

Report No: JYTSZB-R12-2101316

FCC REPORT (Bluetooth)

Applicant:	INFINIX MOBILITY LIMITED
Address of Applicant:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31- 35 SHAN MEI STREET FOTAN NT
Equipment Under Test (E	EUT)
Product Name:	Mobile Phone
Model No.:	X698
Trade mark:	Infinix
FCC ID:	2AIZN-X698
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	13 Jul., 2021
Date of Test:	13 Jul., to 30 Jul., 2021
Date of report issued:	02 Aug., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	02 Aug., 2021	Original

Tested by:

Mike.OU Test Engineer

Date: 02 Aug., 2021

Winner Mang

Reviewed by:

Project Engineer

Date: 02 Aug., 2021

Project No.: JYTSZE2107031

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	_
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY.	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE.	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	15.247 (a)(1) Appendix A – BT	
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	15 205 8 15 200	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A – BT	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:		1	

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
rest method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	X698
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh
AC adapter:	Model: U330XSA
	Input: AC100-240V, 50/60Hz, 1.5A
	Output: DC 5.0V=3A or 10V=3.3A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	19 2421MHz 39 2441MHz 59 2461MHz							
Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.								

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.
Padiated Emission: The same	Ne was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\ \	/ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
Simulated Station	Ronde & Schwarz	CIVIV500	140493	07-21-2021	07-20-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021		
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021		
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021		
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021		
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021		

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2107031

RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

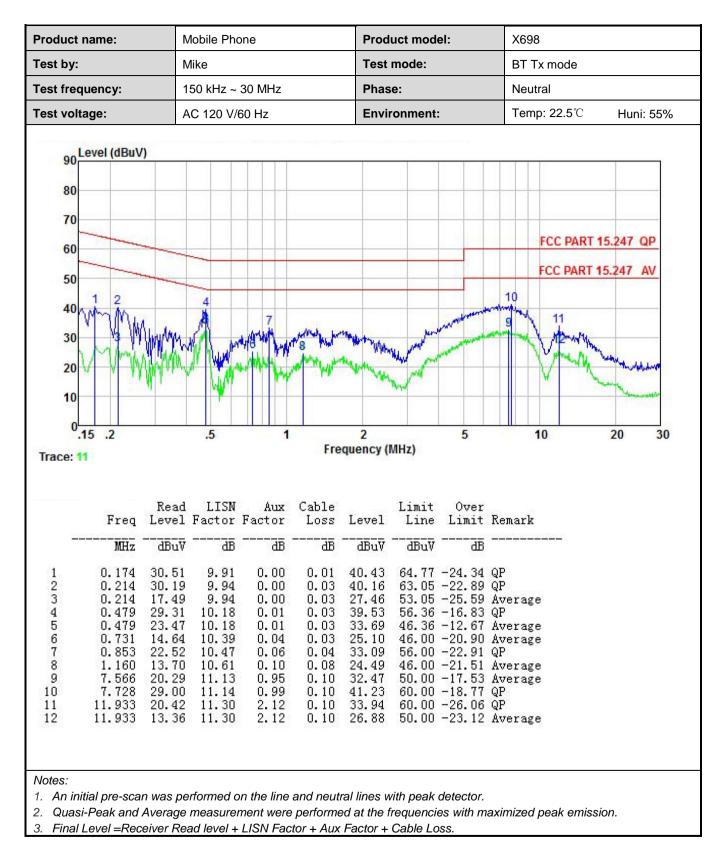
6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	dard requirement: FCC Part 15 C Section 15.203 & 247(b)					
responsible party shall be us antenna that uses a unique of so that a broken antenna can electrical connector is prohib 15.247(b) (4) requirement: (4) The conducted output po antennas with directional gai section, if transmitting antenna power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the					
E.U.T Antenna:						
The Bluetooth antenna is an I the antenna is 1.2 dBi.	Internal antenna which permanently attached, and the best case gain of					

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.	207				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limit:	Frequency range (MHz)	Limit (c	dBuV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logari	60 thm of the frequency	50			
Test setup:	Reference Pl					
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m					
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	his provides a ng equipment. main power through a lance with 500hm the test setup and m conducted sion, the relative ables must be changed			
Test Instruments:	Refer to section 5.9 for det	ails				
Test mode:	Hopping mode					
Test results:	Pass					



