

TEST REPORT

Applicant: INFINIX MOBILITY LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT, Hong Kong

FCC ID: 2AIZN-YYS-X6836

Product Name: Mobile Phone

Standard(s): 47 CFR Part 2, 47 CFR Part 22, Subpart H 47 CFR Part 24, Subpart E 47 CFR Part 27 47 CFR Part 90 ANSI C63.26-2015 KDB 971168 D01 Power Meas License Digital Systems v03r01

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

 Report Number:
 CR230957288-00E

 Date Of Issue:
 2023/11/8

 Reviewed By:
 Calvin Chen

 Title:
 RF Engineer

 Approved By:
 Sun Zhong

 Title:
 Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

DOCUMENT REVISION HISTORY
1. GENERAL INFORMATION
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)6
1.2 DESCRIPTION OF TEST CONFIGURATION8
1.2.1 EUT Operation Condition:81.2.2 Support Equipment List and Details121.2.3 Support Cable List and Details121.2.4 Block Diagram of Test Setup131.3 MEASUREMENT UNCERTAINTY14
2. SUMMARY OF TEST RESULTS
3. REQUIREMENTS AND TEST PROCEDURES
3.1 Applicable Standard For Part 22 Subpart H:163.2 Applicable Standard For Part 24 Subpart E:183.3 Applicable Standard For Part 27:193.4 Applicable Standard For Part 90:223.5 Test Method:23
4. Test DATA AND RESULTS
4.1 ANTENNA PORT TEST DATA AND RESULTS FOR GSM 850 BAND:
4.2 ANTENNA PORT TEST DATA AND RESULTS FOR GSM 1900 BAND:
4.3 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 2:42
4.4 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 4:
4.5 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 5:
4.6 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 263
4.7 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 4
4.8 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 5105
4.9 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 7121
4.10 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 12137
4.11 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 13153
4.12 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 17164
4.13 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 25174
4.14 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 26197
4.15 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 38
4.16 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 40
4.17 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 41
4.18 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 66

Page 3 01 331	Page	3	of 331
---------------	------	---	--------

4.19 RADIATED SPURIOUS EMISSIONS	
5. EUT PHOTOGRAPHS	
6. TEST SETUP PHOTOGRAPHS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR230957288-00E	Original Report	2023/11/8

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Mobile Phone
Trade Name:	Infinix
EUT Model:	X6836
	GSM/GPRS/EDGE: 850/1900
Operation Bands and modes:	WCDMA: Band 2/4/5
	LTE: Band 2/4/5/7/12/13/17/25/26/38/40/41/66
Modulation Type:	GMSK,8PSK, BPSK, QPSK, 16QAM
Rated Input Voltage:	DC 3.87V from battery or 5V/10V from adapter
	RF: 2BUF-5
Serial Number:	RE: 2BUF-1
EUT Received Date:	2023/9/28
EUT Received Status:	Good

Operation Voltage (V_{DC}) ▲:

Lowest:	3.45	Normal:	3.87	Highest:	4.4
				0	1

Transmission Antenna Information▲:

Antenna Type	Operation Bands	Antenna Frequency Range(MHz)	Antenna Gain (Gт)(dBi)	Lc(dB)
	GSM850	824-849	-5.7	0
	PCS1900	1850-1910	-0.2	0
	WCDMA B2	1850-1910	-0.2	0
	WCDMA B4	1710-1755	-1.65	0
	WCDMA B5	824-849	-5.7	0
	LTE B2	1850-1910	-0.2	0
	LTE B4	1710-1755	-1.65	0
	LTE B5	824-849	-5.7	0
	LTE B7	2500-2570	-0.51	0
PCB	LTE B12	699-716	-4.9	0
	LTE B13	777-787	-4.9	0
	LTE B17	704-716	-4.9	0
	LTE B25	1850-1915	-0.2	0
	LTE B26	814-849	-5.7	0
	LTE B38	2570-2620	-0.51	0
	LTE B40 Lower	2305-2315	-1.83	0
	LTE B40 Upper	2350-2360	-1.62	0
	LTE B41	2535-2655	-0.51	0
	LTE B66	1710-1785	-1.65	0
Note: Lc= Signal Atten	uation in the connecting cable	between the transmitter and	antenna, in dB.	

Accessory Information:

Accessory Description	Manufacturer	Model	Parameters
Adapter	/	U330XSA	Input: AC 100-240V~50/60Hz, 1.5A Output: DC 5.0V, 3.0A, 15.0W or 10.0V, 3.3A, 33.0W MAX

1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

.2.1 EUT Operation Condition:									
EUT Operation Mode:	The system was configured for testing in each operation mode.								
Equipment Modifications:	No								
EUT Exercise Software:	No								
The maximum power was configured per	3GPP Standard for each operation modes as below setting:								
GSM/GPRS/EGPRS									
Function:Menu select > GSM MPress Connection control to choose the difPress RESET > choose all the reset all setConnectionPress Signal Off to turnNetwork Support > GSM + GPRS or GSMMain Service > Packet DataService selection > Test Mode A - Auto SMS SignalPress Slot Config Bottoslots and power setting> Slot configuration> Uplink/> 33 dBm for GPRS 850> 26 dBm for EGPRS 1900> 27 dBm for EGPRS 1900BS SignalEnter the same channelFrequency Offset >+ 0 HzMode >BCCH and TCH	obile Station > GSM 850/1900 ferent menus ings off the signal and change settings 1 + EGSM lot Config. off m on the right twice to select and change the number of time Gamma number for TCH channel (test channel) and BCCH channel								
BCCH Level > -85 dBm (May nee BCCH Channel > choose desire test of channel) and BCCH channel]	d to adjust if link is not stable) channel [Enter the same channel number for TCH channel (test								
Channel Type > P0 >Off 4 dBSlot Config > TCH > Hopping > Main Timeslot > NetworkUnchanged (if already choose desired test OffMain Timeslot > Coding Scheme >	eady set under MS signal) st channel CS4 (GPRS) and MCS5 (EGPRS)								
Bit Stream > 2E9-1 PSR Bit Stre AF/RF Enter appropriate Connection Press Signal on t	eam offsets for Ext. Att. Output and Ext. Att. Input o turn on the signal and change settings								

WCDMA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

•	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA			
	Subset	1	2		4	5			
	Loopback Mode	Test Mode 1							
	Rel99 RMC		1	2.2kbps RMC	2				
	HSDPA FRC			H-Set1					
	HSUPA Test		HS	SUPA Loopba	.ck				
WCDMA	Power Control	Algorithm2							
General	Algorithm		<i>c / 1 =</i>	3	2/17				
Settings	βc	11/15	6/15	15/15	2/15	15/15			
Settings	βd	15/15	15/15	9/15	15/ 5	0			
	βec	209/225	12/15	30 15	2/15	5/15			
	βc/ βd	11/15	6/15	15/9	2/15	-			
	βhs	22/15	12/15	30/15	4/15	5/15			
	CM(dB)	1.0	3.0	2.0	3.0	1.0			
	PR(dB)	0	2	1	2	0			
	DACK			8					
	DNAK			8					
HCDDA	DCQI	8							
Specific	Ack-Nack repetition	3							
Settings	factor	5							
Settings	CQI Feedback	4ms							
	CQI Repetition Factor			2					
	Ahs=βhs/ βc			30/15					
	DE-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI	75	67	92	71	81			
	Associated Max UL	242.1	174.9	482.8	205.8	308.9			
	Data Rate k ps		1,,		20010	2000			
HSUPA		E-TFC E-TFC E-TF	EI 11 E I PO 4 CL 67	E-TFCI 11 E-TFCI	E-TFC E-TFC E-TF	CI 11 E CI PO 4 CI 67			
Specific		E-TFCI	PO 18	PO4	E-TFC	(PO 18			
Settings		E-TF	CI 71	E-TFCI	E-TF	CI 71			
	Reference E FCl	E-TFC	I PO23	92	E-TFC	I PO23			
		E-TF	CI 75	E-TFCI	E-TF	CI 75			
		E-TFC	I PO26	PO 18	E-TFC	I PO26			
		E-TF	CI 81		E-TFCI 81				
		E-TFCI	PO 27		E-TFC	I PO 27			

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channel bandwidth / Transmission bandwidth (RB)						MPR (dB)
2	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	1
OPSK	>5	>4	>8	> 12	> 16	> 18	≤1
16 QAM	≤5	54	58	≤ 12	≤ 16	s 18	≤ 1
16 QAM	>5	>4	>8	> 12	> 16	> 18	≤2

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	(sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Blocks (NRS)	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
			5	>6	≤1
NS_03	6.6.2.2.1	2, 4, 10, 23, 25, 35, 36	10	>6	≤ 1
			15	>8	≤ 1
			20	>10	≤ 1
			5	>6	s 1
NS_04 6.6.2.2.2		41	10, 15, 20	See Table 6.2.4-4	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	s 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS 00	66334	21	10.15	> 40	51
110_00	0.0.0.0.4		10, 10	> 55	\$2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
**					
NS_32					-

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Report No.: CR230957288-00E

LTE(TDD):

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

	N	lormal cyclic prefix in d	Extended cyclic prefix in downlink			
Special subframe	DwPTS	UpPTS		DwPTS	UpPTS	
configuration		Normal cyclic prefix	Extended cyclic		Normal cyclic	Extended cyclic
		in uplink	prefix in uplink		prefix in uplink	prefix in uplink
0	$6592 \cdot T_s$			$7680 \cdot T_{\rm s}$		
1	$19760 \cdot T_s$			$20480 \cdot T_s$	2102.7	2560.T
2	$21952 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$	$23040 \cdot T_s$	2192 · 1 _s	2500·1 ₈
3	$24144 \cdot T_s$			$25600 \cdot T_s$		
4	$26336 \cdot T_s$			$7680 \cdot T_s$		
5	$6592 \cdot T_s$			$20480 \cdot T_s$	1284 T	5120 T
6	$19760 \cdot T_s$			$23040 \cdot T_s$	4504 · 1 _s	5120.1
7	$21952 \cdot T_s$	$4384 \cdot T_s$	$5120 \cdot T_s$	$12800 \cdot T_s$		
8	$24144 \cdot T_s$			-	-	-
9	$13168 \cdot T_s$			-	-	-

