

TEST REPORT

	er :	E Face Recognition Terminal Edge Point 2AJ2B-EDGEPOINT
Prepared for Address		Telepower Communication Co., Ltd. 5 Bld, Zone A, Hantian Technology Town No.17 ShenHai RD, Nanhai District, Foshan, China
Prepared by Address	:	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number	$\langle : \rangle$	ENS2206230216W00201R
Date(s) of Tests		June 23, 2022 to July 19, 2022
Date of issue	:	July 20, 2022

Table of Contents

1	TEST	RESULT CERTIFICATION	3
2	EUT T	ECHNICAL DESCRIPTION	5
3	SUMM	IARY OF TEST RESULT	6
4	TEST	METHODOLOGY	7
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	7
5	FACIL	ITIES AND ACCREDITATIONS	9
	5.1 5.2 5.3	FACILITIES EQUIPMENT LABORATORY ACCREDITATIONS AND LISTINGS	
6	TEST	SYSTEM UNCERTAINTY	10
7	SETU	P OF EQUIPMENT UNDER TEST	
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. SUPPORT EQUIPMENT	
8	FREQ	UENCY HOPPING SYSTEM REQUIREMENTS	15
	8.1 8.2 8.3 8.4	STANDARD APPLICABLE EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE EQUAL HOPPING FREQUENCY USE FREQUENCY HOPPING SYSTEM	
9	TEST	REQUIREMENTS	17
	9.1 9.2 9.3 9.4	20DB&99% BANDWIDTH CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	9.5	MAXIMUM PEAK CONDUCTED OUTPUT POWER	
	9.6 9.7	CONDUCTED SUPRIOUS EMISSION RADIATED SPURIOUS EMISSION	
	9.8 9.9	CONDUCTED EMISSION TEST ANTENNA APPLICATION	

1 TEST RESULT CERTIFICATION

Applicant	:	Telepower Communication Co., Ltd.
Address	:	5 Bld, Zone A, Hantian Technology Town No.17 ShenHai RD, Nanhai District, Foshan, China
Manufacturer	:	Telepower Communication Co., Ltd.
Address	:	5 Bld, Zone A, Hantian Technology Town No.17 ShenHai RD, Nanhai District, Foshan, China
EUT	:	Face Recognition Terminal
Model Name	:	Edge Point
Trademark	:	oosto

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			
IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 2(02-2017)	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.247, IC RSS-247 Issue 2 and IC RSS-GEN, Issue 5.

The test results of this report relate only to the tested sample identified in this report

Date of Test :	June 23, 2022 to July 19, 2022
Prepared by :	Una yu
	Una Yu /Editor
Reviewer :	Jue Ha SHENZHEN,
	Joe Xia/Supervisor
	THE *
Approve & Authorized Signer :	Lisa Wang/Manager

Modified History

Version	Report No.	Revision Date	Summary
V1.0	ENS2206230216W00201R	/	Original Report

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description	
Product:	Face Recognition Terminal	
Model Number:	Edge Point	
Sample:	2#	
Device Type:	Bluetooth V5.0	
Data Rate:	1Mbps for GFSK modulation 2Mbps for pi/4-DQPSK modulation 3Mbps for 8DPSK modulation	
Modulation:	GFSK, pi/4-DQPSK, 8DPSK	
Operating Frequency Range(s) :	2402-2480MHz	
Number of Channels:	79 channels	
Transmit Power Max:	2.75 dBm	
Antenna Type:	FPC Antenna	
Antenna Gain:	0.6 dBi	
Power supply:	DC12V from adapter	
Adapter:	Model: BI24-120200-AdU Input: AC100-240, 50Hz/60Hz,0.8A Output: DC12V,2.0A	
Date of Received:	June 23, 2022	
Temperature Range:	-10°C ~ +45°C	

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC Part Clause	IC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(1)	RSS-247.5.1 RSS-Gen.6.7	Emission Bandwidth	PASS	
15.247(a)(1)	RSS-247.5.1	Carrier Frequency Separation	PASS	
15.247(a)(1)	RSS-247.5.1	Number of Hopping Frequencies	PASS	
15.247(a)(1)	RSS-247.5.1	Average Time of Occupancy (Dwell Time)	PASS	
15.247(b)(1)	RSS-247.5.4 RSS-Gen 6.12	Maximum Peak Conducted Output Power	PASS	
15.247(d)	RSS-247 5.5	Conducted Spurious Emissions	PASS	
15.247(d) 15.209 15.205	RSS-Gen 8.9 RSS-Gen 8.10 RSS-Gen 6.13 RSS-247 3.3 RSS-247 5.5	Radiated Spurious Emissions	PASS	
15.207	RSS-Gen 8.8	Conducted Emission	PASS	
15.203 15.247(b)	RSS-Gen 6.8 RSS-247 5.4	Antenna Application	PASS	
15.247 (a) (1)/g/h	-	Frequency Hopping System	PASS	

NOTE1: N/A (Not Applicable)

NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AJ2B-EDGEPOINT filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 2(02-2017) FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

Conducted Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Test Receiver	Rohde & Schwarz	ESCI	101384	May 14, 2022	1 Year
L.I.S.N.	Rohde & Schwarz	ENV216	5	May 14, 2022	1 Year
L.I.S.N.	Kyoritsu	KNW-407	8-1492-9	May 15, 2022	1 Year

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 14, 2022	1 Year
Pre-Amplifie	Lunar EM	LNA30M3G-25	J1010000070	May 14, 2022	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	661	Jun. 12, 2021	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	Jun. 12, 2021	2 Year
Pre-Amplifie	SKET	LNPA_0118G-45	SK2019051801	May 14, 2022	1 Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	Jun. 12, 2021	2 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	May 14, 2022	1 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1178	Aug. 22, 2021	2 Year
Band reject Filter(50dB)	WI/DE	WRCGV-2400(2400 -2485MHz)	2	May 14, 2022	1 Year

For other test items:

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Wireless Connectivity Tester	R&S	CMW270	102543	Aug. 27, 2021	1Year
Automatic Control Unit	Tonscend	JS0806-2	2118060480	Nov. 18, 2021	1Year
Signal Analyzer	KEYSIGHT	N9010B	MY60242456	Jan. 21, 2022	1Year
Analog Signal Generator	KEYSIGHT	N5173B	MY61252625	Oct. 29, 2021	1Year
UP/DOWN-Converter	R&S	CMW-Z800A	100274	Sep. 14, 2021	1Year
Vector Signal Generator	KEYSIGHT	N5182B	MY61252674	Oct. 28, 2021	1Year
Frequency Extender	KEYSIGHT	N5182BX07	MY59362541	Nov. 23, 2021	1Year
Temperature&Humidity test chamber	ESPEC	EL-02KA	12107166	Jul. 02, 2022	1 Year

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation(DH5); 2Mbps for pi/4-DQPSK modulation(2DH5); 3Mbps for 8DPSK modulation(3DH5);)were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for Bluetooth

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441		
1	2403	40	2442	76	2478
2	2404	41	2443	77	2479
				78	2480
Note: fc=2402M	Hz+(k-1)×1MHz	k=1 to 79			

Test Frequency and channel for Bluetooth

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel Frequency (MHz)		Channel	Frequency (MHz)
0	2402	39	2441	78	2480

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at:

EMTEK (Shenzhen) Co., Ltd.

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	 Accredited by CNAS The Certificate Registration Number is L2291. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943
	Accredited by A2LA The Certificate Number is 4321.01.
	Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
Name of Firm Site Location	 EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Parameter	Measurement Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

The Bluetooth component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

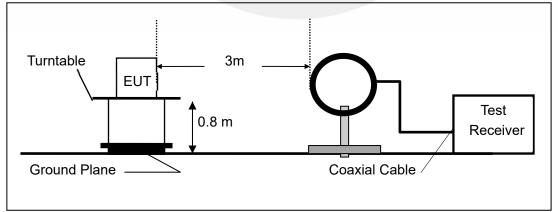
7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

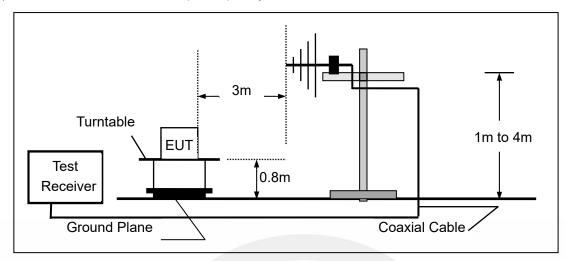
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

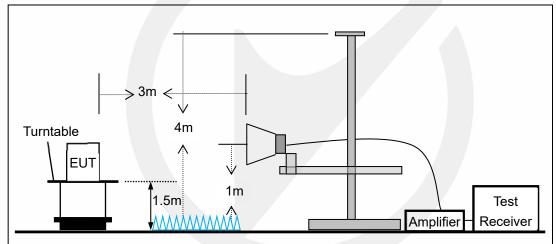
Above 30MHz:


The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

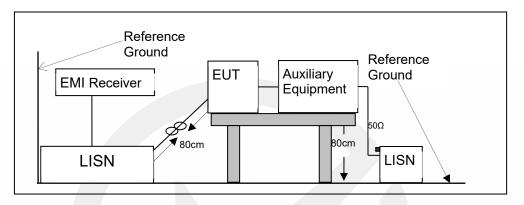

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.)

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).



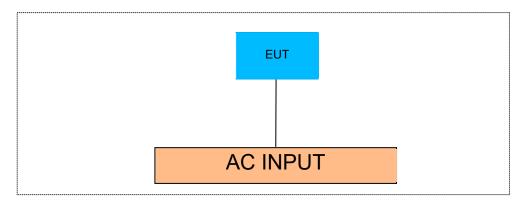
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
1	1	1	/

Auxiliary Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		
/	/	1	1		

Auxiliary Equipment I	List and Details				
Description	Description Manufacturer Model Serial Number				
/	/	1	1		

Notes:

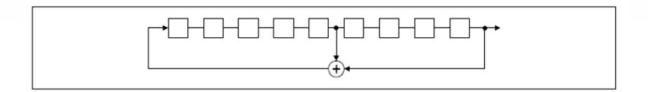
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 FREQUENCY HOPPING SYSTEM REQUIREMENTS

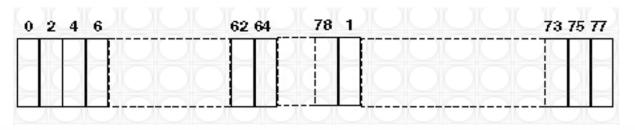
8.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

8.2 EUT Pseudorandom Frequency Hopping Sequence


The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divide into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The normal hop is 1 600 hops/s.

