | 3.960 | >3.031 | Pass | | GFSK | 2445 | 3.450 | >3.021 | Pass | | GFSK | 2477 | 3.960 | >2.949 | Pass | Report No.: GZEM180400204401 Page: 46 of 59 Report No.: GZEM180400204401 Page: 47 of 59 #### 4.Dwell Time | Test<br>Mode | Test<br>Channel | Burst<br>Width[ms/hop/ch] | Total<br>Hops[hop*ch] | Dwell<br>Time[s] | Limit[s] | Verdict | |--------------|-----------------|---------------------------|-----------------------|------------------|----------|---------| | GFSK | 2410 | 4.271 | 54 | 0.231 | 0.4 | Pass | | GFSK | 2445 | 4.286 | 55 | 0.236 | 0.4 | Pass | | GFSK | 2477 | 4.275 | 54 | 0.231 | 0.4 | Pass | Report No.: GZEM180400204401 Page: 48 of 59 Report No.: GZEM180400204401 Page: 49 of 59 Report No.: GZEM180400204401 Page: 50 of 59 Report No.: GZEM180400204401 Page: 51 of 59 #### 5. Hopping Channel Number | Test Mode | Test Channel | Number of Hopping Channel[N] | Limit[N] | Verdict | |-----------|--------------|------------------------------|----------|---------| | GFSK | Hopping | 20 | >=15 | PASS | #### 6.Band-edge for RF Conducted Emissions | Test<br>Mode | Test<br>Channel | Hopping | Carrier<br>Power[dBm] | Max. Spurious Level<br>[dBm] | Limit[dBm] | Verdict | |--------------|-----------------|---------|-----------------------|------------------------------|------------|---------| | GFSK | 2410 | On | 14.557 | -34.645 | -5.44 | PASS | | GFSK | 2410 | Off | 14.958 | -33.578 | -5.04 | PASS | | GFSK | 2477 | On | 15.137 | -23.584 | -4.86 | PASS | | GFSK | 2477 | Off | 15.275 | -23.167 | -4.72 | PASS | Report No.: GZEM180400204401 Page: 52 of 59 Report No.: GZEM180400204401 Report No.: GZEM180400204401 Page: 54 of 59 #### 7.RF Conducted Spurious Emissions | Test<br>Mode | Test<br>Channel | StartFre<br>[MHz] | StopFre<br>[MHz] | RBW<br>[kHz] | VBW<br>[kHz] | Pref[dBm] | Max.<br>Level<br>[dBm] | Limit<br>[dBm] | Verdict | |--------------|-----------------|-------------------|------------------|--------------|--------------|-----------|------------------------|----------------|---------| | GFSK | 2410 | 30 | 10000 | 100 | 300 | 15.190 | -48.742 | <-4.81 | PASS | | GFSK | 2410 | 10000 | 25000 | 100 | 300 | 15.190 | -43.911 | <-4.81 | PASS | | GFSK | 2445 | 30 | 10000 | 100 | 300 | 15.659 | -49.464 | <-4.34 | PASS | | GFSK | 2445 | 10000 | 25000 | 100 | 300 | 15.659 | -43.744 | <-4.34 | PASS | | GFSK | 2477 | 30 | 10000 | 100 | 300 | 15.400 | -49.632 | <-4.60 | PASS | | GFSK | 2477 | 10000 | 25000 | 100 | 300 | 15.400 | -44.162 | <-4.60 | PASS | Report No.: GZEM180400204401 Page: 55 of 59 Report No.: GZEM180400204401 Page: 56 of 59 Report No.: GZEM180400204401 Page: 57 of 59 Report No.: GZEM180400204401 Page: 58 of 59 Report No.: GZEM180400204401 Page: 59 of 59 --End of Report—