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink	Downlink-to-	Subframe number									
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	υ	D	D	D	S	υ	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	υ	υ	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Calculated Duty Cycle

Uplink-	Downlink-to-		Subframe Number						Calculated			
Downlink Configuration	Uplink Switch- point Periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	υ	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	υ	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

 $\label{eq:constraint} \begin{array}{l} \underline{Example \ for \ Calculated \ Duty \ Cycle \ for \ Uplink-Downlink \ Configuration \ 0;} \\ \hline Calculated \ Duty \ Cycle = 5120 \ x \ [1/(15000 \ x \ 2048)] \ x \ 2 \ + \ 6 \ ms \ = 63.33\% \\ \hline where \\ \hline T_s \ = \ 1/(15000 \ x \ 2048) \ seconds \end{array}$

1.2.2 Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Wideband Radio Communication Tester	CMW500	143458
Unknown	Antenna	Unknown	Unknown

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	No	No	1.0	Adapter	EUT
Earphone Cable	No	No	1.2	Earphone	EUT
Antenna Cable	NO	NO	2	Antenna	CMW500

1.2.4 Block Diagram of Test Setup

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB,
Chwanted Emissions, radiated	6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
RF Frequency	$\pm 0.082 imes 10^{-6}$

2. SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§2.1046; § 22.913; § 24.232; §27.50	RF Output Power	Compliant
FCC§ 2.1047	Modulation Characteristics	Not Applicable
FCC§ 2.1049; § 22.905; § 22.917; § 24.238; §27.53	Occupied Bandwidth	Compliant
FCC§ 2.1051; § 22.917; § 24.238; §27.53	Spurious Emissions at Antenna Terminal	Compliant
FCC§ 22.917; § 24.238; §27.53	Out of band emission, Band Edge	Compliant
FCC§ 2.1055; § 22.355; § 24.235; §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant
FCC§ 2.1053; § 22.917; § 24.238; §27.53	Field Strength of Spurious Radiation	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 Applicable Standard For Part 22 Subpart H:

3.1.1 RF Output Power

FCC §22.913

(a)(5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7watts.

(d) *Power measurement*. Measurement of the ERP of Cellular base transmitters and repeaters must be made using an average power measurement technique. The peak-toaverage ratio (PAR) of the transmission must not exceed 13 dB. Power measurements for base transmitters and repeaters must be made in accordance with either of the following:

(1) A Commission-approved average power technique (*see* FCC Laboratory's Knowledge Database); or (2) For purposes of this section, peak transmit power must be measured over an interval of continuous transmission using instrumentation calibrated in terms of an rmsequivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, *etc.*, so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

3.1.2 Spurious Emissions

FCC §22.917

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a reference bandwidth as follows:

(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth (i.e., 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
 (2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz

3.1.3 Frequency stability

FCC §22.355

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Frequency range (MHz)	Base, fixed (ppm)	Mobile >3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20	20	50
50 to 450	5	5	50
450 to 512	2.5	5	5
821 to 896	1.5	2.5	2.5
928 to 929	5	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10	n/a	n/a

Table C-1 - Frequency Tolerance for Transmitters in the Public Mobile Services

3.2 Applicable Standard For Part 24 Subpart E:

3.2.1 RF Output Power

FCC §24.232

(c)Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

(d)Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of § 24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.2.2 Spurious Emissions

FCC §24.238

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Alternative out of band emission limit. Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.

(d) Interference caused by out of band emissions. If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

3.2.3 Frequency stability

FCC §24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.3 Applicable Standard For Part 27:

3.3.1 RF Output Power

FCC §27.50

(a)(3) Mobile and portable stations.

(i) For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

(ii) Mobile and portable stations are not permitted to transmit in the 2315-2320 MHz and 2345-2350 MHz bands.

(iii) *Automatic transmit power control.* Mobile and portable stations transmitting in the 2305-2315 MHz band or in the 2350-2360 MHz band must employ automatic transmit power control when operating so the stations operate with the minimum power necessary for successful communications.

(iv) *Prohibition on external vehicle-mounted antennas*. The use of external vehicle-mounted antennas for mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band is prohibited.

(b)(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.

(c)(10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

(d)(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

(h) The following power limits shall apply in the BRS and EBS:(2)Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

3.3.2 Spurious Emissions

FCC §27.53

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(4)For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than: $43 + 10 \log (P) dB$ on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P) dB$ above 2365 MHz.

(c)For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P)$ dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to – 70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and – 80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P) dB$. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

(h) AWS emission limits

(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P) dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) dB$ on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

3.3.3 Frequency stability

FCC §27.54

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

3.4 Applicable Standard For Part 90:

3.4.1 RF Output Power

FCC §90.635

(b) The maximum output power of the transmitter for mobile stations is 100 watts (20 dBw).

3.4.2 Spurious Emissions

FCC §90.691

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

3.4.3 Frequency stability

FCC §90.213

809-824 MHz band, 2.5ppm for 2W or less output power.

3.5 Test Method:

3.5.1 Transmitter output power, e.r.p. and e.i.r.p

According to CFR Part 2.1046, ANSI C63.26-2015 Section 5.2.5.5 and KDB 971168 D01 Power Meas License Digital Systems v03r01:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP or EIRP = $P_{Meas} + G_T - L_C$

where:

L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

Test Setup Block:

Note: The Insertion loss of the RF cable and coaxial Attenuator was offset into the Reading of CMW500.

3.5.2 Occupied Bandwidth

According to ANSI C63.26-2015 Section 5.4.4

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring (99%) power bandwidth:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient).

b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.

d) Set the detection mode to peak, and the trace mode to max-hold.

e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.

f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

3.5.3 Transmitter unwanted emissions-at antenna terminals

According to ANSI C63.26-2015 Section 5.7.4, KDB 971168 D01 Power Meas License Digital Systems v03r01:

the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz),8 effectively depicting the unwanted emission limit in terms of a power spectral density. In those cases where no reference bandwidth is explicitly specified, the values in the preceding sentence should be used.

3.5.4 Transmitter unwanted emissions-Out of band emission

According to ANSI C63.26-2015 Section 5.7.3, KDB 971168 D01 Power Meas License Digital Systems v03r01:

Typically, a measurement (resolution) bandwidth smaller than the reference bandwidth is allowed for measurements within a specified frequency range at the edge of the authorized frequency block/band (e.g., within the first Y MHz outside of the authorized frequency band/block, where the value of Y is specified in the relevant rule part). Some FCC out-of-band emission rules permit the use of a narrower RBW (typically limited to a minimum RBW of 1 % of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. Beyond the specified frequency range in which this relaxation of the uniform reference bandwidth is permitted, it typically is also acceptable to use a narrower RBW (again limited to a minimum of 1 % of OBW) to increase accuracy, but the measurement result must subsequently be integrated over the full reference bandwidth.

3.5.5 Frequency stability

According to ANSI C63.26-2015 Section 5.6, KDB 971168 D01 Power Meas License Digital Systems v03r01:

Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage.

The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency determining circuit element shall be made subsequent to this initial set-up. Frequency stability is tested:

a) At 10 °C intervals of temperatures between -30 °C and +50 °C at the manufacturer's rated supply voltage, and

b) At +20 °C temperature and $\pm 15\%$ supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

During the test all necessary settings, adjustments and control of the EUT have to be performed without disturbing the test environment, i.e., without opening the environmental chamber. The frequency stabilities can be maintained to a lesser temperature range provided that the transmitter is automatically inhibited from operating outside the lesser temperature range. For handheld equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the frequency stability tests shall be performed at the nominal battery voltage and the battery end point voltage specified by the manufacturer. An external supply voltage can be used and set at the internal battery nominal voltage, and again at the battery operating end point voltage which shall be specified by the equipment manufacturer.

If an unmodulated carrier is not available, the mean frequency of a modulated carrier can be obtained by using a frequency counter with gating time set to an appropriately large multiple of bit periods (gating time depending on the required accuracy). Full details on the choice of values shall be included in the test report.

3.5.6 Transmitter unwanted emissions- Radiated Spurious emissions

According to ANSI C63.26-2015 Section 5.5.3:

Test setup:

Figure 6—Test site-up for radiated ERP and/or EIRP measurements

Test Procedure:

- a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- b) Each emission under consideration shall be evaluated:
 - Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - 3) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- d) Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- e) Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- f) Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- g) For each emission that was detected and measured in the initial test [i.e., in step b) and step c)]:
 - Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step b) and step c).
 - 3) Record the output power level of the signal generator when equivalence is achieved in step 2).
- Repeat step e) through step g) with the measurement antenna oriented in the opposite polarization.
- i) Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

- Pe = equivalent emission power in dBm
- Ps = source (signal generator) power in dBm

NOTE-dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- j) Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information
- k) Provide the complete measurement results as a part of the test report.

4. Test DATA AND RESULTS

4.1 Antenna Port Test Data and Results for GSM 850 band:

Serial Number:	2BUF-5	Test Date:	2023/10/18-2023/10/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

Environmental Conditions:									
Temperature: (°C)	25.3-25.6	Relative Humidity: (%)	49.8-50.1	ATM Pressure: (kPa)	101-101.3				

Test Equipment List and Details:								
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17			
zhuoxiang	Coaxial Cable	SMA-178	211002	Each time	N/A			
Minl-Clrcuits	Power Splitter	ZFRSC-183- S+	S F448201619	Each time	N/A			
R&S	Wideband Radio Communication Tester	CMW500	143458	2023/3/31	2024/3/30			
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30			
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27			
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A			
* Statement of	Traceability: China Certification	ICT Co., Ltd (Do	ongguan) attests that a	ll calibrations	have been			

performed, traceable to National Primary Standards and International System of Units (SI).