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

<mark>深圳信测标准技术服务股份有限公司</mark> 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.3 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode: 35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53 Each Frequency used equally on the average by each transmitter

8.4 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH- enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

9 TEST REQUIREMENTS

9.1 20DB&99% BANDWIDTH

9.1.1 Applicable Standard

According to FCC Part 15.247(a)(1) According to RSS-247.5.1 According to RSS-Gen.6.7 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 6.9.2 and 6.9.3

9.1.2 Conformance Limit

No limit requirement.

9.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.1.4 Test Procedure

The EUT was operating in Bluetooth mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100 kHz.

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the markerdelta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measure and record the results in the test report.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar
Test Engineer:	XXH

Note: N/A

20dB Emission Bandwidth

TestMode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.939	2401.538	2402.477		
DH5	Ant1	2441	0.939	2440.538	2441.477		
		2480	0.939	2479.535	2480.474		
		2402	1.287	2401.361	2402.648		
2DH5	Ant1	2441	1.284	2440.361	2441.645		
		2480	1.284	2479.361	2480.645		
		2402	1.302	2401.346	2402.648		
3DH5	Ant1	2441	1.305	2440.343	2441.648		
		2480	1.305	2479.343	2480.648		

Occupied Channel Bandwidth

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.85518	2401.565	2402.420		
DH5	Ant1	2441	0.85389	2440.566	2441.420		
		2480	0.85436	2479.562	2480.417		
		2402	1.2158	2401.389	2402.604		
2DH5	Ant1	2441	1.2087	2440.392	2441.601		
		2480	1.2258	2479.382	2480.608		
		2402	1.2262	2401.376	2402.602		
3DH5	Ant1	2441	1.2204	2440.379	2441.600		
		2480	1.2326	2479.371	2480.604		

20dB Emission Bandwidth

CO RL	thum Analyzer - Swept SA	ALIGN OFF 10:03:05 PM Jul 14, 2022 #Avg Type: RMS TRACE 12:14 C	Frequency	
	IFGain:Low #Atten: 20 dB	ΔMkr3 1.302 MHz	Auto Tune	
10 dB/div Log so	Ref Offset 9.48 dB Ref 15.00 dBm	-0.53 dB	Center Freq	
400 150	Al manuful	341	2.402000000 GHz	
(20) (20)			Start Freq	
45.0			2.400500000 GHz	
65.0			Stop Freq 2.403500000 GHz	
Center 2	402000 GHz	Span 3.000 MHz	CF Step	
#Res BW Mor Moor	RC SCL X Y FUR	Sweep (#Swp) 3.200 ms (1001 pts) worthon Function Watter Function Watter	300.000 kHz Auto Man	
3 Ň 41	1 f 2.401 346 GHz -19.64 dBm 1 f 2.402 006 GHz -0.41 dBm 1 f (Δ) 1.302 MHz (Δ) -0.53 dB		Freq Offset 0 Hz	
5 6 7				
9 10				
i⊀ ⊑ MSG		status		
WE Against So	3DH5_An	t1_2441	- 4 E	
RL RL	75 50 0 AC Freq 2.441000000 GHz PNO: Wide IFGsind.ow #Atten: 20 dB	ALIGN OFF 10:08:29 PM Jul 14,2022 #Avg Type: RMS TRACE 02 44 TIPE 04 CET P.	Frequency	
	Ref Offset 9.61 dB	ΔMkr3 1.305 MHz 0.19 dB	Auto Tune	
10 dB/d/v Log 5 00	Ref 15.00 dBm	0.19 dB	Center Freq	
6 00 15 0	al and a second	341	2.441000000 GHz	
35.0 35.0	mmm	Lunn	Start Freq 2.439500000 GHz	
45.0			Stop Freq	
66.9 75.0			2.442500000 GHz	
Center 2 #Res BW	.441000 GHz / 30 kHz #VBW 100 kHz	Span 3.000 MHz Sweep (#Swp) 3.200 ms (1001 pts)	CF Step 300.000 kHz	
MOR HODE	RC SCL X Y FUR	CTION FUNCTION WIDTH FUNCTION WALLE	<u>Auto</u> Man	
4 5	1 f 2.440 343 GHz -20.70 dBm 1 f 2.441 009 GHz -0.76 dBm 1 f 2.411 009 GHz -0.76 dBm 1 f 1.305 MHz (Δ) 0.19 dB		Freq Offset 0 Hz	
6 7 8				
10				
MSG				
BIT Agient Sp DIT R.L.	3DH5_An	ALION OFF 18:13-43 PM Jul 14, 2822		
Center	Freq 2.480000000 GHz PN0: Wide Trig: Free Run IFGsint.ow	#Avg Type: RMS TRACE R 2 4 0 DIFE	Frequency	
to dB/div	Ref Offset 9.84 dB Ref 15.00 dBm	ΔMkr3 1.305 MHz -0.02 dB	Auto Tune	
Log 5.00	0 ²		Center Freq 2.480000000 GHz	
5.00 15.0	Ammun	3∆1321.92 dbm		
0.50 .550		mann	Start Freq 2.478500000 GHz	
45.0			Stop Freq	
65 U 75 9			2.481500000 GHz	
#Res BV		Span 3.000 MHz Sweep (#Swp) 3.200 ms (1001 pts)	CF Step 300.000 kHz Auto Man	
	RC SCL X Y Function 1 f 2.479 343 GHz -21.39 dBm 1 f 2.480 006 GHz -1.58 dBm 1 f 2.480 006 GHz -0.02 dB	NCTION FUNCTION MOTH FUNCTION VALUE	FreqOffset	
3 A1 5	1 (Δ) 1.305 MHz (Δ) -0.02 dB		0 Hz	
7				
10		•		
MSO		STATUS		

Occupied Channel Bandwidth

Service Service Service Service Service Service Servi
Center Freq 2.40200000 GHz Center Freq: 2.40200000 GHz Radio Std: None Frequency Trig: Free Run AvgiMold:>100/100 Radio Device: BTS
to dB/div Ref 15.00 dBm -0.87845 dBm
Son Center Freq
500 2.40200000 GHz
× · · · · · · · · · · · · · · · · · · ·
450
Center 2.402 GHz Span 3 MHz CF Step #Res BW 30 kHz #VBW 100 kHz Sweep 10.07 ms 300.000 kHz
Auto
4 2250 MUL
x dB Bandwidth 1.381 MHz x dB -26.00 dB
 MSG STATUS
3DH5_Ant1_2441
Center Freq 2.44100000 GHz Tener Freq 2.44100000 GHz Radio Std: None Frequency Frequency
#FGelici.cw #Atten: 20 dB Radio Device: BTS
Ref Offset 9.61 dB Mkr1 2.441006 GHz 10 dB/div Ref 15.00 dBm -1.1026 dBm
Log
5:07 Center Freq 5:07 2.44100000 GHz
20
softwarten and s
75.0
Center 2.441 GHz Span 3 MHz CE Step
#Res BW 30 kHz #VBW 100 kHz Sweep 10.07 ms 300.000 kHz
Occupied Bandwidth Total Power 7.77 dBm
1.2201 MHz Freq Offset
Transmit Freq Error -10.682 kHz OBW Power 99.00 %
x dB Bandwidth 1.376 MHz x dB -26.00 dB
3DH5_Ant1_2480
Kajiert Spectrum Analgen - Occupied BW Kall And A Control France 2 400000000 CHz Control France 2 400000000 CHz Control France 2 400000000 CHz Frequency
Center Freq 2.430000000 GF2
#FGainLow #Atten: 20 dB Radio Device: BTS MKr1 2 4800009 GHz
Ref Offset 9.84 dB Mkr1 2.480009 GHz 10 dB/div Ref 15.00 dBm -2.0451 dBm
500 Center Freq
600 500 2.48000000 GHz
Center 2.48 GHz Span 3 MHz CF Step #Res BW 30 kHz #VBW 100 kHz Sweep 10.07 ms
Auto
Occupied Bandwidth Total Power 6.84 dBm
1.2322 MHz Freq Offset
Transmit Freq Error -12.579 kHz OBW Power 99.00 %
x dB Bandwidth 1.384 MHz x dB -26.00 dB
MSG

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

9.2 CARRIER FREQUENCY SEPARATION

9.2.1 Applicable Standard

According to FCC Part 15.247(a)(1) According to IC RSS-247.5.1 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 7.8.2

9.2.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

In case of an output power less than 125mW, the frequency hopping system may have channels separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

9.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.2.4 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Set the RBW =300kHz. Set VBW =300kHz.

Set the span = wide enough to capture the peaks of two adjacent channels

Set Sweep time = auto couple.

Set Detector = peak. Set Trace mode = max hold.