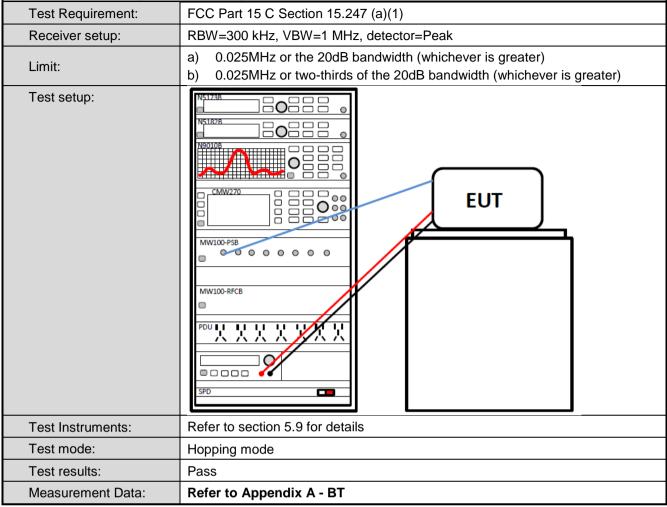
Measurement Data:

roduct name:	Mo	Mobile Phone Product me			t model:		X698	(698		
est by:	Mi	Mike Test mode:			BT Tx mode					
est frequency:	15	150 kHz ~ 30 MHz			Phase:			Line		
est voltage:	AC	: 120 V/60) Hz		Environ	ment:		Temp: 22.5°	C F	luni: 55%
90 Level (dBuV) 80 70 60 50 40 30 20			a Legel garring	MM2 MA	Mary Mary		8	FCC PAR	RT 15.24 RT 15.24	
10 0.15 .2	1 4	.5	1	iste .	2		5	10	20	30
10				Freque	2 ency (MHz)		10	20	30
10 0.15 .2 HCCE: 9	Read	.5 LISN Factor	Aux	Freque			Over	10 Remark	20	30
10 0.15 .2 HCCE: 9	Read	LISN	Aux	Freque Cable	ency (MHz) Limit	Over		20	30

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

0.5 Conducted Out	
Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)					
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak					
Limit:	Within authorization band					
Test setup:						
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					
Measurement Data:	Refer to Appendix A - BT					

6.5 Carrier Frequencies Separation

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)					
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Frequency Range: 2400MHz~2483.5MHz, Detector=Peak					
Limit:	15 channels					
Test setup:						
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Hopping mode					
Test results:	Pass					
Measurement Data:	Refer to Appendix A - BT					

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)					
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak					
Limit:	0.4 Second					
Test setup:						
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Hopping mode					
Test results:	Pass					
Measurement Data:	Refer to Appendix A - BT					