Test Frequency for Each Mode:								
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)					
GSM	824.2	836.6	848.8					
GPRS	824.2	836.6	848.8					
EDGE	824.2	836.6	848.8					

Test Data:

FCC§2.1046;§ 22.913 (a):RF Output Power					
	Conducted Peak Output Power(dBm)			Maximum	ERP
Test Mode	Lowest Channel	Middle Channel	Highest Channel	ERP (dBm)	Limit (dBm)
GSM	33.05	33.05	33.01	25.2	38.45
GPRS 1 Slot	32.98	32.99	32.13	25.14	38.45
GPRS 2 Slots	32.19	32.18	32.25	24.4	38.45
GPRS 3 Slots	30.42	30.4	29.27	22.57	38.45
GPRS 4 Slots	29.37	29.35	29.27	21.52	38.45
EDGE 1 Slot	27.32	27.34	27.34	19.49	38.45
EDGE 2 Slots	26.18	26.2	26.2	18.35	38.45
EDGE 3 Slots	24.15	24.25	24.42	16.57	38.45
EDGE 4 Slots	22.88	22.96	22.97	15.12	38.45
Note: ERP= Conducted Power(dBm) - $L_c(dB) + G_T(dBd)$					

GT(dBd)=GT(dBi)-2.15

Result:

Pass

FCC §2.1049, §22.917, §22.905:Occupied Bandwidth 99% Occupied Bandwidth 26 dB Occupied Bandwidth (kHz) (kHz) Operation Mode Low Middle High Low Middle High Channel channel Channel Channel Channel Channel 0.245 0.244 0.244 0.324 GSM 0.317 0.317 EDGE 0.244 0.244 0.243 0.310 0.310 0.306 Note: The test plots please refer to the Plots of Occupied Bandwidth

FCC §2.1051, §22.917(a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal

Result: Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051,	, §22.917(a):Out of band emission, Band Edge
Result:	Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §22.355: Fr	equency Stability	y			
Test Modulation:	GMSK		Test Channel:	836.6	MHz
Test Item	Temperature	Voltage Frequen		ncy Error	Limit
Test ttem	(°C)	(VDC)	(Hz)	(ppm)	(ppm)
	-30	3.87	117.352	0.140	2.5
	-20	3.87	104.262	0.125	2.5
	-10	3.87	107.830	0.129	2.5
	0	3.87	102.557	0.123	2.5
Frequency Stability vs.	10	3.87	104.820	0.125	2.5
Temperature	20	3.87	106.425	0.127	2.5
	30	3.87	104.421	0.125	2.5
	40	3.87	113.151	0.135	2.5
	50	3.87	105.683	0.126	2.5
Frequency Stability vs. Voltage	20	3.29	106.299	0.127	2.5
	20	4.45	119.402	0.143	2.5
				Result:	Pass

Test Modulation:	8PSK		Test Channel:	836.6	MHz
Tast Itam	Temperature	emperature Voltage		Frequency Error	
Test Item	(°C)	(VDC)	(Hz)	(ppm)	(ppm)
	-30	3.87	114.391	0.137	2.5
	-20	3.87	107.778	0.129	2.5
	-10	3.87	119.429	0.143	2.5
	0	3.87	115.875	0.139	2.5
Frequency Stability vs.	10	3.87	115.608	0.138	2.5
Temperature	20	3.87	114.07	0.136	2.5
	30	3.87	117.603	0.141	2.5
	40	3.87	113.978	0.136	2.5
	50	3.87	107.931	0.129	2.5
Frequency Stability vs. Voltage	20	3.29	107.061	0.128	2.5
	20	4.45	111.638	0.133	2.5
				Result:	Pass

Test Plots (Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

Serial Number:	2BUF-5	Test Date:	2023/10/19~2023/11/07			
Test Site:	RF	Test Mode:	Transmitting			
Tester:	Len Huang	Test Result:	Pass			

4.2 Antenna Port Test Data and Results for GSM 1900 band:

Environmental Conditions:						
Temperature: (°C)	25.3	Relative Humidity: (%)	49.8	ATM Pressure: (kPa)	101	

Test Equipment List and Details:						
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17	
zhuoxiang	Coaxial Cable	SMA-178	211002	Each time	N/A	
Minl-Clrcuits	Power Splitter	ZFRSC-183-S+	S F448201619	Each time	N/A	
R&S	Wideband Radio Communication Tester	CMW500	143458	2023/3/31	2024/3/30	
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30	
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27	
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Frequency for Each Mode:					
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)		
GSM	1850.2	1880	1909.8		
GPRS	1850.2	1880	1909.8		
EDGE	1850.2	1880	1909.8		
Test Data:

FCC§2.1046;§ 24.232 (c):RF Output Power							
	Conducted	Peak Output P	ower(dBm)	Maximum	EIRP		
Test Mode	Lowest Channel	Middle Channel	Highest Channel	EIRP (dBm)	Limit (dBm)		
GSM	27.79	27.62	27.28	27.59	33		
GPRS 1 Slot	28.3	28.11	27.8	28.1	33		
GPRS 2 Slots	27.79	27.59	27.28	27.59	33		
GPRS 3 Slots	26.81	26.63	26.32	26.61	33		
GPRS 4 Slots	25.79	25.58	25.24	25.59	33		
EDGE 1 Slot	26.13	26.01	25.54	25.93	33		
EDGE 2 Slots	25.01	24.92	24.42	24.81	33		
EDGE 3 Slots	22.9	22.93	22.37	22.73	33		
EDGE 4 Slots	21.75	21.81	21.37	21.61	33		
Note: EIRP=Conducted Power(dB	m) - $L_C(dB) + C$	Ът(dBi)					
				Result:	Pass		

Result:

FCC §2.1049, §24.238:Occupied Bandwidth									
Operation	99% Occupied Bandwidth (kHz)		26 dB Occupied Bandwidth (kHz)		width				
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel			
GSM	0.243	0.244	0.244	0.306	0.308	0.314			
EDGE	0.243	0.246	0.243	0.313	0.315	0.309			
Note: The test pl	Note: The test plots please refer to the Plots of Occupied Bandwidth								

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna Terminal **Result:** Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 24.238 (a):Out of band emission, Band Edge

Pass, Please refer to the test plots of Out of band emission, Band Edge. **Result:**

FCC §2.1055, §24.235: Frequency Stability							
Test Mode:	GMSK	Test Channel:	Lowest for Low	ver Edge,Highes	t for Upper Edge	;	
Test Item	Temperature	Voltage	Voltage Lower Edge (MHz)		Upper Edge (MHz)		
	(0)	(VDC)	Result	Limit	Result	Limit	
	-30	3.87	1850.027	1850.000	1909.972	1910.000	
	-20	3.87	1850.026	1850.000	1909.982	1910.000	
	-10	3.87	1850.001	1850.000	1909.979	1910.000	
Frequency	0	3.87	1850.016	1850.000	1909.992	1910.000	
Stability vs.	10	3.87	1850.019	1850.000	1909.998	1910.000	
Temperature	20	3.87	1850.022	1850.000	1909.980	1910.000	
	30	3.87	1850.030	1850.000	1909.974	1910.000	
	40	3.87	1850.004	1850.000	1909.995	1910.000	
	50	3.87	1850.029	1850.000	1909.630	1910.000	
Frequency	20	3.29	1850.002	1850.000	1909.996	1910.000	
Voltage	20	4.45	1850.023	1850.000	1909.993	1910.000	
				•	Result:	Pass	

Test Mode:	8PSK	Test Channel:	Test Channel: Lowest for Lower Edge, Highest for Upper Edge			
Test Item	Temperature	Voltage	ge Lower Edge (MHz)		Upper Edge (MHz)	
	(0)	(VDC)	Result	Limit	Result	Limit
	-30	3.87	1850.010	1850.000	1909.989	1910.000
	-20	3.87	1850.025	1850.000	1909.980	1910.000
	-10	3.87	1850.002	1850.000	1909.971	1910.000
Frequency	0	3.87	1850.020	1850.000	1909.980	1910.000
Stability vs.	10	3.87	1850.023	1850.000	1909.974	1910.000
Temperature	20	3.87	1850.019	1850.000	1909.994	1910.000
	30	3.87	1850.002	1850.000	1909.977	1910.000
	40	3.87	1850.007	1850.000	1909.989	1910.000
	50	3.87	1850.006	1850.000	1909.997	1910.000
Frequency Stability vo	20	3.29	1850.028	1850.000	1909.994	1910.000
Voltage	20	4.45	1850.027	1850.000	1909.974	1910.000
					Result:	Pass

Test Plots (Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

T.J Antenna I OI	S Antenna i ort i est Data and Results for Wednik Danu 2.							
Serial Number:	2BUF-5	Test Date:	2023/10/19					
Test Site:	RF	Test Mode:	Transmitting					
Tester:	Len Huang	Test Result:	Pass					

4.3 Antenna Port Test Data and Results for WCDMA Band 2:

Environmental Conditions:

	onuntronst				
Temperature: (℃)	25.3	Relative Humidity: (%)	49.8	ATM Pressure: (kPa)	101

Test Equipment List and Details: Serial Calibration Calibration Manufacturer Description Model Number Date Due Date R&S Spectrum Analyzer FSV40-N 102259 2023/4/18 2024/4/17 zhuoxiang Coaxial Cable SMA-178 211002 Each time N/A Minl-Clrcuits Power Splitter ZFRSC-183-S+ S F448201619 Each time N/A Wideband Radio **CMW500** 143458 2023/3/31 2024/3/30 R&S **Communication Tester** TEMP&HUMI Test BACL BTH-150-40 30174 2023/3/31 2024/3/30 Chamber UNI-T 2023/9/28 2024/9/27 Multimeter UT39A+ C210582554 ZHAOXIN DC Power Supply RXN-6010D 21R6010D0912386 N/A N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Fest Frequency for Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
WCDMA Band 2	1852.4	1880	1907.6			

Test Data:

FCC§2.1046;§ 24.232 RF Output Power:					
Test Mode	Condu	icted Average Power(dBm)	Maximum	EIRP Limit	
	Lowest Channel	Middle Channel	Highest Channel	(dBm)	(dBm)
WCDMA R99	14.99	14.9	15.06	14.86	33
HSDPA Subtest 1	12.40	12.44	12.62	12.42	33
HSDPA Subtest 2	12.45	12.5	12.67	12.47	33
HSDPA Subtest 3	12.52	12.54	12.71	12.51	33
HSDPA Subtest 4	12.58	12.61	12.74	12.54	33
HSUPA Subtest 1	13.11	13.19	13.12	12.99	33
HSUPA Subtest 2	13.18	13.25	13.15	13.05	33
HSUPA Subtest 3	13.21	13.33	13.2	13.13	33
HSUPA Subtest 4	13.24	13.38	13.25	13.18	33
HSUPA Subtest 5	13.29	13.41	13.3	13.21	33
HSPA+ Subtest 1	13.35	13.47	13.35	13.27	33
Note: EIRP=Conducted Power(dl	Bm) - Lc(dB) + G	Gт(dBi)			