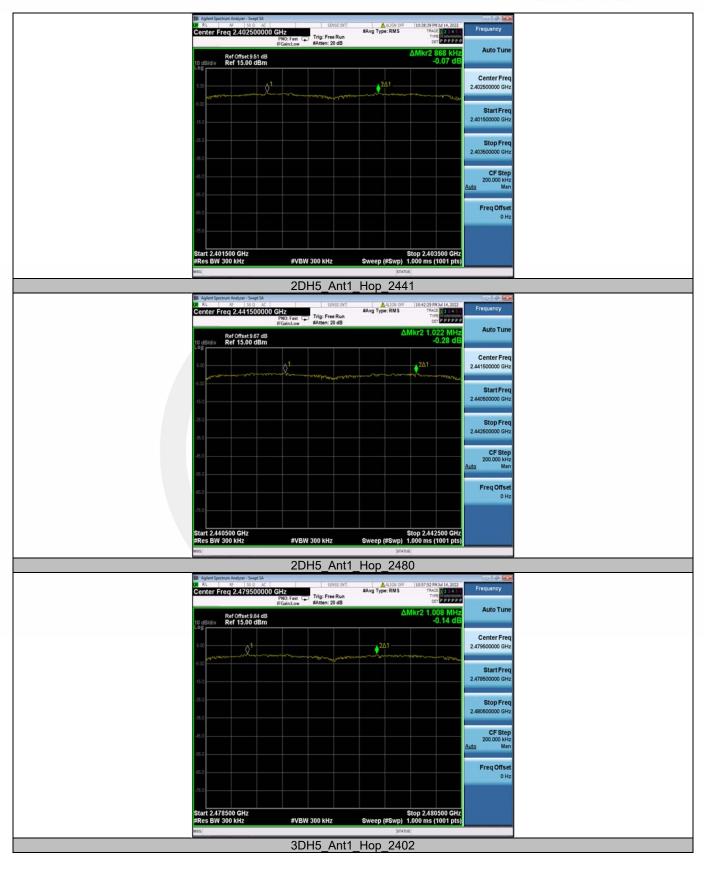
Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar
Test Engineer:	XXH

Note: For Limit = 20dB bandwidth * 2/3

TestMode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
	Ant1	Hop_2402	0.996	≥0.626	PASS
DH5		Hop_2441	0.994	≥0.626	PASS
		Hop_2480	0.990	≥0.626	PASS
	Ant1	Hop_2402	0.868	≥0.858	PASS
2DH5		Hop_2441	1.022	≥0.856	PASS
		Hop_2480	1.008	≥0.856	PASS
3DH5	Ant1	Hop_2402	1.308	≥0.868	PASS
		Hop_2441	1.000	≥0.870	PASS
		Hop_2480	1.148	≥0.870	PASS


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Bit Agilent Spectrum Analyzer - Swept SA Dit RL NF 50 (0) AC 50/052/017	ALION OFF 10:39:20 PM Jul 14, 2022 pe: RMS TRACE D2 44 ST	
PNO: East () Trig: Free Run	A ALIGN OFF 10:39:20 PM 3d 14, 2022 pe: RMS TRACE 12 4 S TYPE OFF P P P P P	
	AMKr2 1.308 MHz Auto Tune	
Ref Offset 9.51 dB 10 dB/dlv Ref 15.00 dBm	-0.08 dB	
	201 Center Freq 2.402500000 GHz	
5.00 Al	2.402500000 GH2	
500	Start Freq	
.15.0	2.401500000 GHz	
.50		
	2.403500000 GHz	
-35.0		
-45.0	CF Step 200.000 kHz	
60	<u>Auto</u> Man	
	FreqOffset	
65.5	0 Hz	
-75.D		
Start 2.401500 GHz #Res BW 300 kHz #VBW 300 kHz Sweep	Stop 2.403500 GHz (#Swp) 1.000 ms (1001 pts)	
NSG	STATUS	
3DH5_Ant1_Hop	_2441	
Bit Agilent Spectrum Analyzer - Swept SA 00 R.L RF 50 (2) AC SENSE:3NT	ALLON OFF 10:44 H3 PM Jd 14, 2022 pe: RMS TRACE D2 TABLE Frequency	
Center Freq 2.441500000 GHz #Avg Ty PNO: Fast Trig: Free Run IFGaint.cow #Atten: 20 dB	pe: RMS TRACE TO 2 4 3 THE PP PP PP	
	Auto Tune	
Ref Offset 9.67 dB 10 dB/dv Ref 15.00 dBm	-0.36 dB	
	Center Freq	
\$00 1	201 2.441500000 GHz	
6.00	Start Freq	
.15.0	2.440500000 GHz	
-25.0	Stop Freq 2.442500000 GHz	
-35.0	2.442500000 GHZ	
-45.0	CF Step	
	200.000 kHz <u>Auto</u> Man	
-66.0		
65.0	Freq Offset	
.75.0		
Start 2.440500 GHz #Res BW 300 kHz #VBW 300 kHz Sweep	Stop 2.442500 GHz (#Swp) 1.000 ms (1001 pts)	
MRS DW 500 KH2 WEW 500 KH2 SWEEP	status	
3DH5_Ant1_Hop	2480	
1 Anders Greetsom Assigner - Greet G		
Center Freq 2.479500000 GHz PR0: Fast C	A ALIGN OFF 110-56-31 PM M 14,2022 pe: RMS TRACE 12 # 4 # THE P P P P P P	
IFGain:Low #Atten: 20 dB	VALUE AND A	
Ref Offset 9.84 dB	ΔMkr2 1.148 MHz -0.34 dB	
Log	Center Freq	
500	2/2/1 2.479500000 GHz	
500	and the second s	
	2.478500000 GHz	
-25.0	Stop Freq	
-55.0	2.480500000 GHz	
	CF Step	
	200.000 kHz Auto Man	
65.0		
65.0	Freq Offset	
	0 Hz	
Start 2.478500 GHz	Stop 2.480500 GHz	
#Res BW 300 kHz #VBW 300 kHz Sweep	(#Swp) 1.000 ms (1001 pts)	
wsg	STATUS	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

9.3 NUMBER OF HOPPING FREQUENCIES

9.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) According to IC RSS-247.5.1 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 7.8.3

9.3.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least 15 channels.

9.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.3.4 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = the frequency band of operation (2400-2483.5MHz) RBW = 300KHz VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar
Test Engineer:	XXH

Note: N/A

TestMode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

Access to the World

DH5_Ant1_Hop	
B Aglet getown Andron-Sweet SA. OF R.L. #9 1900 AC 1500 CHZ Center Freq 2.441750000 CHZ Frequency Ref Offset 9.48 dB 10 dBiddy Ref 15.00 dBm Com	
Stor 2.441750000 GHz CD Start Freq Stor Stor Freq Stor CF Step	
65.0 65.0 <td< th=""><th></th></td<>	
2DH5_Ant1_Hop	
Age Age <th></th>	
3DH5_Ant1_Hop	.
Agent System Androw - Jeer 13: Static are 140 are 14	
Center Freq Center Freq 500	
60 Auto Max 750 Freq Offset 0 Hz Start 2.40000 GHz \$top 2.48350 GHz 0 Hz #Res BW 300 kHz \$Weep (#Swp) 1.133 ms (1001 pts) \$tota 1.03	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

9.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

9.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) According to IC RSS-247.5.1 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 7.8.4

9.4.2 Conformance Limit

For frequency hopping systems operating in the 2400-2483.5MHz band, the average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

9.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.4.4 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

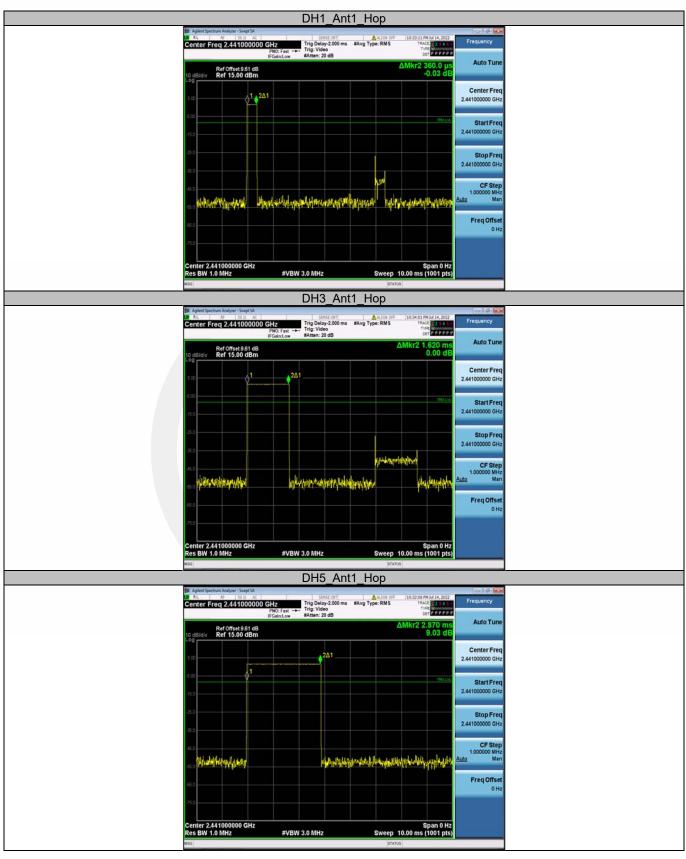
If possible, use the marker-delta function to determine the dwell time. If this value

varies with different modes of operation (e.g., data rate, modulation format, etc.),

repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section.

9.4.5 Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar
Test Engineer:	ХХН


Note: TotalHops(DH1)=(1600/2/79)*31.6 TotalHops(DH3)=(1600/4/79)*31.6 TotalHops(DH5)=(1600/6/79)*31.6 Dwell Time= BurstWidth* TotalHops

TestMode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.36	320	0.115	≤0.4	PASS
DH3	Ant1	Нор	1.62	160	0.259	≤0.4	PASS
DH5	Ant1	Нор	2.87	106.67	0.306	≤0.4	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

源圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

Ver.1.0

9.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER

9.5.1 Applicable Standard

According to FCC Part 15.247(b)(1) According to RSS-247.5.4 According to RSS-Gen 6.12 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 7.8.5

9.5.2 Conformance Limit

The max For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.5.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.5.4 Test Procedure

As an alternative to a peak power measurement, compliance with the limit can be based on a measurement of the maximum conducted output power.