6.8 Pseudorandom Frequency Hopping Sequence

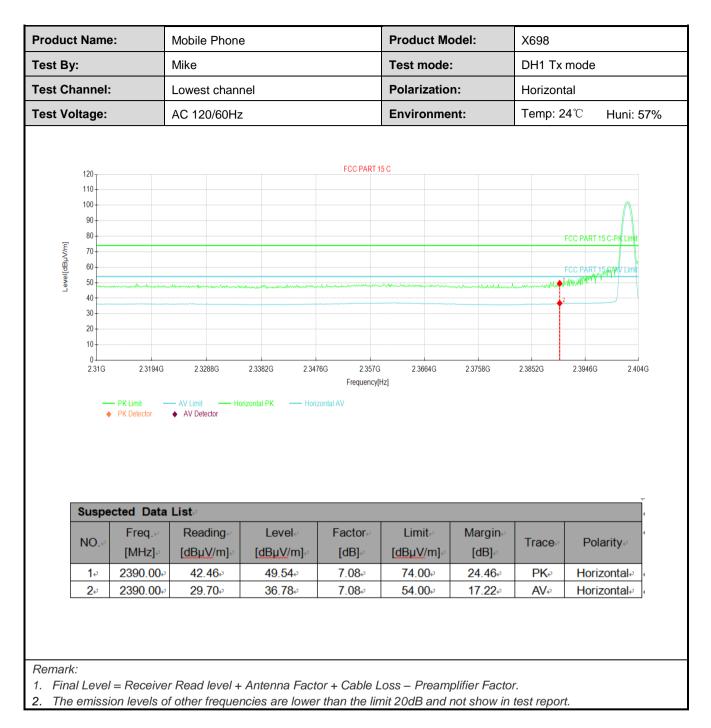
Test Requirement:	FCC Part 15 C Section 15.247 (a)	(1) requirement:
	s shall have hopping channel carrier f dth of the hopping channel, whicheve	
		-
	oping systems operating in the 2400- that are separated by 25 kHz or two-	
	is greater, provided the systems ope	
	shall hop to channel frequencies that	
	ordered list of hopping frequencies. E	
	ismitter. The system receivers shall h	
	s of their corresponding transmitters a	
synchronization with the trai	nsmitted signals.	
UT Pseudorandom Frequ	Jency Hopping Sequence	
he pseudorandom sequen	ce may be generated in a nine-stage	shift register whose 5th and 9th sta
	ulo-two addition stage. And the result	
	s with the first ONE of 9 consecutive	ONEs; i.e. the shift register is initialize
with nine ones.	<u>,</u>	
Number of shift register sta		
 Length of pseudo-random Longest sequence of zeros 		
Longest sequence of zeros	s. o (non-inverted signal)	
	.	
Linear Feedback S	hift Register for Generation of the I	PRBS sequence
An example of Pseudorando	om Frequency Hopping Sequence as	follow:
0 2 4 6	62 64 78 1	73 75 77
Each frequency used equal	y on the average by each transmitter	
	input bandwidths that match the hopp	
corresponding transmitters a	and shift frequencies in synchronizati	on with the transmitted signals.