Result:

Pass

Peak-to-average Ratio(PAR)					
	Peak-	to-average Rati	T,		
Test Mode	Lowest Channel	Middle Channel	Highest Channel	(dB)	
WCDMA R99	3.16	3.16	3.16	13	
HSDPA	4.49	4.7	4.41	13	
HSUPA	5.57	6	5.71	13	
				Result:	Pass

FCC §2.1049, §24.238:Occupied Bandwidth									
Operation	99% Occupied Bandwidth (MHz)		26 dB Occupied Bandwidth (MHz)		dwidth				
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel			
WCDMA R99	4.176	4.166	4.166	4.715	4.715	4.705			
HSUPA	4.186	4.186	4.186	4.705	4.705	4.715			
HSDPA	4.176	4.176	4.176	4.715	4.705	4.705			
Note: The test pl	Note: The test plots please refer to the Plots of Occupied Bandwidth								

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 24.238 (a):Out of band emission, Band Edge

Result: Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §24.235: Frequency Stability							
Test Mode:	WCDMA R99	Test Channel:	Test Channel: Lowest for Lower Edge, Highest for Upper Edge				
Test Item	Temperature	emperature Voltage		Lower Edge (MHz)		Upper Edge (MHz)	
	(C)	(VDC)	Result	Limit	Result	Limit	
	-30	3.87	1850.018	1850.000	1909.997	1910.000	
	-20	3.87	1850.026	1850.000	1909.998	1910.000	
	-10	3.87	1850.002	1850.000	1909.973	1910.000	
Frequency	0	3.87	1850.020	1850.000	1909.975	1910.000	
Stability vs.	10	3.87	1850.011	1850.000	1909.990	1910.000	
Temperature	20	3.87	1850.005	1850.000	1909.983	1910.000	
	30	3.87	1850.004	1850.000	1909.973	1910.000	
	40	3.87	1850.027	1850.000	1909.974	1910.000	
	50	3.87	1850.009	1850.000	1909.988	1910.000	
Frequency	20	3.29	1850.002	1850.000	1909.970	1910.000	
Voltage	20	4.45	1850.008	1850.000	1909.988	1910.000	
	-			•	Result:	Pass	

Test Plots (Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

Page 46 of 331

Serial Number:	2BUF-5	Test Date:	2023/10/19~2023/10/20
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

4.4 Antenna Port Test Data and Results for WCDMA Band 4:

Environmental Conditions:					
Temperature: (℃)	25.3	Relative Humidity: (%)	49.8	ATM Pressure: (kPa)	101

Test Equipme	nt List and Details:				
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
zhuoxiang	Coaxial Cable	SMA-178	211002	Each time	N/A
Minl-Clrcuits	Power Splitter	ZFRSC-183-S+	S F448201619	Each time	N/A
R&S	Wideband Radio Communication Tester	CMW500	143458	2023/3/31	2024/3/30
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Frequency for Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
WCDMA Band 4	1712.4	1732.6	1752.6			

Test Data:

FCC§2.1046;§27.50(d)(4) RF Output Power:					
	Conducted A	verage Output	Power(dBm)	Maximum	EIRP
Test Mode	Lowest Channel	Middle Channel	Highest Channel	EIRP (dBm)	Limit (dBm)
WCDMA R99	16.65	16.72	16.67	15.07	30
HSDPA Subtest 1	13.99	14.12	14.01	12.47	30
HSDPA Subtest 2	14.04	14.18	14.05	12.53	30
HSDPA Subtest 3	14.08	14.22	14.07	12.57	30
HSDPA Subtest 4	14.10	14.27	14.14	12.62	30
HSUPA Subtest 1	14.91	15.07	14.91	13.42	30
HSUPA Subtest 2	14.97	15.14	14.94	13.49	30
HSUPA Subtest 3	14.99	15.20	15.02	13.55	30
HSUPA Subtest 4	15.03	15.26	15.05	13.61	30
HSUPA Subtest 5	15.09	15.30	15.08	13.65	30
HSPA+ Subtest 1	15.13	15.38	15.14	13.73	30
Note: EIRP=Conducted Power(dBm) - $Lc(dB)$ +	GT(dBi)			
				Result:	Pass

Peak-to-average Ratio(PAR)					
	Peak	-to-average Rati	T : :/		
Test Mode	Lowest Channel	Middle Channel	Highest Channel	(dB)	L
WCDMA R99	3.16	3.16	3.19	13	
HSDPA	4.87	4.87	4.46	13	
HSUPA	5.86	6.03	5.68	13	
				Result:	Pass

FCC §2.1049	, §27.53:Occupi	ed Bandwidth	1			
Opration Mode C	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)		
	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel
WCDMA R99	4.166	4.166	4.166	4.715	4.715	4.715
HSDPA	4.176	4.186	4.176	4.715	4.725	4.715
HSUPA	4.166	4.166	4.166	4.715	4.715	4.715
Note: The test j	plots please refer to	o the Plots of Oc	ccupied Bandwid	lth		

FCC §2.1051, § 27.53: Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 27.53:Out of band emission, Band Edge

Result: Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §27.54: Frequency Stability

Test Mode:	WCDMA R99	Test Channel: Lowest for Lower Edge, Highest for Upper Edge				
Test Item	Temperature	Voltage	Voltage (M		Upper Edge (MHz)	
	(0)	(VDC)	Result	Limit	Result	Limit
	-30	3.87	1710.007	1710.000	1754.978	1755.000
	-20	3.87	1710.015	1710.000	1754.994	1755.000
Frequency	-10	3.87	1710.027	1710.000	1754.975	1755.000
	0	3.87	1710.007	1710.000	1754.980	1755.000
Stability vs.	10	3.87	1710.017	1710.000	1754.972	1755.000
Temperature	20	3.87	1710.006	1710.000	1754.983	1755.000
	30	3.87	1710.001	1710.000	1754.974	1755.000
	40	3.87	1710.018	1710.000	1754.982	1755.000
	50	3.87	1710.003	1710.000	1754.971	1755.000
Frequency	20	3.29	1710.014	1710.000	1754.993	1755.000
Voltage	20	4.45	1710.006	1710.000	1754.997	1755.000
					Result:	Pass

Test Plots (Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

Page 53 of 331

Report No.: CR230957288-00E

Page 55 of 331

ne i meenna i	ore rese back and results	IVI II CDIIIII	Bunu et
Serial Number:	2BUF-5	Test Date:	2023/10/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

4.5 Antenna Port Test Data and Results for WCDMA Band 5:

Environmental Conditions:					
Temperature: (℃)	25.3	Relative Humidity: (%)	49.8	ATM Pressure: (kPa)	101

Test Equipme	nt List and Details:				
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
zhuoxiang	Coaxial Cable	SMA-178	211002	Each time	N/A
Minl-Clrcuits	Power Splitter	ZFRSC-183-S+	S F448201619	Each time	N/A
R&S	Wideband Radio Communication Tester	CMW500	143458	2023/3/31	2024/3/30
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Frequency:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
WCDMA Band 5	826.4	836.6	846.6			

	Conducted Av	verage Output 1	Power(dBm)	Maximum	ERP
Test Mode	Lowest Channel	Middle Channel	Highest Channel	ERP (dBm)	Limit (dBm)
WCDMA R99	23.16	23.10	23.06	15.31	38.45
HSDPA Subtest 1	20.43	20.52	20.37	12.67	38.45
HSDPA Subtest 2	20.48	20.58	20.42	12.73	38.45
HSDPA Subtest 3	20.54	20.65	20.47	12.80	38.45
HSDPA Subtest 4	20.59	20.72	20.54	12.87	38.45
HSUPA Subtest 1	21.36	21.46	21.23	13.61	38.45
HSUPA Subtest 2	21.40	21.52	21.26	13.67	38.45
HSUPA Subtest 3	21.45	21.57	21.34	13.72	38.45
HSUPA Subtest 4	21.47	21.65	21.40	13.80	38.45
HSUPA Subtest 5	21.50	21.69	21.47	13.84	38.45
HSPA+ Subtest 1	21.66	21.74	21.49	13.89	38.45

Peak-to-average Ratio(PAH	R)				
	Peak-t	o-average Ratio	T T T		
Test Mode	Lowest Channel	Middle Channel	Highest Channel	(dB))
WCDMA R99	4.75	4.35	4.7	13	
HSDPA	4.75	4.35	4.7	13	
HSUPA	5.19	5.28	5.71	13	
				Result:	Pass

FCC §2.1049, §22.917, §22.905:Occupied Bandwidth								
Operation	99% Occupied Bandwidth (MHz)			26 dB	3 Occupied Bandwidth (MHz)			
Mode Low Channel	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel		
WCDMA R99	4.166	4.166	4.176	4.725	4.725	4.715		
HSDPA	4.176	4.176	4.186	4.725	4.715	4.715		
HSUPA	4.206	4.206 4.186 4.206 4.885 4.725						
Note: The test p	olots please refer	to the Plots of Oc	cupied Bandwid	lth				

FCC §2.1051, §22.917(a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, §22.917(a):Out of band emission, Band Edge

Result: Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §22.355: Fre	equency Stability	7			
Test Modulation:	WCDMA R99		Test Channel:	836.6	MHz
Test Item	Temperature	Voltage	Frequer	ncy Error	Limit
Test item	(°C)	(VDC)	(Hz)	(ppm)	(ppm)
	-30	3.87	102.043	0.122	2.5
	-20	3.87	106.181	0.127	2.5
	-10	3.87	107.305	0.128	2.5
	0	3.87	106.593	0.127	2.5
Frequency Stability vs.	10	3.87	114.115	0.136	2.5
Temperature	20	3.87	118.889	0.142	2.5
	30	3.87	116.016	0.139	2.5
	40	3.87	101.814	0.122	2.5
	50	3.87	117.456	0.140	2.5
Frequency Stability vs. Voltage	20	3.29	107.311	0.128	2.5
	20	4.45	107.057	0.128	2.5
				Result:	Pass

Test Plots(Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

Page 60 of 331

Report No.: CR230957288-00E

Page 62 of 331

Serial Number:	2BUF-5	Test Date:	2023/10/17~20233/11/7
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