Use the following spectrum analyzer settings:

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel (about 8MHz)

Set RBW > the 20 dB bandwidth of the emission being measured (about 3MHz)

Set VBW ≥ RBW

Set Sweep = auto

Set Detector function = peak

Set Trace = max hold

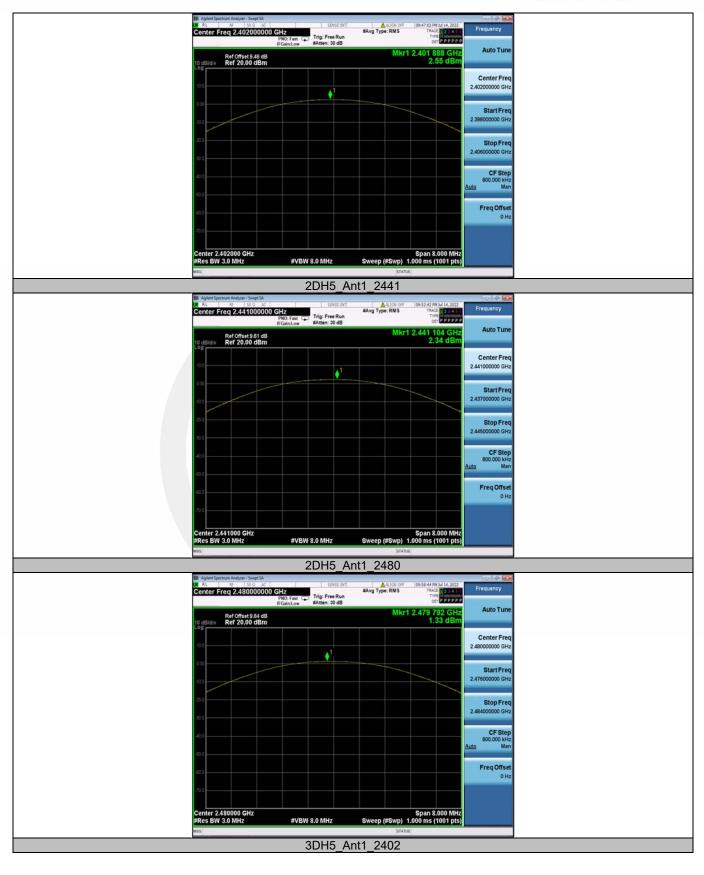
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission to determine the peak amplitude level.

Test Results

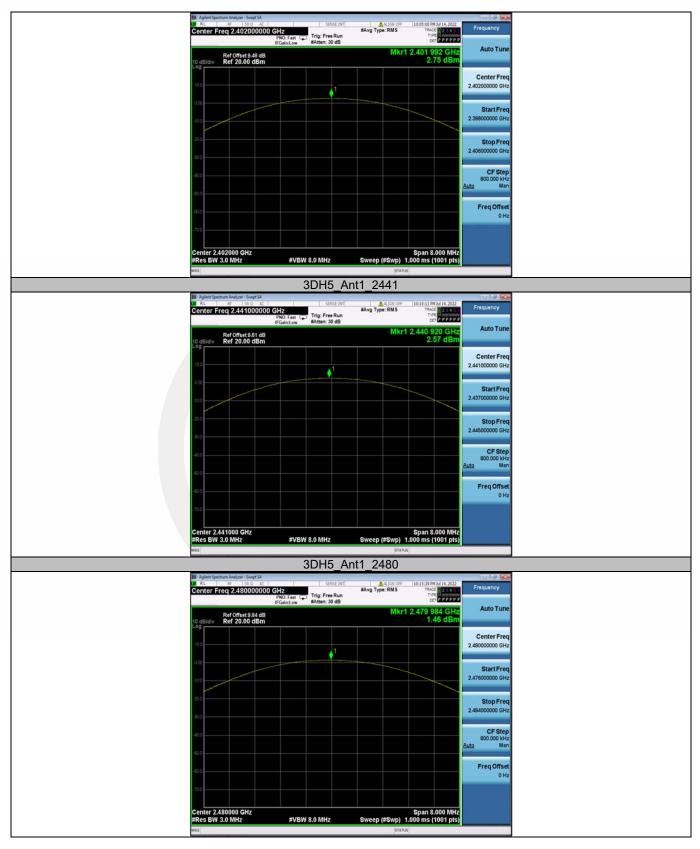
Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar
Test Engineer:	XXH

Note: N/A

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	2.04	≤20.97	PASS
DH5	Ant1	2441	1.98	≤20.97	PASS
		2480	1.36	≤20.97	PASS
		2402	2.55	≤20.97	PASS
2DH5	Ant1	2441	2.34	≤20.97	PASS
		2480	1.33	≤20.97	PASS
		2402	2.75	≤20.97	PASS
3DH5 An	Ant1	2441	2.57	≤20.97	PASS
		2480	1.46	≤20.97	PASS


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn



深圳信溯标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

9.6 CONDUCTED SUPRIOUS EMISSION

9.6.1 Applicable Standard

According to FCC Part 15.247(d) According to IC RSS-247 5.5 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 7.8.8

9.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted, provided the transmitter demonstrates compliance with the peak conducted power limits.

9.6.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.6.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DSS channel center frequency.

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel.

Set the RBW = 100 kHz. Set the VBW \ge 3 x RBW.

Set Detector = peak. Set Sweep time = auto couple.

Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum Maximum conduceted level.

Note that the channel found to contain the maximum conduceted level can be used to establish the reference level.

Band-edge measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

Set RBW \geq 1% of the span=100kHz Set VBW \geq 3 x RBW

Set Sweep = auto Set Detector function = peak Set Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Emission level measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.(30MHz to 25GHz). Set RBW = 100 kHz Set VBW \ge RBW

Set Sweep = auto Set Detector function = peak Set Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

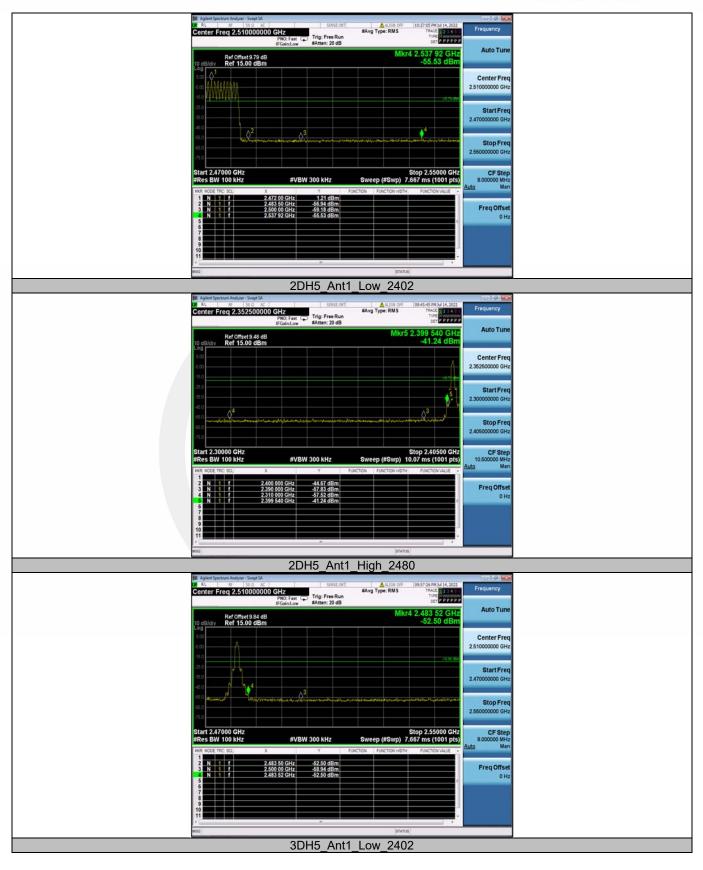
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