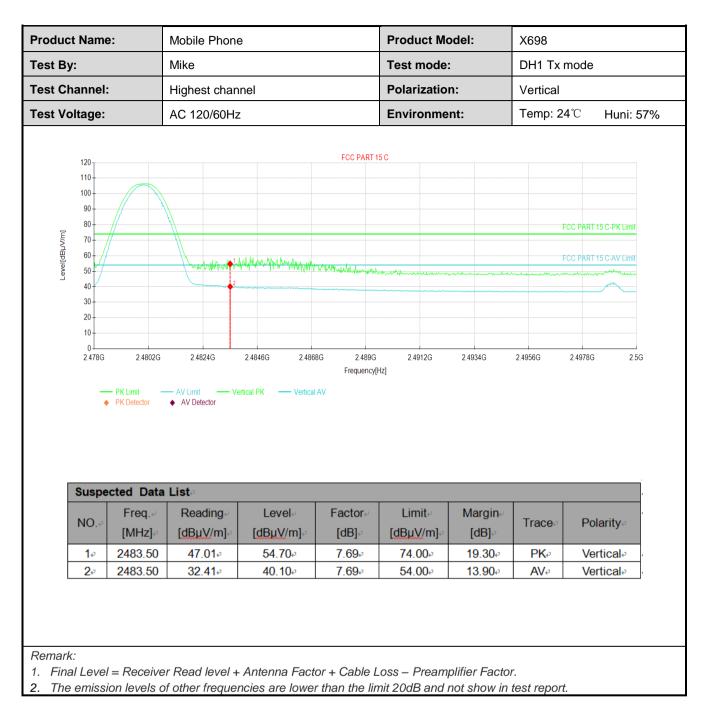
6.9 Band Edge

6.9.1 Conducted Emission Method

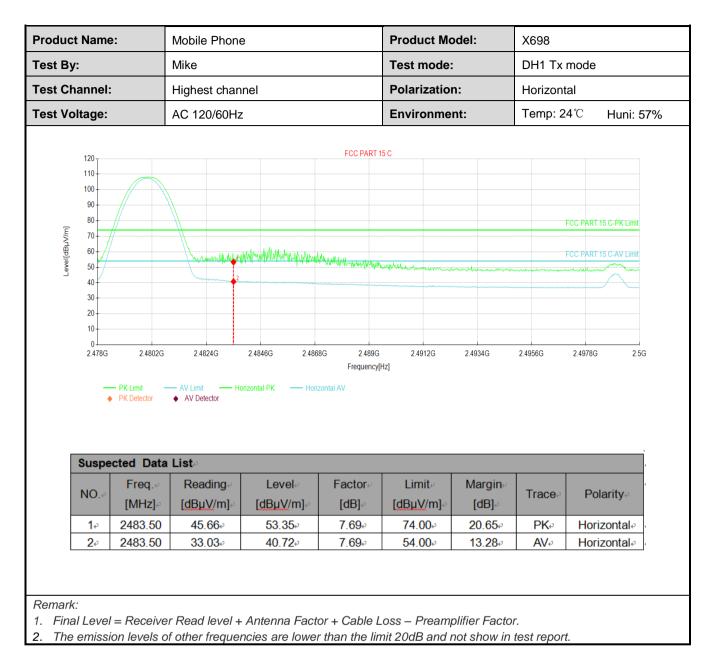
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Non-hopping mode and hopping mode					
Test results:	Pass					
Measurement Data:	Refer to Appendix A - BT					

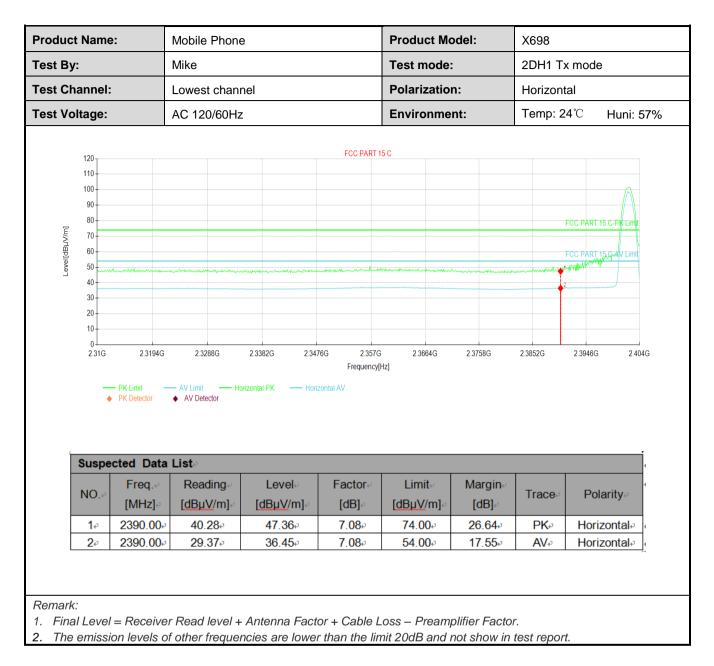
6.9.2 Radiated Emission Method

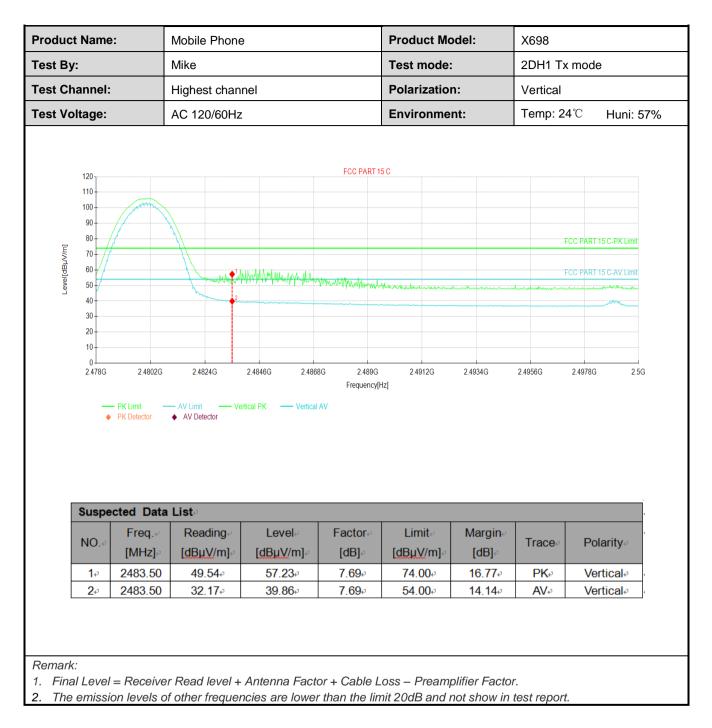

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz							
Test Distance:	3m							
Receiver setup:	Frequency Detector RBW VBW Remark						Remark	
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value	
	Above IGH2	RMS		1MHz	3MHz Average Value			
Limit:	Frequency Limit (dBuV/m @3m) Remark							
	Above 1G	Hz	54.00			Average Value		
		112		74.00	.00 Peak Value			
Test setup:	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver							
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to section			and then repo				
Test mode:	Non-hopping mode							
Test results:	Passed							