4.6 Antenna Port Test Data and Results for LTE Band 2

Environmental Conditions:						
Temperature: (°C)	25.6	Relative Humidity: (%)	48	ATM Pressure: (kPa)	101.2	

Test Equipment List and Details:						
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17	
zhuoxiang	Coaxial Cable	SMA-178	211002	Each time	N/A	
Minl-Clrcuits	Power Splitter	ZFRSC-183-S+	S F448201619	Each time	N/A	
R&S	Wideband Radio Communication Tester	CMW500	143458	2023/3/31	2024/3/30	
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30	
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27	
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A	
* Statement of T	Lugooghilitus Ching Coutification I	CT Co Itd (Domo	attacts that all a	alibuationa han	a h a an	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Frequency for Each Mode:						
Operation Bandwidth	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
1.4MHz	1850.7	1880	1909.3			
3MHz	1851.5	1880	1908.5			
5MHz	1852.5	1880	1907.5			
10MHz	1855	1880	1905			
15MHz	1857.5	1880	1902.5			
20MHz	1860	1880	1900			

Test Data:

FCC§2.1046;§ 24.	.232					
RF Output Power	:					
Test Bandwidth &	Resource	Condu	cted Average Power(dBm)	Output	Maximum	EIRP
Modulation	offset	Lowest Channel	Middle Channel	Highest Channel	EIRP(dBm)	Limit(dBm)
	RB1#0	14.96	15.09	15.4		
	RB1#3	15.08	15.22	15.55		
	RB1#5	14.93	15.07	15.4	15.25	22
1.4MHz QPSK	RB3#0	15.12	15.15	15.5	15.35	33
	RB3#3	15.02	15.15	15.48		
	RB6#0	14.06	14.14	14.49		
	RB1#0	13.99	14.14	14.54		
	RB1#3	14.17	14.24	14.73		
1 4MH- 100 AM	RB1#5	14.03	14.15	14.56	14.52	22
1.4MHZ I6QAM	RB3#0	14.18	14.38	14.49	14.35	33
	RB3#3	14.14	14.36	14.53		
	RB6#0	12.98	13.19	13.55		
	RB1#0	15.05	15.08	15.39		
	RB1#8	14.95	15.03	15.42		
	RB1#14	14.97	15.06	15.44	15.24	22
3MHZ QPSK	RB6#0	14	14.14	14.46	13.24	33
	RB6#9	13.97	14.11	14.53		
	RB15#0	14.04	14.18	14.51		
	RB1#0	14.1	14.28	15.07		
	RB1#8	14.05	14.2	15.07		
2MH- 160 AM	RB1#14	14.06	14.2	15.1	14.0	22
3MHZ I6QAM	RB6#0	12.93	13.1	13.57	14.9	33
	RB6#9	12.95	13.13	13.53		
	RB15#0	13.09	13.22	13.57		
	RB1#0	14.89	15.02	15.29		
	RB1#13	15.08	15.19	15.47		
5MHz ODSV	RB1#24	14.89	14.98	15.37	15.27	33
JNIEZ QESK	RB15#0	14.06	14.21	14.44	13.27	55
	RB15#10	14.05	14.16	14.46		
	RB25#0	14.02	14.15	14.46		
	RB1#0	14.07	14.4	14.44		
	RB1#13	14.18	14.52	14.63		
5MHz 160 AM	RB1#24	14.07	14.42	14.53	14.43	33
JIMITZ TUQAMI	RB15#0	13.11	13.16	13.51	17.73	55
	RB15#10	13.1	13.16	13.48]	
	RB25#0	13.09	13.18	13.49		
10MHz QPSK	RB1#0	14.97	15.09	15.4	15.37	33

Page 64 of 331

					Result.	Pass
te: EIRP=Conduc	cted Power(dBm)	- $Lc(dB) + G_T$	(dBi)			
	RB100#0	13.1	13.08	13.12		
	RB50#50	14.15	14.35	14.1	14.17	
20MHz 16QAM	RB50#0	13.13	13.04	13.01		55
AON 071 1/2 · · · ·	RB1#99	14.18	14.28	14.25		22
	RB1#50	14.2	14.07	14.22		
	RB1#0	14.36	14.35	14.37		
	RB100#0	14.14	14.23	14.24		
	RB50#50	14.12	14.04	14.0		
20MHz QPSK	RB50#0	14.02	14.17	14.11	15.11	33
	RB1#99	15.04	15.06	15.16		
	RB1#50	15.07	15.08	14.98		
	RB1#0	15.3	15.19	15.18		
	RB75#0	13.22	13.09	13.06		33
	RB36#30	14.42	14.30	14.30		
15MHz 16QAM	RD1#/4 RR36#0	14.20	14.20	14.13	14.22	
	PR1#74	14.20	14.2	14.12		
	RB1#38	14.13	14.20	14.15		
	RB73#0	14.13	14.2	14.10		
	RB75#0	14 30	14.20	13.02		33
	RB36#30	15.06	15.71	15.02		
15MHz QPSK	RB36#0	15.14	15.00	15.15	15.21	
	RB1#74	14 97	15.00	15.55		
	RB1#38	15.16	15.18	15.14		
	RB1#0	15.07	14.98	15.52		
	RB50#0	13.15	13.29	13.52		
	RB25#0	13.15	13.32	13.5		
10MHz 16QAM	RB1#47 RB25#0	13.10	13.22	13.5	14.74	33
	RB1#23	14.04	14.76	14.65		
	RB1#25	14.23	14.04	14.75		
	RB30#0	14.11	14.76	14.50		
	RB25#25	14.09	14.22	14.52		
	RB25#0	14.07	14.27	14.48		
	RB25#0	14 07	14 24	14.48		
	RB1#49	15	15.23	15.37		

Peak-to-average Ratio(PAR)					
	Pasourca	Peal	k-to-average	Ratio(dB)	Limit (dB)
Test Bandwidth & Modulation	Block & RB offset	Lowest Channel	Middle Channel	Highest Channel	
	RB1#0	6	6.46	6.58	13
20MHz QPSK	RB100#0	4.55	4.46	4.61	13
	RB1#0	7.51	6.64	7.3	13
20MHZ I6QAM	RB100#0	6.06	5.97	6.14	13
				Result:	Pass

FCC §2.1049, §	24.238:Occupi	ied Bandwidt	h			
Operation	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)		
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel
1.4MHz QPSK	1.096	1.102	1.096	1.320	1.290	1.296
1.4MHz 16QAM	1.090	1.096	1.096	1.290	1.290	1.320
3MHz QPSK	2.683	2.683	2.683	2.892	2.880	2.880
3MHz 16QAM	2.683	2.683	2.683	2.880	2.892	2.880
5MHz QPSK	4.491	4.511	4.511	4.940	4.960	4.960
5MHz 16QAM	4.511	4.471	4.511	4.980	4.900	4.960
10MHz QPSK	8.982	8.942	8.942	9.640	9.680	9.600
10MHz 16QAM	8.942	8.942	8.942	9.640	9.560	9.560
15MHz QPSK	13.473	13.533	13.413	14.760	14.760	14.640
15MHz 16QAM	13.473	13.473	13.533	14.700	14.640	14.760
20MHz QPSK	17.964	17.884	17.884	19.360	19.280	19.360
20MHz 16QAM	17.964	17.964	17.884	19.280	19.360	19.360
Note: The test plo	te please refer to	the Plots of Oc	cunied Bandwid	th		

Note: The test plots please refer to the Plots of Occupied Bandwidth

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051,	§ 24.238 (a):Out of band emission, Band Edge
Result:	Pass, Please refer to the test plots of Out of band emission, Band Edge.

٦

Г

FCC §2.1055, §24.235: Frequency Stability							
Test Mode:	20M QPSK	Test Channel: Lowest for Lower Edge, Highest for Upper Edge					
Test Item	Temperature (℃)	Voltage (V _{DC})	Lower Edge (MHz)		Upper Edge (MHz)		
			Result	Limit	Result	Limit	
Frequency Stability vs. Temperature	-30	3.87	1850.019	1850.000	1909.982	1910.000	
	-20	3.87	1850.023	1850.000	1909.973	1910.000	
	-10	3.87	1850.017	1850.000	1909.978	1910.000	
	0	3.87	1850.014	1850.000	1909.994	1910.000	
	10	3.87	1850.026	1850.000	1909.994	1910.000	
	20	3.87	1850.027	1850.000	1909.973	1910.000	
	30	3.87	1850.001	1850.000	1909.993	1910.000	
	40	3.87	1850.017	1850.000	1909.999	1910.000	
	50	3.87	1850.011	1850.000	1909.998	1910.000	
Frequency Stability vs. Voltage	20	3.29	1850.014	1850.000	1909.989	1910.000	
	20	4.45	1850.007	1850.000	1909.993	1910.000	
					Result:	Pass	
Test Mode:	20M 16QAM	Test Channel: Lowest for Lower Edge, Highest for Upper Edge					
Test Item	Temperature (℃)	Voltage (V _{DC})	Lower Edge (MHz)		Upper Edge (MHz)		
			Result	Limit	Result	Limit	
Frequency Stability vs. Temperature	-30	3.87	1850.004	1850.000	1909.970	1910.000	
	-20	3.87	1850.003	1850.000	1909.981	1910.000	
	-10	3.87	1850.004	1850.000	1909.972	1910.000	
	0	3.87	1850.007	1850.000	1909.986	1910.000	
	10	3.87	1850.009	1850.000	1909.985	1910.000	
	20	3.87	1850.005	1850.000	1909.970	1910.000	
	30	3.87	1850.006	1850.000	1909.994	1910.000	
	40	3.87	1850.029	1850.000	1909.975	1910.000	
	50	3.87	1850.010	1850.000	1909.973	1910.000	
Frequency Stability vs. Voltage	20	3.29	1850.027	1850.000	1909.980	1910.000	
	20	4.45	1850.024	1850.000	1909.984	1910.000	
					Result:	Pass	

Test Plots(Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

Occupied Bandwidth						
Channel	3MHz Bandwidth QPSK	3MHz Bandwidth 16QAM				
Lowest	Spectrum Image: Constraint of the state stat	Spectrum Image: Control of the state of the				
Middle	Spectrum Image: Constraint of the second secon	Spectrum Image: Control of the second s				
Highest	Spectrum With Ref Level 30.00 dBm Offset 11.50 dB = RBW 30 H42 Mat 30 dB SWT 9 JPk Max Militia 10 dBm 016.950 dBm 0 dBm 016.950 dBm 10 dBm 016.950 dBm	Spectrum The fevel 30.00 dbm Offset 11.50 db RBW 30 lbHz Att 30 db SWT 53.2 µs SWI 100 lbHz Mode Auto FFT #DF Max MI[1] -19.03 dbm -19.03 dbm -19.03 dbm 20 dbm OCC BW 2.602043731 MHz -0.70 dbm -0.70 dbm 10 dbm 01 5.070 dbm -0.70 dbm -0.70 dbm -0.70 dbm -30 dbm -0.2 20.330 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.70 dbm -0.70 dbm -0.70 dbm -0.70 dbm -00 dbm -0.				