9.6.5 Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar
Test Engineer:	XXH

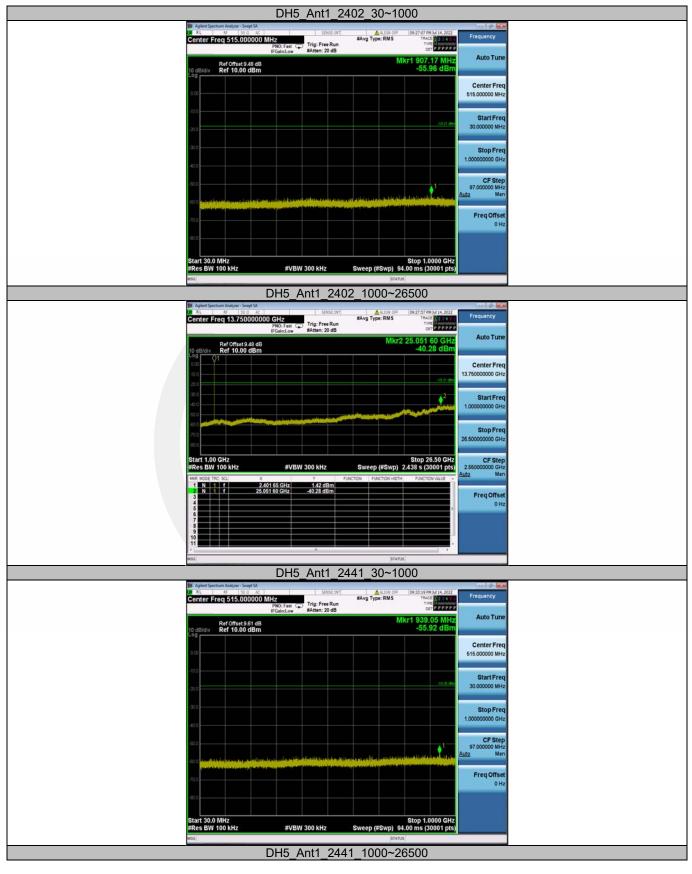
Note: N/A


Band edge measurements

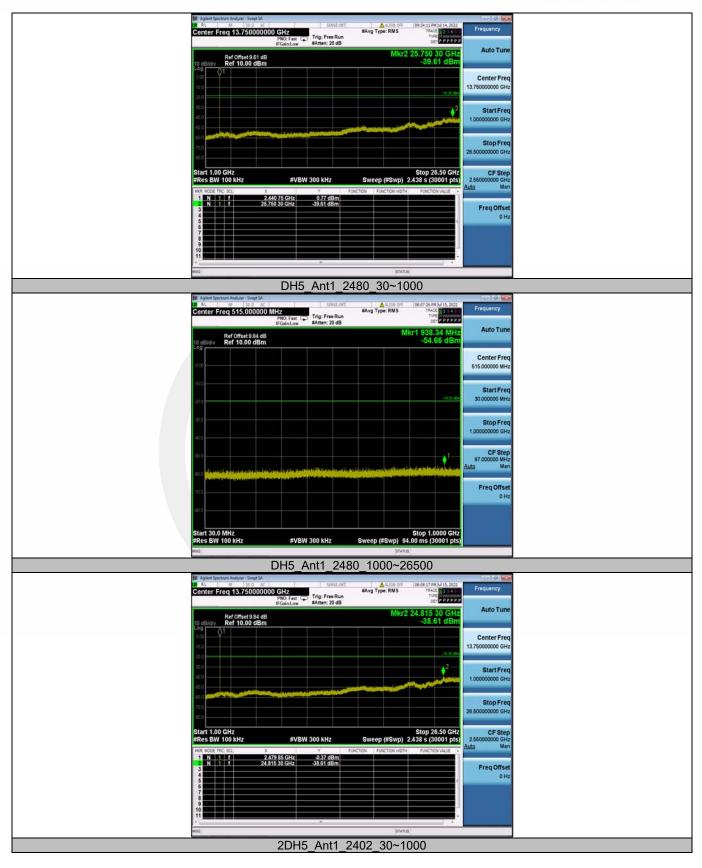
TestMode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	1.79	-49.02	≤-18.21	PASS
DH5	Ant1	High	2480	0.62	-55.51	≤-19.38	PASS
	Anti	Low	Hop_2402	0.78	-56.24	≤-19.22	PASS
		High	Hop_2480	1.21	-55.53	≤-18.79	PASS
2DH5	Ant1	Low	2402	1.29	-41.24	≤-18.71	PASS
2005	Anti	High	2480	0.14	-52.5	≤-19.86	PASS
3DH5	Ant1	Low	2402	1.28	-40.75	≤-18.72	PASS
	Anti	High	2480	0.08	-52.41	≤-19.92	PASS

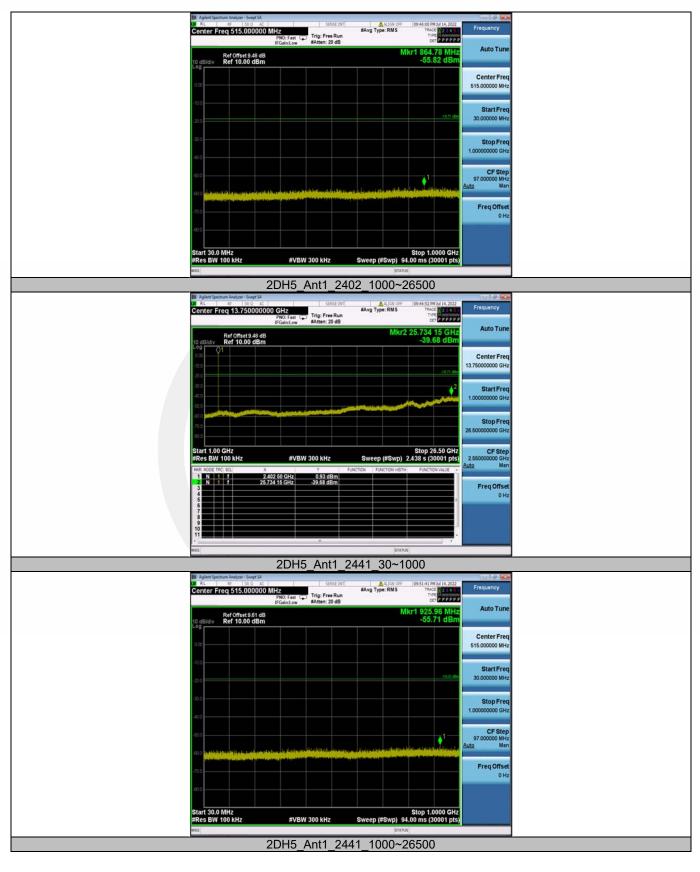
80. Aginet Spectrum Analyzer - Snept SA 00. 8 L 86 - 560 - 66 Center Freq 2.352500000 GHz 1900; Fast C	SENSE 2NT ALGON OF #Avg Type: RMS	F 10:03:42 PM Jul 14, 2022 TRACE D 2 3 4 5 1	uency
Ref Offset 9.48 dB 10 dB/div Ref 15.00 dBm	#Atten: 20 dB	r5 2.399 540 GHz -40.75 dBm	uto Tune
500 500 150		Cent 2.362500	nter Freq 00000 GHz
25.0 25.0 45.0		2.300000	tart Freq 00000 GHz
65.0			top Freq 00000 GHz
MRR MODE TRC SCL X	BW 300 kHz Sweep (#Swp)	10.07 ms (1001 pts) 10.5000 Auto	CF Step 0000 MHz Man
1 N 1 7 2400 000 GHz 3 N 1 7 2390 000 GHz 4 N 1 7 2390 000 GHz 6 N 1 7 231000 GHz 7 2 3100 GHz 7 2 3100 GHz 7 7 2 319 540 GHz	43 93 dBm -58 56 dBm -38 95 dBm -40.75 dBm	Freq	eq Offset 0 Hz
10 11 *	=	-	
	DH5_Ant1_High_24	80	
bili Agent Spectrum Analyzer - Sneg 13. 00 RL 85 1500 AC Center Freq 2.510000000 GHz ⊮Geniat.ore	SENSE 307 ALTON OF #Avg Type: RMS #Atten: 20 dB	F 10:14:22 PM 3/J 14, 2022 TRACE 1 2 3 4 5 TYPE P P P P P	
to disidiv Ref Offset 9.84 dB Lo disidiv Ref 15.00 dBm	М	kr4 2.483 52 GHz -52.41 dBm	uto Tune
500 410 4150		Cent 2.510000	nter Freq 00000 GHz
	¢ ³	Sta	tart Freq 00000 GHz
66.0	Here hat be an a second the second that the second that the second that the second that the second term of the	2.550000	top Freq 00000 GHz
Start 2.47000 GHz #Res BW 100 kHz #VBN MOR MODE THC SOL X	BW 300 kHz Sweep (#Swp) Y Function M	7.667 ms (1001 pts) 8.000	CF Step 10000 MHz Man
1 N 5 F 2483 50 GHz 3 N 1 F 2500 0 GHz 4 N 1 F 2483 52 GHz 6 6	-52.41 dBm -58.98 dBm -52.41 dBm	Freq	eq Offset 0 Hz
7 8 9 10		-	
MSG	ST/	TUS	

