

Report No: JYTSZB-R01-2100434

FCC REPORT

Applicant:	INFINIX MOBILITY LIMITED
Address of Applicant:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Equipment Under Test (E	EUT)
Product Name:	Mobile Phone
Model No.:	X698
Trade mark:	Infinix
FCC ID:	2AIZN-X698
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B
Date of sample receipt:	13 Jul., 2021
Date of Test:	13 Jul., to 30 Jul., 2021
Date of report issued:	02 Aug., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	02 Aug., 2021	Original

Tested by:

Mike.DU Test Engineer

02 Aug., 2021 Date:

Date: 02 Aug., 2021

Reviewed by:

Winner Thang Project Engineer

Project No.: JYTSZE2107031

3 Contents

			Page
1	C	OVER PAGE	1
2	V	/ERSION	2
3	C	CONTENTS	
4		EST SUMMARY	
5		GENERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE AND TEST SAMPLES PLANS	-
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	-
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8 5.9	Additions to, deviations, or exclusions from the method Laboratory Facility	
	5.9 5.10		
	5.10		
6	т	EST RESULTS AND MEASUREMENT DATA	
	6.1	Conducted Emission	8
	6.2	RADIATED EMISSION	
7	Т	EST SETUP PHOTO	16
8	E	UT CONSTRUCTIONAL DETAILS	17

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item.				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone	
Model No.:	X698	
Power supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh	
AC adapter:	Model: U330XSA	
	Input: AC100-240V, 50/60Hz, 1.5A	
	Output: DC 5.0V=3.0A or 10V=3.3A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

5.3 Test Mode and test samples plans

Operating mode	Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode	
FM mode	Keep the EUT in FM receiver mode	
GPS mode	Keep the EUT in GPS receiver mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Test Samples Plans :

Samples Number	Used for Test Items		
1#	Conducted Emission		
1#	Radiated Emission		
1#	EUT constructional details		
Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples,			
and will keep the above samples for a month.			

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)		
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)		

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	SE2018HR 3M7QPY2	
DELL	KEYBOARD	KB216d N/A		DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

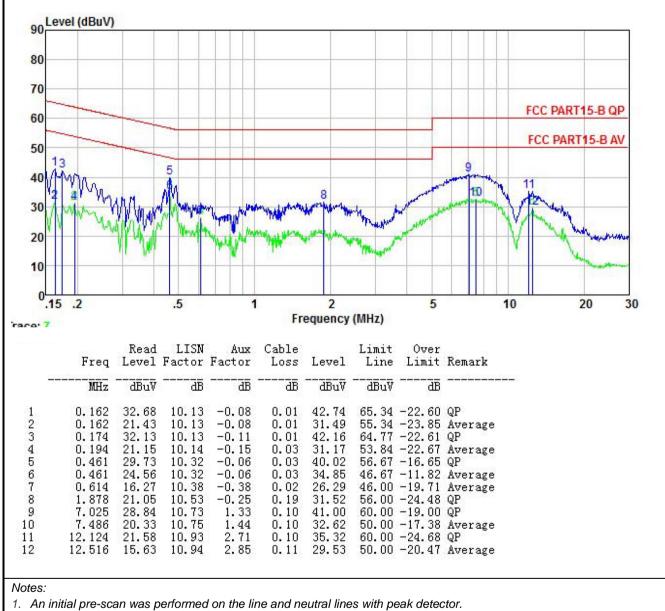
Project No.: JYTSZE2107031

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32	Version: 10.50.40		

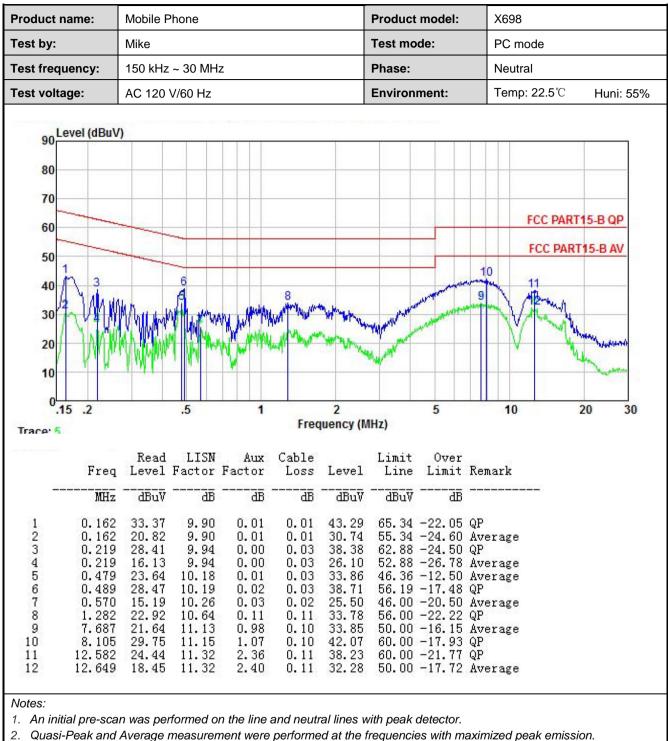
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	N	/ersion: 6.110919	b

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107		
•			
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit	(dBµV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	<u>60</u>	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
	Test table/Insulation plane Remark: E. U. T: Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the n The peripheral devices are a LISN that provides a 500hm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(late) 	ork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m 50uH coupling impeda the block diagram of t checked for maximum d the maximum emissi all of the interface cab	ide a 50ohm/50uH ain power through a nce with 50ohm he test setup and conducted on, the relative bles must be changed
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:


Product name:	Mobile Phone	Product model:	X698
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.10	9			
Test Frequency Range:	30MHz to 6000MI	Hz				
Test site:	Measurement Dis	tance: 3m o	or 10	m (Semi-An	echoic Cha	amber)
Receiver setup:	Frequency	Detecto	r	RBW	VBW	Remark
·····	30MHz-1GHz	Quasi-pea	ak	120kHz	300kHz	Quasi-peak Value
		Peak		1MHz	3MHz	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc	ÿ	Lim	it (dBuV/m @	@10m)	Remark
	30MHz-88M	/Hz		30.0		Quasi-peak Value
	88MHz-216N	MHz		33.5		Quasi-peak Value
	216MHz-960	MHz		36.0		Quasi-peak Value
	960MHz-1G	GHz		44.0		Quasi-peak Value
	Frequenc	;y	Lim	nit (dBuV/m	@3m)	Remark
	Abaua 401			54.0		Average Value
	Above 1G	HZ		74.0		Peak Value
Test setup:	Below 1GHz	4m 4m 1m			Antenna Tou Search Antenna RF Test Receiver	wer
				Horn Antenna Horn Antenna Ince Plane	Antenna Tower	
Test Procedure:	ground at a 1 1GHz). The t the highest ra 2. The EUT was	I 0 meter cha able was ro adiation. s set 10 met	ambe tatec ters(er (below 1G d 360 degree below 1GHz	GHz)or 3 me es to deterr	.8 meters above the eter chamber(above nine the position of ers(above 1GHz) n was mounted on

Project No.: JYTSZE2107031

	the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Mike 30 MHz ~ 1 GHz AC 120/60Hz	Z		Test			
	Z			mode:	PC mod	le
AC 120/60Hz			Pola	Polarization: Vertical & Horiz		& Horizontal
			Envi	ronment:	Temp: 2	24℃ Huni: 579
		FullSpect	rum			
				FCC	PART 15	Class B 10m
						* *
*					*	**
Г. П.						al a la constante de
А.	, I				1	
<i>I</i> LIA					AND IN A REAL PROPERTY OF	
		and the second second	l du	ومرور الكالكي وبارز	A CONTRACTOR OF THE OWNER OF THE	- -
LANA IN LAND AND A	N 7 %, 14		and a second second			
				a and a second s		
		hand d.				
					+ +	
50 60	80 100N	1	200	300 400	500	800 1G
		Frequer	ncy in Hz			
		· · ·				
1						
reqs						•
MaxPeak↓	Limit↓ (dB II V/m)₀	Margin↓ (dB)₀	Height↓ (cm)⊮	Pol⊷	Azimuth↓	Corr.↓ (dB/m)⊮
MaxPeak↓ (dB µ V/m)⊮	(dB	(dB)∉	(cm)∘		(deg)⊬	(dB/m)⊬
MaxPeak↓ (dB µ V/m)↩ 00↩ 25.90↩	(dB µ V/m)∉ 30.00∉	(dB).₀ 4.10.₀	(cm)∉ 100.0∉	V ₽	(deg)∉ 284.0∉	(dB/m)⊬ -16.4₽
MaxPeak↓ (dB μ V/m)₀ 00₀ 25.90₀ 00₀ 26.65₀ 00₀ 28.52₀	(dB	(dB)∉	(cm)∘		(deg)⊬	(dB/m)⊬
MaxPeak⊥ (dB μ V/m)₀ 00₀ 25.90₀ 00₀ 26.65₀ 00₀ 28.52₀ 00₀ 28.46₀	(dB µ V/m). 30.00. 36.00. 36.00. 36.00.	(dB)	(cm). 100.0. 100.0. 100.0. 100.0.	V₀ V₀ H₀ H₀	(deg) 284.0 51.0 317.0 32.0 2	(dB/m), -16.4, -7.5, -4.7, -1.9,
MaxPeak↓ (dB μ V/m)₀ 00₀ 25.90₀ 00₀ 26.65₀ 00₀ 28.52₀	(dB µ V/m)√ 30.00√ 36.00√ 36.00√	(dĒ) 4.10 9.35 7.48	(cm). 100.0. 100.0. 100.0.	Vφ Vφ Hφ Hφ Hφ	(deg)+ 284.0+ 51.0+ 317.0+	(dB/m),₀ -16.4₀ -7.5₀ -4.7₀
	50 60	50 60 80 100M		60 80 100M 200 Frequency in Hz	x 50 60 80 100M 200 300 400	0 0

Above 1GHz:

roauct	Name	e: Mo	obile Phone			Produc	t Model:	X698		
est By:		Mi	ke			Test mo	ode:	PC mod	de	
est Fre	queno	cy: 1 (1 GHz ~ 6 GHz			Polariza	Polarization:		Vertical	
est Vol	tage:	AC	C 120/60Hz			Enviror	ment:	Temp: 2	24 ℃	Huni: 57%
	80				FCC PART 1	5 B		F	CC PART 15 B-F	^P K Limit
	70 60							F	CC PART 15 B-/	AV Limit
[mix	50					2	4			hadailadadha
Level[dBµV/m]	40			u	al al allocation the state of the state	Ang de San State and San	a shini da sa shini s		Profession and an and a state	un filian della
Leve	30	with a shirtly to work have set		Manadate played and a station of the second s		ulgerichekanskelietekkel	gedishtered schold program in 1994			
	20-	have an and the second s	for internet and the second							
	10									
	10									
	10			2G		3G	4	G	5G	6G
	0			26	Frequency[F		4	G	5G	6G
3	0 1G 	PK Limit - PK Detector	AV Detector	2G rtical PK — Vertical			4	G	56	6G
	0 1G Suspe	PK Detector	AV Detector	rtical PK — Vertical	AV	iz]		G		*
	0 1G 	PK Detector	AV Detector				4 Margin⊮ [dB]∘	G Trace	5G Polarit	*
	0 1G Suspe	PK Detector ected Data Freq.4	AV Detector	rtical PK — Vertical Level	AV Factor⊮	Iz] Limit-	Margine			* € \$
	Suspe NO.	PK Delector ected Data Freq.44 [MHz]43	AV Detector List Reading [dBµV/m]	rtical PK — Vertical Level⇔ [dBµV/m]+2	AV Factor⊮ [dB]-∂	iz] Limit⊬ [dBμV/m]⊬	Margin⊮ [dB]∘	Trace	Polarit	ty⇔ * al⊷
	0 1G • Suspe NO.₽ 1₽	PK Detector ected Data Freq [MHz]. 3055.00 3066.25 3825.62	 AV Detector List Reading [dBµV/m] 51.61 	tical PK — Vertical Level↔ [dBµV/m].∘ 35.24↔	AV Factor⊮ [dB]∞ -16.37₽	ل للimit [dBµV/m] 54.00↔	Margin.⊮ [dB]∞ 18.76⊷	Trace. ² AV. ²	Polarit	ty⇔ * al⇔ * al-⊃ *
	0 1G Suspo NO.≁ 1↔ 2↔	PK Detector ected Data Freq.₄ [MHz]₄ 3055.00 3066.25 3825.62 3904.37	 AV Detector List Reading [dBµV/m] 51.61 59.19 	tical PK — Vertical Level ↔ [dBµV/m].₀ 35.24.₀ 42.93.₀	AV Factor [dB] -16.37 -16.26	ل للنسند. (ط8µV/m)ی 54.00ی 74.00ی	Margin.∉ [dB]₂ 18.76∉ 31.07∉	Trace PK_P	Polarit Vertica Vertica	ty
	0 16 Suspe NO.∉ 1.∉ 2.∉ 3.€	PK Detector ected Data Freq [MHz]. 3055.00 3066.25 3825.62	 AV Detector List Reading [dBµV/m] 51.61 59.19 50.44 	Level [dBµV/m] 35.24 42.93 36.65	AV Factor [dB] -16.37 -16.26 -13.79 -13.79	Limit- [dBµV/m]+ 54.00+ 74.00+ 54.00+	Margin.∉ [dB]. 18.76€ 31.07€ 17.35€	Trace. AV. PK. AV.	Polarit Vertica Vertica	ty = * al = * al = * al = * al = * al = *

roduct	Name	e: M	obile Phone			Produc	t Model:	X698		
est By:		М	ike			Test m	ode:	PC mo	de	
est Fre	quen	cy: 1	GHz ~ 6 GHz	6 GHz			Polarization:		Horizontal	
est Vol	tano:		C 120/60Hz			Enviror	mont:	Temp:	24℃ Huni: 57	
	laye.	A	5 120/00112			Environ	iiiieiit.	Temp.		
					FCC PART 1	5.8				
	80								FCC PART 15 B-PK Limit	
	70									
	60								FCC PART 15 B-AV Limit	
-	50								5	
Level[dBµV/m]						2	3 	And the state of the	G C	
el[dB	40			الالانجام والمحاصر الأرب المحاصر المحاصر	and file to a serie of the file for	feligeland forestillations	And the second	L and the second se	and the second	
Lev	30	Performation and the property of the second s	weislähter Myslaassing av die statie oppinister	and a second	and the second second second	in joint consideration the states in the	Hajlerin dan mila berikan kana mara			
	20	and an	dense providence and a conservation of the second	MU Andrew Contractor						
	20									
	10									
	0									
				2G	Frequency(I	3G	4	3	5G 6G	
	0	D// 1			Frequency[H		4	3	5G 6G	
	0 1G	─ PK Limit - ▶ PK Detector	AV Limit — Ho ♦ AV Detector				4	3	5G 6G	
	0 1G						4	3	5G 6G	
	0 1G		 AV Detector 				4	3	5G 6G	
	0 1G Susp	PK Detector	 AV Detector 				4 Margin⊮			
	0 1G	PK Detector	AV Detector	rizontal PK — Horiz	contal AV	IZ]		3 Trace₽	5G 6G Polarity⊮	
	0 1G Susp	► PK Detector ected Data Freq.**	AV Detector	rizontal PK — Horiz Levele	rontal AV	IZ] Limite	Margine			
	0 1G Susp NO.₽	PK Detector ected Data Freq.↔ [MHz]↔ 2711.87	 AV Detector Liste Readinge [dBµV/m]e 49.91e 	rizontal PK — Horiz Level⊷ [dBµV/m].∘ 32.32.∘	Factor⊷ [dB]- -17.59-	Limit.₀ [dBµV/m]₀ 54.00.₀	Margin.∉ [dB]⊴ 21.68⊷	Trace AV⊷	Polarity∞ Horizontal∞	
	0 1G Suspo NO.≁ 1	PK Detector ected Data Freq.↔ [MHz]↔	 AV Detector List.○ Reading.○ [dBµV/m].○ 	rizontal PK Horiz Level₊ [dBµV/m]₊⊃	Factor [dB]	iz] Limit⊬ [dBµV/m]⊬	Margin⊮ [dB]∘	Trace	Polarity⊭	
	0 16 Suspe NO.₽ 1₽ 2₽	 PK Detector ected Data Freq.e¹ [MHz]₀² 2711.87 2743.75 	 AV Detector List Reading [dBµV/m] 49.91 58.47 	rizontal PK — Horiz Level ⊷ [dBµV/m].∘ 32.32.∘ 40.90.•	Factor	Limit-/ [dBµV/m]-/ 54.00/ 74.00/	Margin.∉ [dB]⊴ 21.68₽ 33.10₽	Trace. AV. PK.	Polarity Horizontal Horizontal	
	0 16 Suspo NO.~ 1~ 2~ 3~	 PK Detector ected Data Freq [MHz] 2711.87 2743.75 3577.50 	 AV Detector List Reading [dBµV/m] 49.91 58.47 58.94 	rizontal PK — Horiz Level ↔ [dBµV/m] ↔ 32.32 ↔ 40.90 ↔ 44.05 ↔	Factor [dB] -17.59 -14.89	Limit- [dBµV/m]+ 54.00+ 74.00+ 74.00+	Margin.∉ [dB]∮ 21.68¢ 33.10¢ 29.95¢	Trace∘ AV↩ PK↩ PK↩	Polarity Horizontal Horizontal Horizontal	

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.