Page 69 of 331

Report No.: CR230957288-00E

Page 70 of 331

	Spurious Emissions at An	ntenna Terminal
Channel	1.4MHz Band	lwidth QPSK
Channel	1.4MHz Banc Spectrum Ref Level 10.00 dBm Offset 11.50 dB = RBW 100 ISH: Mode Auto Sweep	Spectrum Image: Constraint of the second secon
Middle	Start 30.0 MHz S01 pts Stop 1.0 GHz Projectilo.: CR230957288 Texter: Km Tang Texter: Km Tang Data: 7.0007.2023 20145130	Start 1.0 GHz S01 pts Stop 20.0 GHz Projective Control Stop 20.0 GHz Projective Control Control Ref Level 30.00 dBm Offset 11.50 dB e RBW 1 MBz Control Att 30 dB SWT 26 ms e VBW 2 MBz Mode Auto Sweep @TPK Max M1[1] -00.00 dBm 0.00 dBm 10 dBm 11.50 dB e RBW 1 MBz -00.00 dBm -00.00 dBm 10 dBm -00.00 dBm -00.00 dBm -00.00 dBm -00 dBm -00 dBm -00 dBm -00 dBm <td< th=""></td<>
Highest	10051: 7.1000023 20140122 Spectrum Image: constraint of the second of the	Spectrum Image: Spectrum Ref Level 30.00 dBm Offset 11.50 dB @ RBW 1 Metz Att 30 db @WT 20 dBm 10 dbm 10 dbm 10 dbm -0 dBm 01 - 13 000 dBm -0 dBm

	Spurious Emissions at Ar	ntenna Terminal
Channel	3MHz Band	width QPSK
	Spectrum Image: Constraint of the sector of th	Spectrum
Lowest	-20 68m	0 dBis
	-60 dBm	40 08m
	Start 30.0 MHz 501 pts Stop 1.0 GHz ProjectNo.:CN330957288 Textet:Ken Tang Date: 7,H0V.2023 20149137	Start 1.0 GHz 501 pts Stop 20.0 GHz ProjestNo.1CN230957288 Tester:Ken Tang Dater 7.NOV.2023 20149157
	Spectrum Image: Constraint of the system Image: Constand of the system	Spectrum Image: Construction of the constructi
	0 dBm	20 dBm
	-10 dBm 01 +13.000 dBm	10 dbm
Middle	-30 dBm	-10 cBm - 01 -13.000 dBm
	- Continue Langeland and an and a second decision of the contract of the contr	-30 com
	-70 dBm	-50 dBm
	Start 30.0 MHz S01 pts Stop 1.0 GHz ProjectKo.:CR230937288 Tester:Ken Tang Date: 7.HOV.2023 20:59:23	Bitart 1.0 GHz S01 pts Stop 20.0 GHz ProjectNo.iCR230957288 TesteriKen Tang Date: 7.800.2023 20:59:66
	Spectrum mm Ref Level 10.00 dBm Offset 11.50 dB @ RBW 100 kHz Att 30 dB SWT 9.7 ms @ VBW 300 kHz	Spectrum mm Ref Level 30.00 dBm Offset 11.50 dB ● RBW 1 MHz Att 30 dB ■ SWT 76 ms ● VBW 3 MHz
	10k Max 1	
	-10 dBm 01 -13.000 dBm	10 d6m
Highest	-30 dBm	-10 GPm- D1 -13.000 dBm- -20 GPm-
-	1.55 dam	30 cm
	-70 dbm	-50 dBm
	Start 30.0 MHz S01 pts Stop 1.0 GHz ProjectWo.iCR230937288 Tester:Wen Tang	Stort 1.0 GHz Stop 20.0 GHz ProjectNo.:CR230957288 Tester:Ken Teng Duch T W 0223 20.0 Stop 20.0 GHz

	Spurious Emissions at Ar	itenna Terminal					
Channel	5MHz Bandwidth QPSK						
	Spectrum 000 Ref Level 10.00 dBm Offsat 11.50 dB @ RBW 100 164: Att 30 dB BWT 9.1% Max M1[1] -457.75 dBm B57.70 MHz;	Spectrum (100) Ref Level 30.00 dBm Offset 11.50 dB = RBW 1 MHz Att 30 dB 91%: Max 76 ms = VBW 3 MHz M1[1] -30.04 dBm 18.2740 GHz 18.2740 GHz					
	-10 dBm	20 dam- 10 dbm- -10 dBm- -11 -12.000 dbm- -1 - 12.000 dbm-					
Lowest	-40 dbm	-20 dam					
	-80 d8m Btart 30.0 MHz 501 pts Stop 1.0 GHz ProjectNo::Cl030957288 Tester:IKen Teng Dater 7.H0V.2023 20153101	-60 dBm					
	Spectrum mm Ref Level 10.00 dbm Offset 11.50 db ∈ RBW 100 kHz ♦ Att 30 db SWT 9.7 ms ∈ VBW 300 kHz Mode Auto Sweep	Spectrum Image: Constraint of the constraint					
	0 dBm	20 dBm					
	01 -13 000 dBm -20 dBm -30 dBm	0 dBar					
Middle	40 dbm M1	-20 dkm					
	-60 d8m	50 dem					
	Start 30.0 MHz 501 pts Stop 1.0 GHz ProjectKo.:CR230907288 Testor:Ken Tang Deter T.HOV.2023 20:53:56	Start 1.0 GHz Stop 20.0 GHz Stort 1.0 GHZ 501 pts Stop 20.0 GHz ProjectNo.iCR230957280 Tester:Rem. Tang Date: 7.WOV.2023 20:56:20					
	Spectrum mm Ref Level 10.00 dBm Offset 11.50 dB ⊕ RBW 100 kHz Att 30 dB SWT 9.7 ms ⊕ VBW 300 kHz	Spectrum T Ref Level 30.00 dBm Offset 11.50 dB @ RBW 1 MHz Att 30 dB SWT 76 ms @ VBW 3 MHz Mode Auto Sweep					
	19k Max 19k Max 10 d8m 0 d8m						
	-10 dBm 01 -13.000 dBm -	10 dkm					
Highest	-30 dBm	-10 GBm 01 -13.000 dBm					
	50 dbm	30 cm					
	-70 dbm	-50 dbm					
	Start 30.0 MHz 501 pts Stop 1.0 GHz Frojectilo. : (H230937288 Teatersifan Tang Datar 7. W07 203 20:4445	Stort 1.0 GHz Stop 20.0 GHz ProjectNo.:CR330957288 Tester:INor Test Stort 7.007.2023 20:055108					

Channel	10MII_ D	width ODSV						
Channel	10MHz Bandwidth QPSK							
	Spectrum Ref Level 10.00 dBm Offset 11.50 dB RBW 100 kHz	Spectrum Ref Level 38.00 dBm Offset 11.50 dB RBW 1 MHz						
	Att 30 dB SWT 9.7 ms VBW 300 kHz Mode Auto Sweep IPk Max	Att 30 dB SWT 76 ms VBW 3 MHz Mode Auto Sweep PIPk Max						
	M1[1] -45,39 dBm 793,80 MHz	M1[1] -30.70 dBm 16.0000 GHz						
	0 dBm	20 dBm						
	-10 dBm- D1 -13.000 dBm	10 dkm						
	-20 dBm	0 dBm						
	-30 dBm-	-10 d8m						
Lowest	+40 d8m	-20 dBm						
	30 all a present war and a plan a source of the second and the sec	-30 dBm						
		when we were a sense of the sen						
	-00.080	-+o 08m						
	-70 dBm-	-50 dBm						
	-B0 dBm+	-60.d8m						
	Start 30.0 MHz 501 pts Stop 1.0 GHz	Start 1.0 GHz 501 pts Stop 20.0 GHz						
	ProjectNo.sCN230957288 Texter:Ken Tang	ProjectNo.:CR230957288 Texter:Ken Tang						
	Date: 7.1007.2023 20196733	Date: /.NOV.2023 2019013/						
	Ref Level 10.00 dBm Offset 11.50 dB @ RBW 100 kHz	Ref Level 30.00 dBm Offset 11.50 dB @ RBW 1 MHz						
	Att 30 dB SWT 9.7 ms VBW 300 kHz Mode Auto Sweep IPk Max	Att 30 dB SWT 76 ms VBW 3 MHz Mode Auto Sweep IPk Max						
	M1[1] -45.18 dBm 888.70 MHz	M1[1] -30.33 dBn 18.3120 GH						
	0 dBm	20 dBm						
	-10 dBm 01 -13.000 dBm	10 dBm						
	-20 dBm-	0 dBm						
	-30 dBm	-10 gBm-						
Middle	-40 dBm	-20 gBm						
	upper an and the man prover a prover a provide and the second and	-90 dBm						
		and and and a second and a second and a second and						
	-60 dBm	1.40 dbm						
	-70 dBm	-50 dBm						
	-80 d8m	-60 dBm						
	Start 20.0 MHz 501 pts Stop 1.0 GHz	Start 1.0 GHz 501 pts Stop 20.0 GHz						
	ProjectNo.:CR230957288 Tester:Ken Tang	ProjectNo.:CR230957288 Tester:Ken Tang						
	Date: 7.HOV.2023 20:57:19	Date: 7.W0V.2023 20:57:46						
	Spectrum ▼ RefLevel 10.00 dBm Offset 11.50 dB = RBW 100 kHz	Spectrum						
	Att 30 dB SWT 9.7 ms VBW 300 kHz Mode Auto Sweep	Att 30 dB SWT 76 ms ⊕ VBW 3 MHz Mode Auto Sweep						
	M1[1] -45.59 dBm 602.10 MHz	M1[1] -30.84 dBn 16.0710 GH						
	0 d8m	20 dBm-						
	-10 dBm	10 d8m						
	-20 dBm-	0 dan						
	-30 d8m	-10 cBm-						
Uighaat		01 -13.000 d8m						
ingnest	The work of the second se	And obtained and a set of the set						
	-50 @Bm	-30 class						
	-60 dBm-	40 dBm						
	-70 dBm	-50 dBm-						
	-80 d8m	-60 dBm						
	Start 30.0 MHz 501 pts Stop 1.0 GHz	Start 1.0 GHz 501 pts Stop 20.0 GHz						

	Spurious Emissions at An	ıtenna Terminal					
Channel	15MHz Bandwidth QPSK						
	Spectrum Image: Spectrum </th <th>Spectrum</th>	Spectrum					
Lowest	-20 dBm	0 dBin					
	-60 dBm	-50 dBm					
	Start 30.0 MHz S01 pts Stop 1.0 GHz ProjectNo.rCR230957288 Texter:Nem Teng Date: 7,100,2023 21100106	Start 1.0 GHz S01 pts Stop 20.0 GHz ProjectNo.4CH230957288 TesterIMen Teng Date: 7.4097,2023 21109(30					
	Spectrum Image: Constraint of the second seco	Spectrum Image: Constraint of the constrain					
	0 d8m	20 d8m					
	-10 dBm 01 +13.000 dBm	10 dbm					
Middle	-30 dBm	-20 dBm					
	-60 dBm	to all and the second of the s					
	-70 d8m	-50 dbm					
	Start 30.0 MHz Stop 1.0 CHz ProjectKo.:CR230957288 Tester:Ken Tang Date: 7.HOV.2023 21:01:01	Bitart 1.0 GHz S01 pts Stop 20.0 GHz ProjectNo.iCR230957288 TesteriKen Tang Date: 7.800.2023 21:01:28					
	Spectrum Important Ref Level 10.00 dBm Offset 11.50 dB ⊕ RBW 100 kHz Att 30 dB SWT 9.7 ms ⊕ VBW 300 kHz Att 30 dB SWT 9.7 ms ⊕ VBW 300 kHz	Spectrum Image: Construction of the constructi					
	0 dBm	UPL Max M1[1] -30.77 dBm 20 dBm 18.2370 GHz					
	-10 dBm -11 -13 000 dBm -20 dBm	10 dbm-					
Highest	-30 dbm	-10 dbm D1 -13.000 dbm					
	-00 ggu	30 den som and and a second and a second sec					
	-70 dBm	-60 dBm-					
	Start 30.0 MHz S01 pts Stop 1.0 GHz FrojectNo.:CE230937288 Tester:Ken Tang Dater 7.407.023 21:01:50	Stort 1.0 GHz Stop 20.0 GHz ProjectNo.:CR230957288 Tester:Ken Teng Date: 7.NOV.2023 21:02:13					

	Spurious Emissions at Ar	ıtenna Terminal					
Channel	20MHz Bandwidth QPSK						
	Spectrum Image: Constraint of the sector of th	Spectrum Image: Constraint of the sector of t					
	-20 dBm	10 dBm -10 dBm -1.2.000 dBm					
Lowest	-40 cm	20 dam - Mi - M					
	-60 d8m	-50 d8m					
	Bitert 30.0 MHz Stop 1.0 GHz ProjectNo.:CR220957208 Tester:Ifen Teng Dater 7.1097.2023 21103143	Start 1.0 GHz Stop 20.0 GHz ProjentKo.rCH230957288 Tester:Ken Tang Date: 7.H0V.2023 21164108					
	Spectrum Imposition Ref Level 10.00 dbm Offset 11.50 db = RBW 100 1Ht att 20 db SWT 9.1% Max VBW 200 1Ht	Spectrum Image: Constraint of the section					
	0 dtm201.00 dtm201.00 mtm201.00 mtm001.00 mtm0000 mtm00000 mtm00000 mtm0000 mtm00000 mtm0000000 mtm	20 d&m 5.7590 G42					
	-20 d8m	0 dBn					
Middle	-40 dbm - 41 miles - 44 miles - 4	-20 den - MI					
	-70 d8m	-50 dbm					
	Start 30.0 MHz S01 pts Stop 1.0 GHz ProjectKo.:CR220957288 Tester:Ken 7ang Date: 7.NOV.2023 21/04:37	Start 1.0 GHz S01 pts Stop 20.0 GHz Projectilo.ICR230957288 TesteriKen Tang Date: 7.80V.2023 21:05:03					
	Spectrum mm Ref Level 10.00 dBm Offset 11.50 dB @ RBW 100 HHz Att 30 dB SWT 9.7 ms @ VSW 300 HHz	Spectrum mm Ref Level 30.00 dBm Offset 11.50 dB ⊕ RBW 1 MHz ▼ # Att 30 dB SWT 76 ms ⊕ VBW 3 MHz					
	PPk Max M1[1]15.15 dbm 942.90 MHz 0 dbm						
	-10 dBm 01 -13.000 dBm -20 dBm	10 dbm					
Highest		-10 dkm 01 -13 000 dkm					
	-50 dbm	No den souther and a second se					
	-80 dBm	-60 dbni					
	ProjectNo.1CH230957288 Tester:Ken Tang Date: 7.NOV.2023 21:05:39	ProjectNo.:CR230957288 Tester:Ken Tang Date: 7.NOV.2023 21:06:93					

	Out of band emission,	, Band Edge			
Mode	Lowest	Highest			
	Spectrum Image: Constraint of the second secon	Spectrum mm Ref Level 30.00 dBm Offset 11.50 dB = RBW 100 kHz mm att 30 dB = SWT 35 ms = VBW 300 kHz Mode Auto Sweep SGL Count 50/50 SVE SVE Mode Auto Sweep			
		Ism AvgPer M1[1] -44.06 dBm 1.910000 GHz 0 dBm 0 dBm 0 dBm 0 dBm			
QPSK 10MHz	-20 dBm	-30 dBm 01 -13.000 dBm			
	60 dbm 60 dbm 67 dbm 501 pts Bpan 20.0 MHz ProjectNo.:CR20937200 Texter:Nen Tang Date: 17.007.2023 22108:008 Spactnum	-50 dBm			
	Ref Level 30.00 dBm Offset 11.50 dB	Spectrum ▼ Ref Level 30.00 dBm Offset 11.50 dB = RBW 300 kHz Att 30 dB = SWT SGL Count 50/50 ■1Rm AvgPwr M1[1] -41.53 dBm 1.0100000 GH3			
	20 dBm	20 dBm 10 dBm 0 dBm			
QPSK 15MHz	-10 dBm 01 -13 000 dBm	-20 dBm- -20 dBm- -30 dBm-			
	-40 dBm	-50 dBm			
	CF 1.85 GHz S01 pts Span 30.0 MHz ProjectNo.:CR230957288 ?estec:Hen Tang Date: 17.0CT.2023 22:07:12 Spectrum \vec{mainleft}{\vec{v}} \vec{mainleft}{\vec{v}}	ProjectNo.:CR210957288 TesteriKen Tang Date: 17.007.2023 22:07:25			
	Ref Level 30.00 dbm Offset 11.50 db ⊕ RBW 300 H/2 ● Att 30 db ⊕ SWT 35 ms ⊕ VBW 1 M+2 Mode Auto Sweep SGL Court 50/50 ● IRm AvgPwr ● IRm AvgPwr ● 11[1] -43.57 dBm1	Ref Level 30.00 dbm Offset 11.50 db € RBW 300 kHz Att 20 db SWT 35 ms € VBW 1.MHz Mode Auto Sweep SGL Count 50/50 € LPm AvgPwr 1.MHz Mode Auto Sweep 41.11 -42.90 dbm			
	20 dBm	20 dbm			
QPSK 20MHz	-10 dBm 01 -13 000 dBm 01 -10 dBm 01 -13 000 dBm 01 000 dBm 01 -13 000 dBm 01 -13	-20 dBm			
	-40 dBm	-50 dBm			
	CF 1.85 CH2 S01 pts Span 40.0 MHz ProjectNo.:CR230957288 Texter:Nep Tang	CF 1.91 GHz S01 pts Span 40.0 MHz Frojectko. ICR230957288 Tester:Kan Tang			

4.7 Antenna Port Test Data and Results for LTE Band 4 Serial Number: 2BUF-5 Test Date: 2023/10/17 Test Site: RF Test Mode: Transmitting Tester: Ken Tang Test Result: Pass

Environmental Conditions:						
Temperature: (℃)	25.6	Relative Humidity: (%)	48	ATM Pressure: (kPa)	101.2	

Test Equipme	Test Equipment List and Details:						
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17		
zhuoxiang	Coaxial Cable	SMA-178	211002	Each time	N/A		
Minl-Clrcuits	Power Splitter	ZFRSC-183-S+	S F448201619	Each time	N/A		
R&S	Wideband Radio Communication Tester	CMW500	143458	2023/3/31	2024/3/30		
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30		
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27		
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A		

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Frequency for Each Mode:						
Operation Bandwidth	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
1.4MHz	1710.7	1732.5	1754.3			
3MHz	1711.5	1732.5	1753.5			
5MHz	1712.5	1732.5	1752.5			
10MHz	1715	1732.5	1750			
15MHz	1717.5	1732.5	1747.5			
20MHz	1720	1732.5	1745			

Test Data:

FCC§2.1046;§ 27.	.50(d)(4)					
RF Output Power	•					
Test Bandwidth &	Resource	Conducted Average Output Power(dBm)			Maximum	
Modulation	Block & RB offset	Lowest Channel	Middle Channel	Highest Channel	EIRP(dBm)	EIRP Limit(dBm)
	RB1#0	15.22	15.27	15.44		
	RB1#3	15.33	15.42	15.56		
	RB1#5	15.17	15.21	15.45	12.01	20
1.4MHz QPSK	RB3#0	15.26	15.33	15.48	13.91	50
	RB3#3	15.34	15.35	15.47		
	RB6#0	14.24	14.37	14.52		
	RB1#0	14.28	14.28	14.47		
	RB1#3	14.45	14.48	14.63		
1 4 41 1/0 4 4	RB1#5	14.26	14.3	14.49	12.04	20
1.4MHz 16QAM	RB3#0	14.18	14.42	14.68	13.04	50
	RB3#3	14.21	14.38	14.69		
	RB6#0	13.25	13.33	13.54		
	RB1#0	15.25	15.27	15.4		
	RB1#8	15.2	15.29	15.43		
	RB1#14	15.18	15.26	15.38	13.78	20
3MHz QPSK	RB6#0	14.17	14.3	14.53		50
	RB6#9	14.14	14.32	14.5		
	RB15#0	14.18	14.32	14.51		
	RB1#0	14.33	14.33	15.04		
	RB1#8	14.34	14.32	15.04		
	RB1#14	14.27	14.32	15.04	12 20	20
3MHz 16QAM	RB6#0	13.18	13.25	13.58	15.39	50
	RB6#9	13.19	13.25	13.57		
	RB15#0	13.12	13.33	13.59		
	RB1#0	15.08	15.15	15.39		
	RB1#13	15.19	15.32	15.47		
	RB1#24	15.02	15.21	15.37	12.92	20
5MHZ QPSK	RB15#0	14.15	14.3	14.48	13.82	50
	RB15#10	14.2	14.3	14.48		
	RB25#0	14.17	14.28	14.51		
	RB1#0	14.18	14.07	14.69		
	RB1#13	14.29	14.25	14.84	1	
	RB1#24	14.17	14.14	14.7	12.10	20
5MHz 16QAM	RB15#0	13.18	13.3	13.43	13.19	30
	RB15#10	13.17	13.34	13.46		
	RB25#0	13.16	13.32	13.46	1	
10MHz QPSK	RB1#0	15.17	15.19	15.37	13.91	30

Page 85 of 331

					Result .	Pass
te: EIRP=Conduc	ted Power(dBm)	- $Lc(dB) + G_T(dB)$	(dBi)			
	RB100#0	13.48	13.4	13.35		
	RB50#50	14.51	14.38	14.38		
20MHZ 16QAM	RB50#0	13.27	13.31	13.24	12.97	30
	RB1#99	14.30	14.36	14.3	12.07	20
	RB1#50	14.60	14.44	14.57		
	RB1#0	14.62	14.62	14.56		
	RB100#0	14.25	14.26	14.4		
	RB50#50	14.33	14.16	14.31		
20MHz QPSK	RB50#0	14.30	14.40	14.28	13.85	30
	RB1#99	15.47	15.27	15.44		
	RB1#50	15.44	15.33	15.35		
	RB1#0	15.31	15.50	15.28		
	RB75#0	13.50	13 51	13.32		
	RB36#30	14.30	14.17	14.51		
15MHz 16QAM	D1#/4	14.39	14.34	14.33	13.09	30
	RD1#30	14.31	14.75	14.74		
	RB1#38	14.55	14.73	14.33		
	RB/3#0	14.27	14.33	14.51		
	RB75#0	12.30	14.33	14 31	13.94	30
	RB36#20	15.38	15.20	15.74		
15MHz QPSK	RB36#0	15.39	15.19	15.30		
	RB1#74	15 39	15.10	15.35		
	RB1#38	15.25	15.27	15.22		
	RB1#0	15.14	15.27	15.29		
	RB50#0	13.24	13.35	13.49		
	RB25#0	13.25	13.33	13.49		
10MHz 16QAM	RD1#49 RR25#0	13.22	13.22	13.40	13.28	30
	RD1#23	14.34	14.93	14.72		
	DD1#25	14.18	14.03	14.54		
	DD1#0	14.12	14.51	14.47		
	RD23#23	14.13	14.32	14.47		
	RD25#0	14.17	14.20	14.33		
	RB1#49	13.11	13.23	13.34		
	RD1#23	15.11	15.30	15.30		

Peak-to-average Ratio(PAR)					
	Resource	Peak-to-average Ratio(dB)			
Test Bandwidth & Modulation	Block & RB offset	Lowest Channel	Middle Channel	Highest Channel	Limit (dB)
20MHz QPSK	RB1#0	6.06	5.62	6.06	13
	RB100#0	4.32	4.2	4.26	13
20MHz 16QAM	RB1#0	7.04	6.14	6.75	13
	RB100#0	5.86	5.8	5.83	13
				Result:	Pass

FCC §2.1049, §27.53:Occupied Bandwidth						
	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)		
Operation Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel
1.4MHz QPSK	1.096	1.102	1.096	1.320	1.290	1.302
1.4MHz 16QAM	1.090	1.102	1.096	1.29	1.290	1.320
3MHz QPSK	2.683	2.683	2.683	2.880	2.880	2.880
3MHz 16QAM	2.683	2.683	2.683	2.868	2.892	2.880
5MHz QPSK	4.491	4.511	4.511	4.920	4.960	4.960
5MHz 16QAM	4.491	4.471	4.511	4.960	4.940	4.960
10MHz QPSK	8.942	8.942	8.942	9.600	9.640	9.640
10MHz 16QAM	8.942	8.942	8.942	9.600	9.520	9.600
15MHz QPSK	13.533	13.533	13.473	14.760	14.760	14.580
15MHz 16QAM	13.533	13.533	13.473	14.700	14.640	14.640
20MHz QPSK	17.884	17.964	17.884	19.360	19.280	19.360
20MHz 16QAM	17.884	17.964	17.964	19.280	19.120	19.280
Note: The test plots please refer to the Plots of Occupied Bandwidth						

Note: The test plots	; please refer to the Plots of Occupied Bandwidth
FCC §2.1051, § 2	27.53:Spurious Emissions at Antenna Terminal
Result:	Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.
FCC §2.1051, § 2	27.53:Out of band emission, Band Edge

FCC §2.1051, § 2	27.53:Out of band emission, Band Edge
Result:	Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §27.54: Frequency Stability						
Test Mode:	20M QPSK	Test Channel: Lowest for Lower Edge, Highest for Upper Edge				
Test Item	Temperature	Voltage (V _{DC})	Lower Edge (MHz)		Upper Edge (MHz)	
	(0)		Result	Limit	Result	Limit
	-30	3.87	1710.021	1710.00	1754.984	1755
	-20	3.87	1710.029	1710.00	1754.993	1755
Frequency Stability vs. Temperature	-10	3.87	1710.012	1710.00	1754.986	1755
	0	3.87	1710.009	1710.00	1754.994	1755
	10	3.87	1710.026	1710.00	1754.980	1755
	20	3.87	1710.019	1710.00	1754.991	1755
	30	3.87	1710.025	1710.00	1754.972	1755
	40	3.87	1710.020	1710.00	1754.974	1755
	50	3.87	1710.019	1710.00	1754.979	1755
Frequency Stability vs. Voltage	20	3.29	1710.025	1710.00	1754.970	1755
	20	4.45	1710.023	1710.00	1754.971	1755
					Result:	Pass

Test Mode:	20M 16QAM	Test Channel: Lowest for Lower Edge, Highest for Upper Edge				
Test Item	Temperature (℃)	Voltage (V _{DC})	Lower Edge (MHz)		Upper Edge (MHz)	
			Result	Limit	Result	Limit
	-30	3.87	1710.003	1710.00	1754.992	1755
	-20	3.87	1710.020	1710.00	1754.985	1755
	-10	3.87	1710.002	1710.00	1754.983	1755
Frequency Stability vs. Temperature	0	3.87	1710.024	1710.00	1754.996	1755
	10	3.87	1710.016	1710.00	1754.985	1755
	20	3.87	1710.012	1710.00	1754.970	1755
	30	3.87	1710.023	1710.00	1754.993	1755
	40	3.87	1710.013	1710.00	1754.993	1755
	50	3.87	1710.008	1710.00	1754.988	1755
Frequency Stability vs. Voltage	20	3.29	1710.002	1710.00	1754.974	1755
	20	4.45	1710.005	1710.00	1754.997	1755
	•	•		•	Result:	Pass

Test Plots(Note: The 11.5 dB is the Insertion loss of the RF cable and Power Splitter, which was offset into the Spectrum Analyzer):

Occupied Bandwidth					
Channel	3MHz Bandwidth QPSK	3MHz Bandwidth 16QAM			
Lowest	Spectrum Image: Constraint of the state in	Spectrum Image: Constraint of the state of			
Middle	Date: 17.007.2023 20129128 Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Reflexed 30.00 dbm Offset 11.50 db @ RBW 30 bHz Mode Auto FFT Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image: Control of Spectrum Image:	Date: 17.007.2023 20129140 Ref Level 30.db Offset 11.50.db # RBW 20.Hz Att 30.db BWT 63.2 µs WBW 100.Hz Mode Auto FFT Dd Bm Dd B BWT 63.2 µs WBW 100.Hz Mode Auto FFT Dd Bm Dd B BWT 63.2 µs WBW 100.Hz Mode Auto FFT Dd Bm Dd B BWT 63.2 µs WBW 100.Hz Mode Auto FFT Dd Bm Dd B BWT 63.2 µs MUL(3) 2.00.51 dbm D dBm Dd B			
Highest	Spectrum mp Kef Level 30.00 dBm Offset 11.50 dB e RBW 30 LHz Att 30 dB SWT 91.9k Max NII[1] 1.220 dBm 0.2 Jy 6 VBW 100 LHz Mode Auto FFT 0.2.8920400 CHz 91.9k Max 0.1(1) 0.0 cs bw 2.682204701 NHz 0.111 2.0000 NHz 0 dBm 01.6.000 dWn 10 dBm 02 - 19 170 dBm -30 dBm -0.2 - 19 170 dBm -30 dBm -0.0 - 0.0 dBm -0.0 dBm -0.0 - 0.0 dBm -30 dBm -0.0 - 0.0 dBm -0.0 dBm -0.0 dBm -0.0 dBm <td< td=""><td>Spectrum Image: Control of the state of the</td></td<>	Spectrum Image: Control of the state of the			

Page 90 of 331

Report No.: CR230957288-00E

Page 91 of 331

Report No.: CR230957288-00E

Page 93 of 331