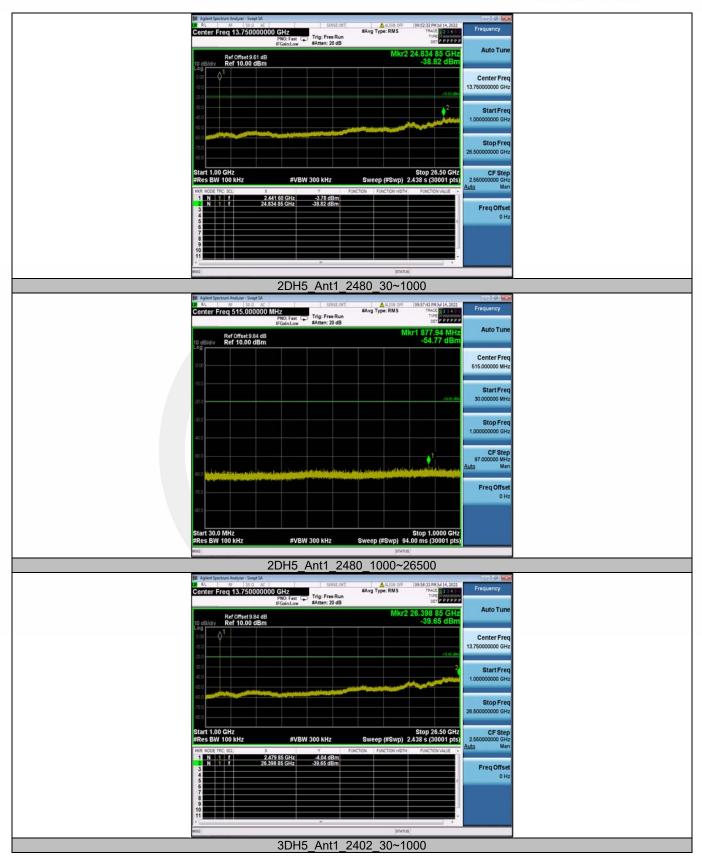
Report No. ENS2206230216W00201R

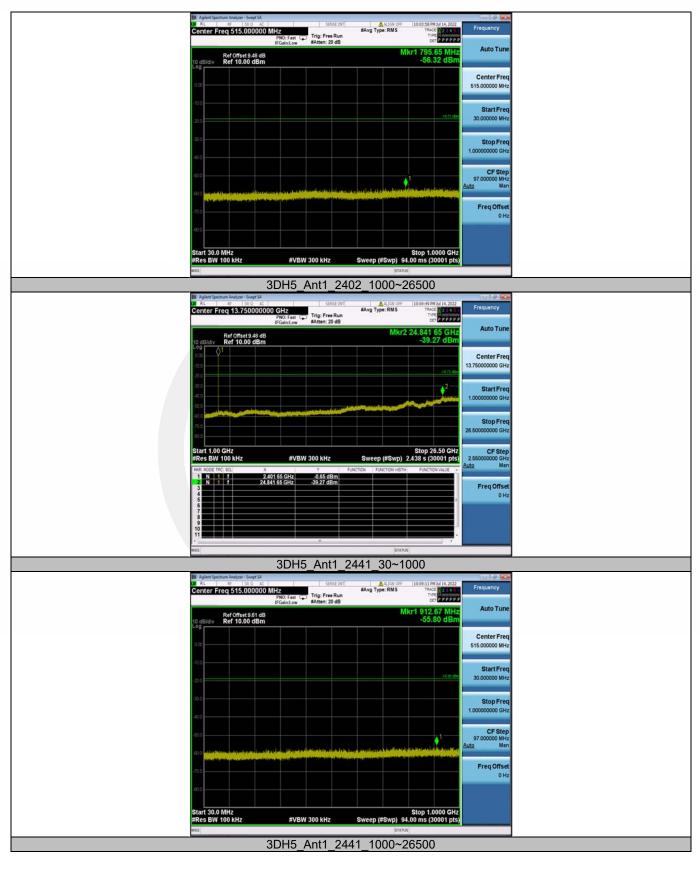


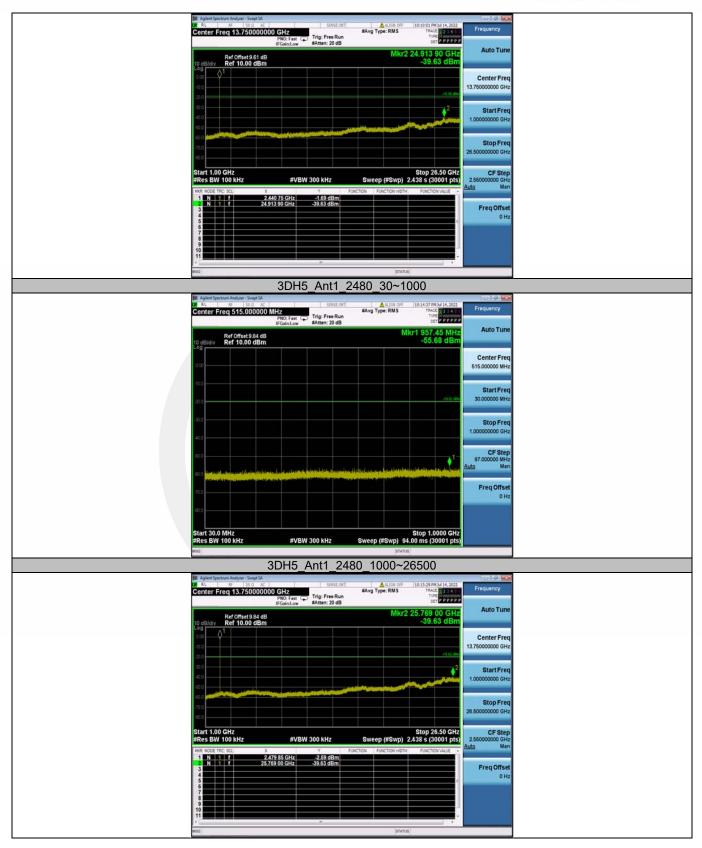
Conducted Spurious Emission


TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		2402	30~1000	1.79	-55.96	≤-18.21	PASS
		2402	1000~26500	1.79	-40.28	≤-18.21	PASS
DH5	Ant1	2441	30~1000	1.74	-55.92	≤-18.26	PASS
	Anti	244 1	1000~26500	1.74	-39.61	≤-18.26	PASS
		2480	30~1000	0.62	-54.66	≤-19.38	PASS
		2400	1000~26500	0.62	-38.61	≤-19.38	PASS
		2402	30~1000	1.29	-55.82	≤-18.71	PASS
		2402	1000~26500	1.29	-39.68	≤-18.71	PASS
2DH5	Apt1	Ant1 2441 - 2480 -	30~1000	0.97	-55.71	≤-19.03	PASS
2005	Anti		1000~26500	0.97	-38.82	≤-19.03	PASS
			30~1000	0.14	-54.77	≤-19.86	PASS
		2400	1000~26500	0.14	-39.65	≤-19.86	PASS
		2402	30~1000	1.28	-56.32	≤-18.72	PASS
		2402	1000~26500	1.28	-39.27	≤-18.72	PASS
3DH5	Ant1	2441	30~1000	1.02	-55.8	≤-18.98	PASS
	AILT	Ant1 2441	1000~26500	1.02	-39.63	≤-18.98	PASS
		2480	30~1000	0.08	-55.68	≤-19.92	PASS
		2480	1000~26500	0.08	-39.63	≤-19.92	PASS









9.7 RADIATED SPURIOUS EMISSION

9.7.1 Applicable Standard

According to FCC Part 15.247(d), 15.205, 15.209 According to RSS-Gen and RSS-247 According to 558074 D01 15.247 MEAS GUIDANCE v05r02 Section 9 According to ANSI C63.10 Section 6.3, 6.4, 6.5, 6.6 and 6.10.5

9.7.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to FCC Part 15.	200, Resincled Danus		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

9.7.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

9.7.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Peak power measurement procedures for Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Average power measurement procedures for Above 1GHz: a) The EUT shall be configured to operate at the maximum achievable duty cycle b) Measure the duty cycle D of the transmitter output signal. c) RBW = 1 MHz. d) VBW \geq [3 × RBW]. e) Detector = RMS (power averaging), if span / (# of points in sweep) \leq (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak. f) Averaging type = power (i.e., rms): g) Sweep time = auto. h) Perform a trace average of at least 100 traces. i) A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle. 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle. 3) If a specific emission is demonstrated to be continuous ($D \ge 98\%$) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission. Reduction of the measured emission amplitude levels to account for operational duty cycle is not permitted. Determining compliance is based on emission levels occurring during transmission; it is not based on an average across ON and OFF times of the transmitter. For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz for $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200HzVBW > RBW Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the

emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

9.7.5 Test Results

Temperature:	25 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar
Test Engineer:	XXH

■ Spurious Emission below 30MHz (9KHz to 30MHz)

For Spurious Emission below 30MHz (9KHz to 30MHz), was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

Bluetooth (GFSK, pi/4-DQPSK, 8DPSK) mode have been tested, and the worst result was report as below:

Test mode:	GFSK		Freque	ncy:	Channel 0: 2402MHz				
Freq. (MHz)	Ant.Pol.	Reading Level (dBuV/m)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Remark		
6669.394	V	48.56	-1.86	46.70	74.00	-27.30	peak		
6669.394	V	30.79	-1.86	28.93	54.00	-25.07	AVG		
10710.89	V	50.05	5.79	55.84	74.00	-18.16	peak		
10710.89	V	32.98	5.79	38.77	54.00	-15.23	AVG		
17885.90	V	50.51	13.93	64.44	74.00	-9.56	peak		
17885.9	V	32.52	13.93	46.45	54.00	-7.55	AVG		
5468.260	Н	50.83	-5.44	45.39	74.00	-28.61	peak		
5468.260	Н	33.86	-5.44	28.42	54.00	-25.58	AVG		
12574.57	Н	49.61	6.24	55.85	74.00	-18.15	peak		
12574.57	Н	32.57	6.24	38.81	54.00	-15.19	AVG		
17924.71	Н	50.52	14.13	64.65	74.00	-9.35	peak		
17924.71	Н	32.20	14.13	46.33	54.00	-7.67	AVG		
 (2) Avg RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS; (3) Field Strength = Reading Level + Correct Factor; 									
(4) Correct Factor = Ant_F + Cab_L - Preamp;									
		imit - Corrected		-,					

Test mode:	GFS	GFSK		Frequency: Channel		el 39: 2441MHz	
Freq. (MHz)	Ant.Pol.	Reading Level (dBuV/m)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Remark
5455.631	V	51.05	-5.46	45.59	74.00	-28.41	peak
5455.631	V	34.07	-5.46	28.61	54.00	-25.39	AVG
9283.026	V	48.61	3.16	51.77	74.00	-22.23	peak
9283.026	V	30.46	3.16	33.62	54.00	-20.38	AVG
17922.12	V	51.25	14.12	65.37	74.00	-8.63	peak
17922.12	V	33.11	14.12	47.23	54.00	-6.77	AVG
5469.841	Н	50.22	-5.44	44.78	74.00	-29.22	peak
5469.841	Н	32.32	-5.44	26.88	54.00	-27.12	AVG
11182.24	H	48.87	6.07	54.94	74.00	-19.06	peak
11182.24	H	30.77	6.07	36.84	54.00	-17.16	AVG
17935.08	Н	50.30	14.18	64.48	74.00	-9.52	peak
17935.08	Н	32.05	14.18	46.23	54.00	-7.77	AVG
Note: (1) PeaK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak; (2) Avg RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS; (3) Field Strength = Reading Level + Correct Factor; (4) Correct Factor = Ant_F + Cab_L - Preamp; (5) Margin = Limit - Corrected Reading;							

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

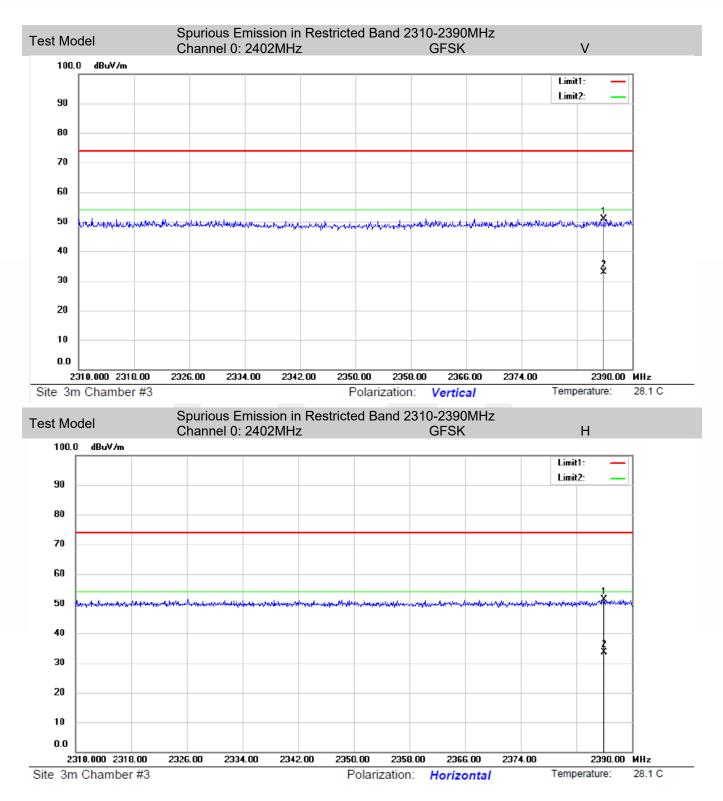
EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Test mode:	GFSK		Frequency: C		Channel 78: 2480MHz				
Freq. (MHz)	Ant.Pol.	Reading Level (dBuV/m)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Remark		
5409.310	V	50.61	-5.51	45.10	74.00	-28.90	peak		
5409.310	V	32.74	-5.51	27.23	54.00	-26.77	AVG		
11206.51	V	49.69	6.09	55.78	74.00	-18.22	peak		
11206.51	V	32.72	6.09	38.81	54.00	-15.19	AVG		
17816.25	V	50.86	13.56	64.42	74.00	-9.58	peak		
17816.25	V	32.67	13.56	46.23	54.00	-7.77	AVG		
5200.801	Н	51.26	-5.86	45.40	74.00	-28.60	peak		
5200.801	Н	34.31	-5.86	28.45	54.00	-25.55	AVG		
11002.70	Н	49.70	6.01	55.71	74.00	-18.29	peak		
11002.70	Н	32.76	6.01	38.77	54.00	-15.23	AVG		
17844.59	Н	51.19	13.71	64.90	74.00	-9.10	peak		
17844.59	Н	33.25	13.71	46.96	54.00	-7.04	AVG		
 (2) Avg RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS; (3) Field Strength = Reading Level + Correct Factor; (4) Correct Factor = Ant_F + Cab_L - Preamp; 									
(5) Margin = Limit - Corrected Reading;									