GFSK Mode:

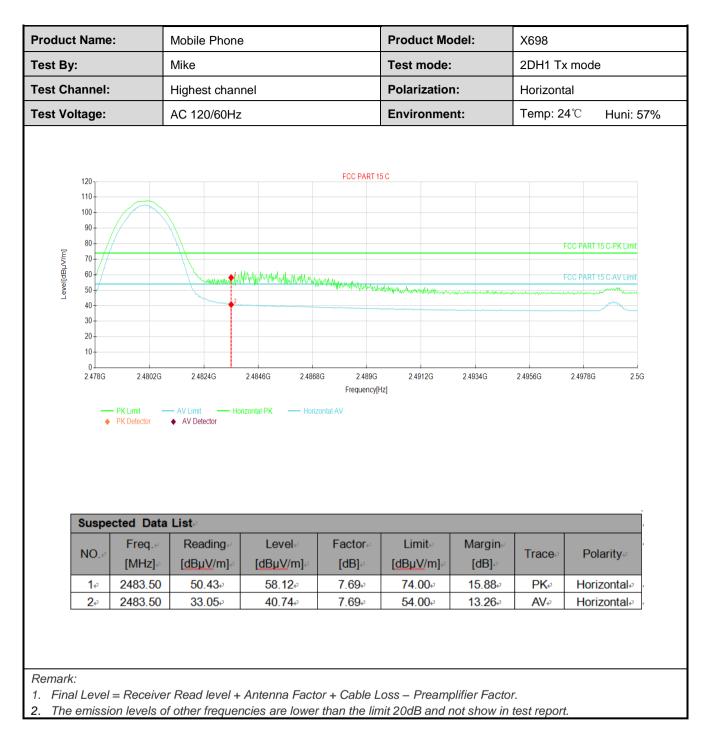
st By:	Product Name:		9	Product Model:		X698			
est By:		Mike		Test mode:		DH1 Tx mode Vertical			
est Channe	el:	Lowest channel Polarization: Vertice							Lowest channel Polarization:
est Voltage):	AC 120/60Hz	2		Environme	ent:	Temp: 2	24℃ Huni: 57	
400				FCC PART 1	5 C				
100 90								Λ	
80-								FCC DUDT (C D PL)	
70-								FCC PART 15 C-PK Limit	
<u>ال</u> 60-								FCC PART 15 C-A/ Limit	
[W]//180 = 60 = 60 = 60 = 60 = 60 = 60 = 60 =	ummen minim	mmmun	when men men	- marken warde		manamana		In mark My MMM	
an 40-								2	
30 -									
20-									
10+							i.		
0		2.3288G	2.3382G 2.347	Frequency[2.3758G	2.3852G	2.3946G 2.404G	
231	→ PK Limit → PK Detector	AV Limit → Ve AV Detector	2.3382G 2.347 artical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G 2.404G	
231	PK Limit - PK Detector	AV Limit Ve AV Detector		Frequency[2.3852G	2.3946G 2.404G	
231	→ PK Limit → PK Detector → PK Detector → PK Detector	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency[AV Factor-	^{+z]} Limit⊷	Margine	2.3852G	· · · · · · · · · · · · · · · · · · ·	
Sust NO.	PK Limit PK Detector PK Detector Dected Data Freq. 4 [MHz] 4	AV Limit Ve AV Detector Ve	ertical PK — Vertical Level↔ [dBµV/m].₂	Frequency[AV Factor [dB]	tz] Limit⊭ [dBµV/m]⊮	Margin.⊲ [dB].∘	Trace	ہ Polarity∞	
2310 Sust	→ PK Limit → PK Detector → PK Detector → PK Detector	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency[AV Factor-	^{+z]} Limit⊷	Margine		· · · · · · · · · · · · · · · · · · ·	

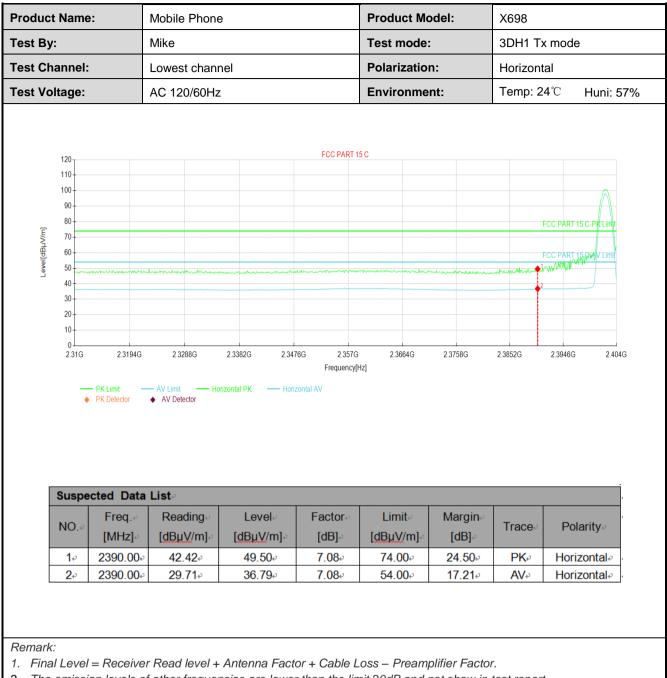




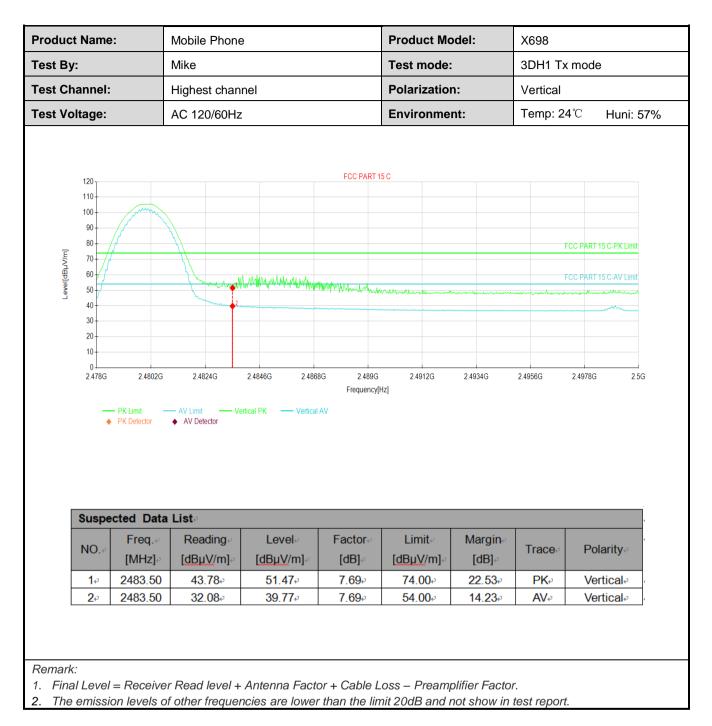

$\pi/4$ -DQPSK mode

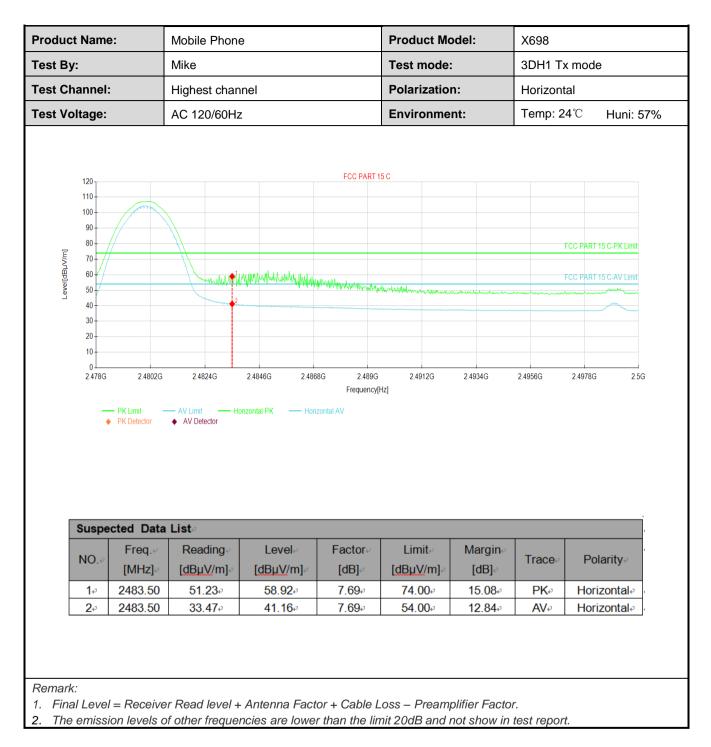
roduct Name:			Mobile Phone	e	Product Mo	odel:	X698				
			Mike		Test mode:		2DH1 Tx mode Vertical				
est Ch	annel	:	Lowest channel Polarization: Vertical								
est Vo	Itage:		AC 120/60Hz	2		Environme	nt:	Temp: 24°C Huni:			
	120				FCC PART 1	5 C					
	110										
	100 90								\wedge		
	80								FCC PART 15 C-PK Limit		
[m//	70								FOC PART IS C-PR LINE		
Level[dBµV/m]	60								FCC PART 15 OWV Limit		
Leve	50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mahandurandu		mmunth	which where we are a second of the second of	mulinananan		how while while		
	40								2		
	30										
	20										
	20										
		2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G 2.404	4G	
-	10 0 2.31G	PK Limit PK Detector	→ AV Limit → Ve ◆ AV Detector	2 3382G 2 347 artical PK — Vertical	Frequency[I		2.3758G	2.3852G	2.3946G 2.404	4G	
ī	10 0 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector	artical PK — Vertical	Frequency[Hz]		2.3852G	2.3946G 2.404	4G	
Ĩ	10 0 2.31G	PK Limit PK Detector	→ AV Limit → Ve ◆ AV Detector		Frequency[I		23758G 23758G Margin _e [dB] ₊ 2	2.3852G	2.3946G 2.404 Polarity <i>⇔</i>	4G	
	10 0 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector Ve	ertical PK Vertical Level	Frequency[AV Factor	tz] Limit	Margine			4G	





8DPSK mode


oduct Name:			Mobile Phon	e	Product Mo	X698					
st By:			Mike		Test mode:	:	3DH1 Tx mode				
t Chanr	nel:		Lowest chan	t channel Polarization: Vertical					Vertical		
t Voltag	ge:		AC 120/60Hz	2		Environme	nt:	Temp: 2	24 ℃	Huni: 57%	
100					FCC PART 1	5 C					
90											
80 70									FCC PART 15	5 C-PK Limit	
[W/\/19] 60 50 40									FCC PART 15	S ANA Limit	
0 40	man	www.		Marthummered	und when the second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2		
)										
20	,										
10)										
0	31G	2.3194G	2.3288G	2.3382G 2.347	Frequency[H		2.3758G	2.3852G	2.3946G	2.404G	
0 2.3) 31G — PK • PK	(Limit —	— AV Limit V AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[H		2.3758G	2.3852G	23946G	2.404G	
0 2.3	31G — PK • PK	Limit Detector	- AV Limit V ♦ AV Detector	ertical PK — Vertical	Frequency[ł	Hz]		2.3852G	239466	2 404G	
0 2.3	31G — PK • PK	Limit Detector ed Data Freq.↔	- AV Limit	ertical PK — Vertical	Frequency() AV Factor	tz] Limit≓	Margine	2.3852G		2.404G	
0 23 Su :	31G — РК • РК	Limit Detector	- AV Limit V ♦ AV Detector	ertical PK — Vertical	Frequency[ł	Hz]			Pola		
0 23 Su s	31G — PK • PK	Limit Detector ed Data Freq.↔	- AV Limit	ertical PK — Vertical	Frequency() AV Factor	tz] Limit≓	Margine				



2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209						
Test Frequency Range:	9 kHz to 25 GHz	2							
Test Distance:	3m or 10m								
Receiver setup:	Frequency	Detector	r RBW	VBV	V Remark				
	30MHz-1GHz	Quasi-pea	ak 120kH	2 300kl	Hz Quasi-peak Value				
		Peak	1MHz	3MH	z Peak Value				
	Above 1GHz	RMS	1MHz	3MH	z Average Value				
Limit:	Frequenc	;y	Limit (dBuV/ı	n @10m)	Remark				
	30MHz-88N	ЛНz	30.0	1	Quasi-peak Value				
	88MHz-216	MHz	33.5		Quasi-peak Value				
	216MHz-960	MHz	36.0	1	Quasi-peak Value				
	960MHz-10	GHz	44.(1	Quasi-peak Value				
	Frequenc	у	Limit (dBuV/	m @3m)	Remark				
	Above 1G	H7	54.0		Average Value				
			74.()	Peak Value				
	EUT Tur Tal Ground Above 1GHz	ble			Search Antenna RF Test Receiver				
			Ground Reference	Pre- Amplifier Con	Antenna Tower				
Test Procedure:	1GHz)/1.5m (below 1GH 360 degree	n(above 1G Iz)or 3 mete s to determi	Hz) above ti er chamber(a ine the positi	ne ground bove 1GHz on of the hi	ating table 0.8m(below at a 10 meter chamber z). The table was rotated ghest radiation. 3 meters(above 1GHz)				

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2107031

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Produ	uct Name:	Mo	bile Phone				Product	Model:	X698	
Test I	est By: est Frequency:		Mike 30 MHz ~ 1 GHz				Test mode:		BT Tx mod	le
Test I							Polariza	tion:	Vertical &	Horizontal
Test	Voltage:	AC	120/60Hz				Environ	ment:	Temp: 24°	C Huni: 57%
					F	ullSpectr	ım			
	45 			1					FCC PART	15.247 10m
	40									
	≥ 30									
	Level in dBuV/									
	20 20	* .	*				*	*	and the state of t	A DECEMBER OF THE OWNER
	1. Mark	your harly	M			Mun	MAN			
	10	MAN-ANALANA		الربي ال						
	0 	F1 F				L to t				
	30M	·	50 60	80	100M		200	300 400	500	800 1G
						Frequen	y in Hz			

Critical Freqs.

-	Frequency	MaxPeak↓	Limit↓	Margin↓	Height↓	Pole	Azimuth↓	Corr.+
	(MHz)⊬	(dB ^µ V/m)ℯ	(dB ^µ V/m)ℯ	(dB)⊬	(cm)∉		(deg)⊬	(dB/m)∉
•	39.700000 40	18.58 ₽	30.00 ₽	11.42 ₽	100.0 ₽	V₽	327.0 ₽	-15.7e
•	61.719000 ₽	17.45 ∉	30.00 ₽	12.55 ₽	100.0 ₽	Ve	43.0 ₽	- 16.7 @
-	193.154000 ₽	18.15 ₽	33.50 ₽	15.35 ₽	100.0 ₽	Ve	0.0~	- 17.9 @
•	282.976000 ₄	18.92 ₽	36.00 ⊷	17.08 ₽	100.0 ₽	V ₽	0.0~	-14.2 _*
•	294.131000	20.43	36.00 ₽	15.57 ∉	100.0 ₽	V₽	333.0	-14.5
•	920.945000«	25.92 ₽	36.00↩	10.08 ₽	100.0 ₽	Ve	3.0∉	-0.5

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	Ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.41	-9.60	45.81	74.00	28.19	Vertical
4804.00	55.38	-9.60	45.78	74.00	28.22	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	47.91	-9.60	38.31	54.00	15.69	Vertical
4804.00	48.62	-9.60	39.02	54.00	14.98	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4882.00	55.22	-9.05	46.17	74.00	27.83	Vertical
4882.00	55.44	-9.05	46.39	74.00	27.61	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	47.61	-9.05	38.56	54.00	15.44	Vertical
4882.00	48.82	-9.05	39.77	54.00	14.23	Horizontal
		Test cha	annel: Highest cl	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	54.91	-8.45	46.46	74.00	27.54	Vertical
4960.00	55.16	-8.45	46.71	74.00	27.29	Horizontal
		Dete	ctor: Average Va	lue		-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
()	47.28	-8.45	38.83	54.00	15.17	Vertical
4960.00	47.20	00				

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.