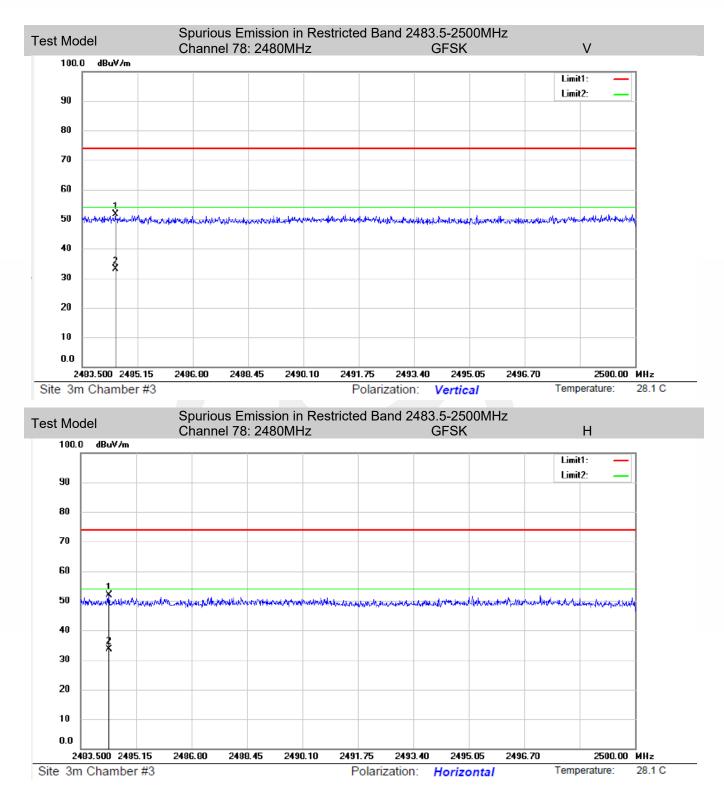
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Bluetooth (GFSK, pi/4-DQPSK, 8DPSK, Hopping) mode have been tested, and the worst result was report as below:

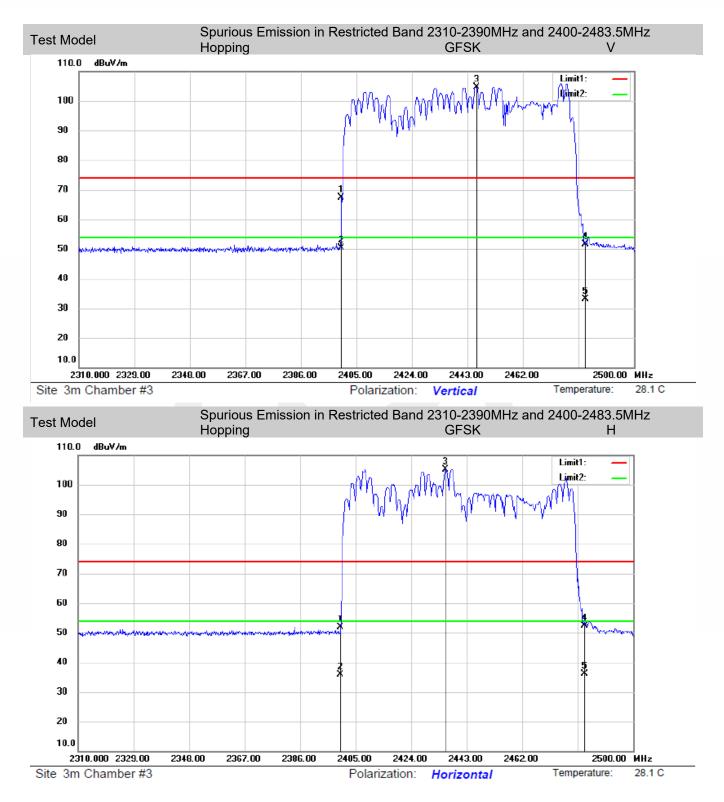
Test mode:	GFS	K	Frequency:		Channel 0: 2402MHz		
Freq. (MHz)	Ant.Pol.	Reading Level (dBuV/m)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Remark
2385.924	V	44.87	6.00	50.87	74.00	-23.13	peak
2385.924	V	26.92	6.00	32.92	54.00	-21.08	AVG
2386.024	Н	45.44	6.00	51.44	74.00	-22.56	peak
2386.024	Н	27.55	6.00	33.55	54.00	-20.45	AVG
Note: (1) PeaK RBW = 1 MHz, VBW \geq 3 × RBW, Detector = Peak; (2) Avg RBW = 1 MHz, VBW \geq 3 × RBW, Detector = RMS; (3) Field Strength = Reading Level + Correct Factor; (4) Correct Factor = Ant_F + Cab_L - Preamp; (5) Margin = Limit - Corrected Reading;							
(5) wargin = Li	mit - Corrected	Reading;				

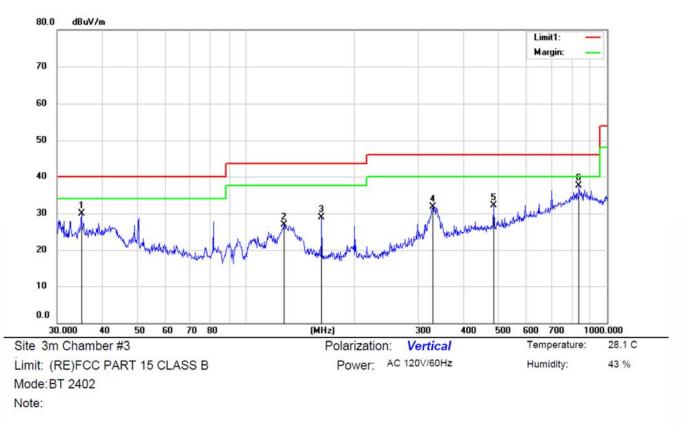

Test mode:	GFS	κ	Frequency: 0		Channel 78: 2480MHz		
Freq. (MHz)	Ant.Pol.	Reading Level (dBuV/m)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Remark
2484.492	V	45.28	6.24	51.52	74.00	-22.48	peak
2484.492	V	27.00	6.24	33.24	54.00	-20.76	AVG
2484.352	Н	45.64	6.24	51.88	74.00	-22.12	peak
2484.352	H	27.50	6.24	33.74	54.00	-20.26	AVG
Note: (1) PeaK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak; (2) Avg RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS; (3) Field Strength = Reading Level + Correct Factor; (4) Correct Factor = Ant_F + Cab_L - Preamp; (5) Margin = Limit - Corrected Reading;							

Test mode:	GFS	K	Freque	ncy: I	Hopping		
Freq. (MHz)	Ant.Pol.	Reading Level (dBuV/m)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Remark
2400.000	V	61.39	6.05	67.44	74.00	-6.56	peak
2400.000	V	44.28	6.05	50.33	54.00	-3.67	AVG
2483.500	V	45.43	6.24	51.67	74.00	-22.33	peak
2483.500	V	26.91	6.24	33.15	54.00	-20.85	AVG
2400.000	Н	45.90	6.05	51.95	74.00	-22.05	peak
2400.000	Н	29.83	6.05	35.88	54.00	-18.12	AVG
2483.500	Н	46.04	6.24	52.28	74.00	-21.72	peak
2483.500	Н	29.91	6.24	36.15	54.00	-17.85	AVG
Note: (1) PeaK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak; (2) Avg RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS; (3) Field Strength = Reading Level + Correct Factor; (4) Correct Factor = Ant_F + Cab_L - Preamp; (5) Margin = Limit - Corrected Reading;							


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn





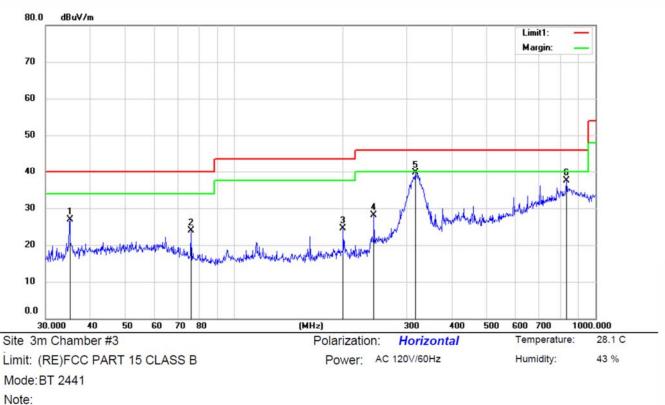
■ Spurious Emission below 1GHz (30MHz to 1GHz)

Bluetooth (GFSK, pi/4-DQPSK, 8DPSK) mode have been tested, and the worst result was report as below:

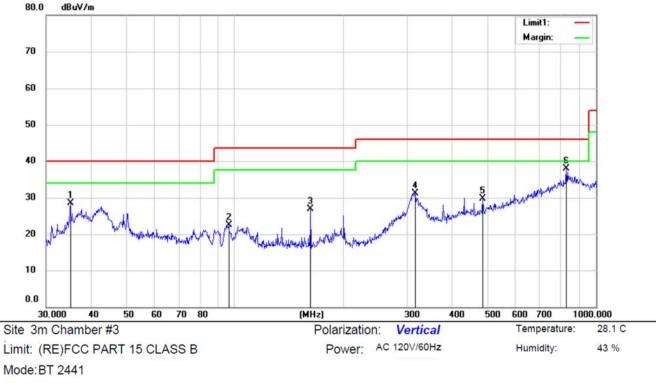
No.	Mk				. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment			
1		35.0202	39.05	-9.19	29.86	40.00	-10.14	QP						
2		127.3292	37.06	-10.14	26.92	43.50	-16.58	QP						
3		162.1124	38.67	-9.78	28.89	43.50	-14.61	QP						
4		329.7610	35.77	-4.16	31.61	46.00	-14.39	QP						
5		486.2483	33.70	-1.67	32.03	46.00	-13.97	QP						
6	*	837.3447	31.12	6.48	37.60	46.00	-8.40	QP						

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

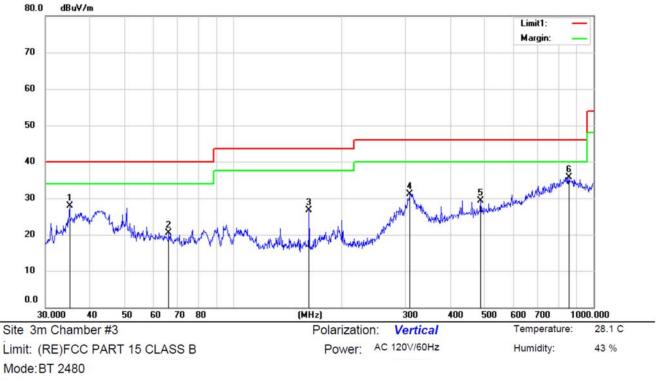
EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn



Note:

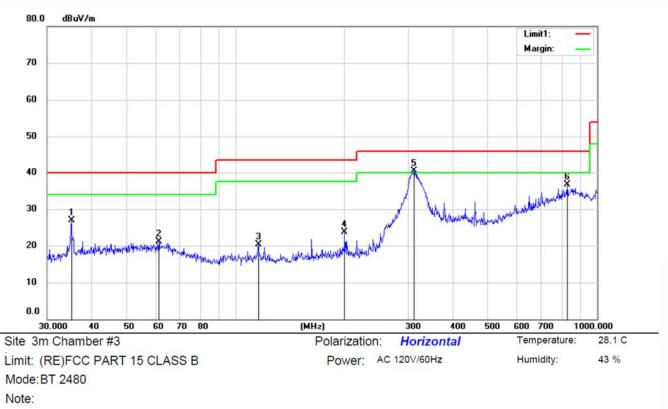

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.0048	36.88	-9.20	27.68	40.00	-12.32	QP			
2		162.1124	32.62	-9.78	22.84	43.50	-20.66	QP			
3		199.9856	36.94	-9.39	27.55	43.50	-15.95	QP			
4	*	322.7540	43.79	-4.51	39.28	46.00	-6.72	QP			
5		486.2483	40.16	-1.67	38.49	46.00	-7.51	QP			
6		829.3090	31.25	6.34	37.59	46.00	-8.41	QP			

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.0355	36.15	-9.19	26.96	40.00	-13.04	QP			
2		75.9441	33.69	-9.82	23.87	40.00	-16.13	QP			
3		199.9856	33.94	-9.39	24.55	43.50	-18.95	QP			
4		244.1251	36.01	-7.81	28.20	46.00	-17.80	QP			
5	*	317.1445	44.46	-4.84	39.62	46.00	-6.38	QP			
6		832.5870	31.15	6.41	37.56	46.00	-8.44	QP			



N	of	to	•
1 1		lC.	

No.	Mk.		Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.0355	37.78	-9. <mark>1</mark> 9	28.59	40.00	-11.41	QP			
2		96.2250	32.84	-10.30	22.54	43.50	-20.96	QP			
3		162.1124	36.77	-9.78	26.99	43.50	-16.51	QP			
4		316.3115	35.96	-4.89	31.07	46.00	-14.93	QP			
5		486.2483	31.29	-1.67	29.62	46.00	-16.38	QP			
6	*	829.3090	31.53	6.34	37.87	46.00	-8.13	QP			



Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.0355	37.05	-9.19	27.86	40.00	-12.14	QP			
2		66.2371	28.41	-7.86	20.55	40.00	-19.45	QP			
3		162.0414	36.47	-9.77	26.70	43.50	-16.80	QP			
4		309.5904	36.45	-5.29	31.16	46.00	-14.84	QP			
5		486.2483	30.96	-1.67	29.29	46.00	-16.71	QP			
6	*	854.3992	29.26	6.38	35.64	46.00	-10.36	QP			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.0048	36.17	-9.20	26.97	40.00	-13.03	QP			
2		61.3194	28.55	-7.45	21.10	40.00	-18.90	QP			
3		115.3205	30.07	-9.83	20.24	43.50	-23.26	QP			
4		199.9856	33.19	-9.39	23.80	43.50	-19.70	QP			
5	*	311.7692	45.77	-5.19	40.58	46.00	-5.42	QP			
6		828.2191	30.37	6.27	36.64	46.00	-9.36	QP			

9.8 CONDUCTED EMISSION TEST

9.8.1 Applicable Standard

According to FCC Part 15.207 According to IC RSS-Gen 8.8

9.8.2 Conformance Limit

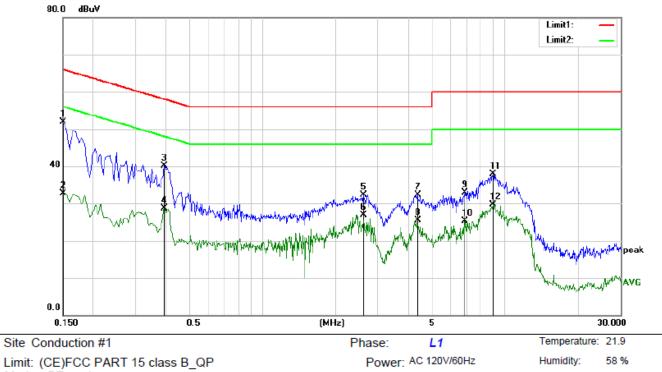
Conducted Emission Limit					
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56	56-46			
0.5-5.0	56	46			
5.0-30.0	60	50			
Note: 1. The lower limit shall apply at the transition frequencies					

 The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

9.8.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

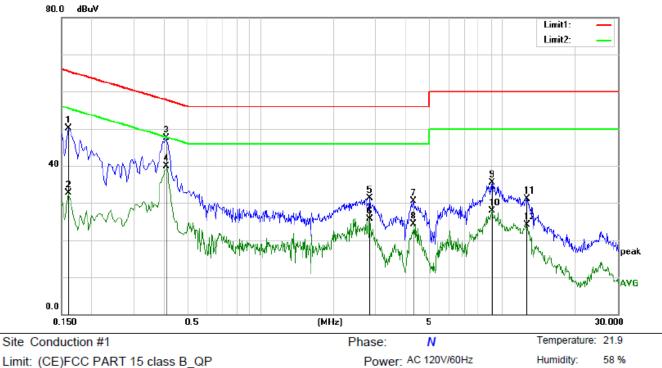
9.8.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

9.8.5 Test Results

Pass

The AC120V &240V voltage have been tested, and the worst result recorded was report as below:



Limit: (CE)FCC PART 15 class B_QP Mode: BT mode Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1500	42.38	9.53	51.91	66.00	-14.09	QP	
2	0.1500	23.20	9.53	32.73	56.00	-23.27	AVG	
3	0.3950	30.55	9.54	40.09	57.96	-17.87	QP	
4	0.3950	19.15	9.54	28.69	47.96	-19.27	AVG	
5	2.6200	22.77	9.56	32.33	56.00	-23.67	QP	
6	2.6200	17.39	9.56	26.95	46.00	-19.05	AVG	
7	4.3750	22.77	9.57	32.34	56.00	-23.66	QP	
8	4.3750	15.97	9.57	25.54	46.00	-20.46	AVG	
9	6.8300	23.23	9.61	32.84	60.00	-27.16	QP	
10	6.8300	15.69	9.61	25.30	50.00	-24.70	AVG	
11	8.9300	28.31	9.67	37.98	60.00	-22.02	QP	
12	8.9300	19.96	9.67	29.63	50.00	-20.37	AVG	

Site Conduction #1 Limit: (CE)FCC PART 15 class B_QP Mode: BT mode Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1600	40.53	9.53	50.06	65.46	-15.40	QP	
2		0.1600	23.09	9.53	32.62	55.46	-22.84	AVG	
3		0.4100	38.04	9.54	47.58	57.65	-10.07	QP	
4	*	0.4100	30.41	9.54	39.95	47.65	-7.70	AVG	
5		2.8250	21.67	9.56	31.23	56.00	-24.77	QP	
6		2.8250	16.14	9.56	25.70	46.00	-20.30	AVG	
7		4.3100	21.02	9.57	30.59	56.00	-25.41	QP	
8		4.3100	14.80	9.57	24.37	46.00	-21.63	AVG	
9		9.0800	25.86	9.67	35.53	60.00	-24.47	QP	
10		9.0800	18.21	9.67	27.88	50.00	-22.12	AVG	
11		12.6050	21.30	9.76	31.06	60.00	-28.94	QP	
12		12.6050	14.42	9.76	24.18	50.00	-25.82	AVG	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2206230216W00201R

9.9 ANTENNA APPLICATION

9.9.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
FCC 47 CFR Part 15.247 (b)	If transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
RSS-Gen Section 6.8	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.
RSS-247 Section 5.4	If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

9.9.2 Result

PASS.

- Note: Moten Antenna use a permanently attached antenna which is not replaceable.
 - □ Not using a standard antenna jack or electrical connector for antenna replacement
 - □ The antenna has to be professionally installed (please provide method of installation)

Please refer to the attached document Internal Photos to show the antenna connector.

----- END OF REPORT ------

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn