

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101315

FCC REPORT (BLE)

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X698

Trade mark: Infinix

FCC ID: 2AIZN-X698

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Jul., 2021

Date of Test: 13 Jul., to 30 Jul., 2021

Date of report issued: 02 Aug., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	02 Aug., 2021	Original

Tested by:	Mike ou	Date:	02 Aug., 2021	
	Test Engineer			
	,			

Reviewed by:

| Winner Thang | Date: 02 Aug., 2021

Project Engineer

Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4		SUMMARY	
5	_	ERAL INFORMATION	
J			
		CLIENT INFORMATION	
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND MODE	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		LABORATORY FACILITY	
		LABORATORY LOCATION	
		TEST INSTRUMENTS LIST	
6	TEST	RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
		Occupy Bandwidth	
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	16
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	17
	6.7	Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	35
7	TEST	SETUP PHOTO	42
0	CUT	CONSTRUCTIONAL DETAILS	42

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	45.047.(4)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45.005.8.45.000	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	X698
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps & 500Kbps & 125Kbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh
AC adapter:	Model: U330XSA
	Input: AC100-240V, 50/60Hz, 1.5A
	Output: DC 5.0V=3A or 10V=3.3A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:	Operating Environment:				
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:	Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
Simulated Station	Ronde & Schwarz	CIVIVV500	140493	07-21-2021	07-20-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021	

Report No: JYTSZB-R12-2101315

RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	,	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

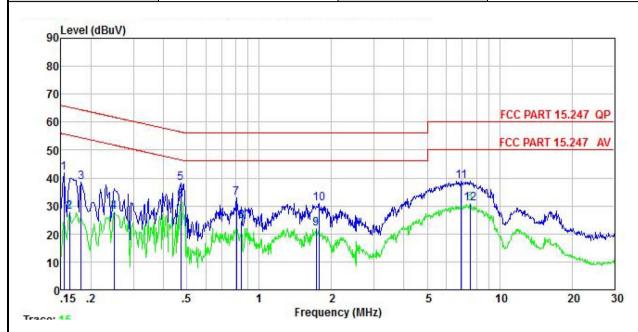
15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.2dBi.

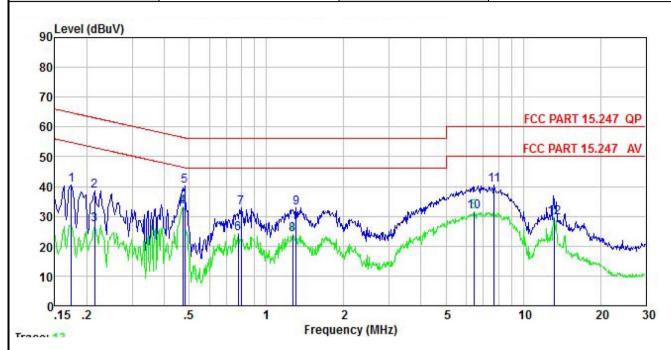
Page 9 of 43


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	·	Limit (dBuV)				
-	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test procedure:	 The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im The peripheral devices at LISN that provides a 500 termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.1 	on network (L.I.S.N.), where pedance for the measuring also connected to the hm/50uH coupling impedent to the block diagram of the checked for maximum and the maximum emission all of the interface cab	nich provides a ing equipment. main power through a dance with 500hm the test setup and conducted on, the relative bles must be changed				
Test setup:	Reference	Plane					
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne	EMI Receiver	– AC power				
	Test table height=0.8m						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details	i					
Test results:	Passed						

Measurement Data:

Product name:	Mobile Phone	Product model:	X698
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

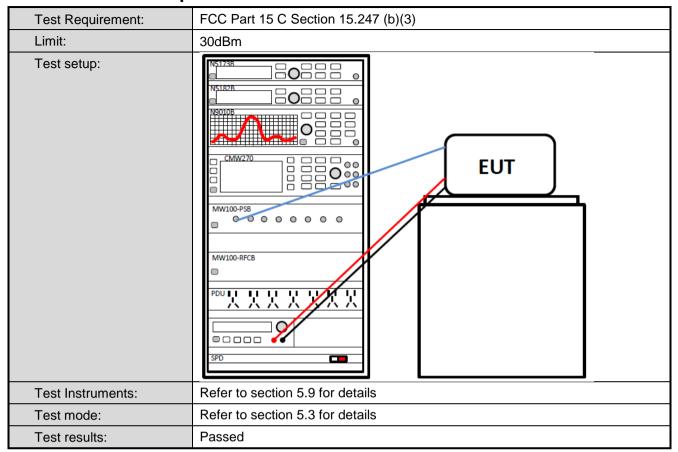

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>dB</u>	<u>ab</u>	<u>ap</u>	dBu∇	—dBu∜	<u>ab</u>	
1	0.154	31.89	10.12	-0.06	0.01	41.96	65.78	-23.82	QP
2	0.162	17.72	10.13	-0.08	0.01	27.78	55.34	-27.56	Average
3	0.182	28.52	10.13	-0.12	0.01	38.54	64.42	-25.88	QP
4	0.249	18.00	10.18	-0.22	0.01	27.97	51.78	-23.81	Average
5	0.471	28.03	10.33	-0.15	0.03	38.24	56.49	-18.25	QP
6	0.471	21.57	10.33	-0.15	0.03	31.78	46.49	-14.71	Average
7	0.804	22.46	10.44	-0.07	0.03	32.86	56.00	-23.14	QP
1 2 3 4 5 6 7 8 9	0.844	13.98	10.45	0.05	0.04	24.52	46.00	-21.48	Average
9	1.725	11.21	10.53	-0.15	0.18	21.77			Average
10	1.772	20.35	10.53	-0.18	0.18	30.88		-25.12	
11	6.914	26.82	10.73	1.27	0.10	38.92	60.00	-21.08	QP
12	7.526	18.48	10.75	1.46	0.10	30.79	50.00	-19.21	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

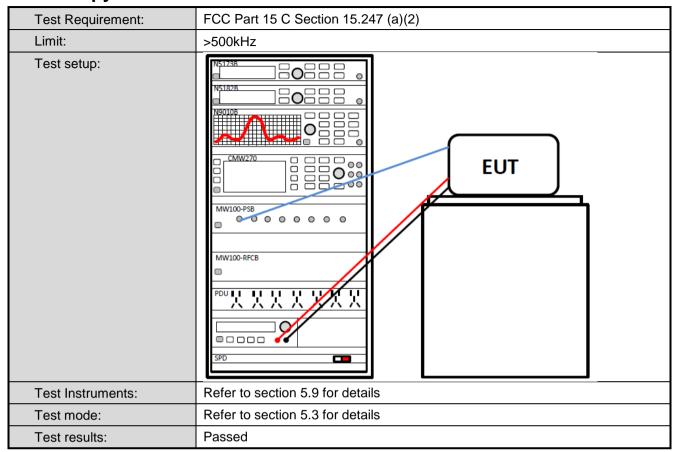
Product name:	Mobile Phone	Product model:	X698
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Kead Level	Factor	Factor	Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>qp</u>	<u>ab</u>	<u>ap</u>	—dBu∜	—dBu∜	<u>ab</u>	
1	0.174	30.64	9.91	0.00	0.01	40.56	64.77	-24.21	QP
2	0.214	28.51	9.94	0.00	0.03	38.48	63.05	-24.57	QP
3	0.214	17.11	9.94	0.00	0.03	27.08	53.05	-25.97	Average
4	0.471	23.03	10.18	0.01	0.03	33.25	46.49	-13.24	Average
1 23 4 5 6 7 8 9	0.481	29.80	10.19	0.02	0.03	40.04	56.32	-16.28	QP
6	0.775	13.69	10.42	0.05	0.03	24.19	46.00	-21.81	Average
7	0.796	22.28	10.44	0.05	0.03	32.80	56.00	-23.20	QP
8	1.262	13.08	10.64	0.11	0.10	23.93	46.00	-22.07	Average
9	1.303	21.98	10.65	0.11	0.11	32.85		-23.15	
10	6.420	19.44	11.08	0.80	0.09	31.41	50.00	-18.59	Average
11	7.687	28.15	11.13	0.98	0.10	40.36	60.00	-19.64	QP
12	13.197	15.46	11.34	2.57	0.11	29.48	50.00	-20.52	Average


Notes:

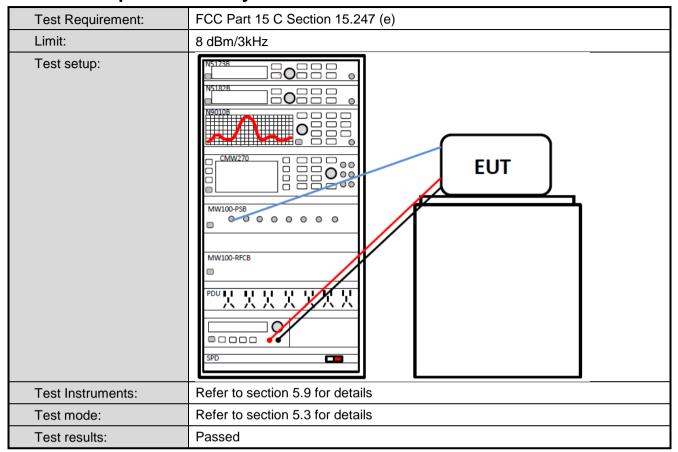
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE

Page 13 of 43

6.4 Occupy Bandwidth

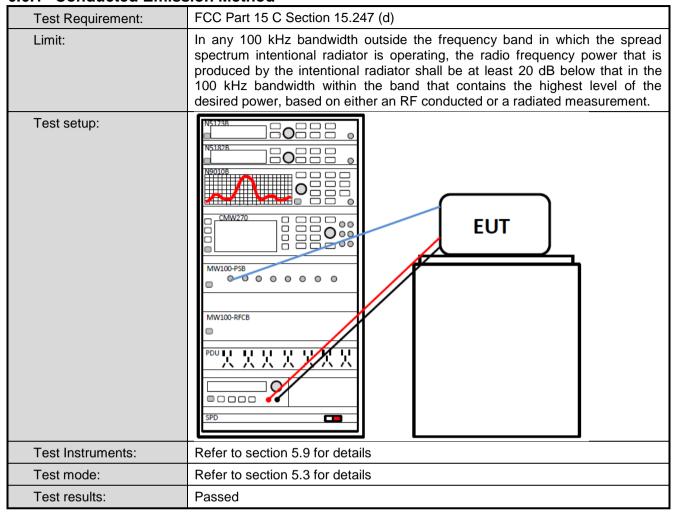


Measurement Data: Refer to Appendix A - BLE

Page 14 of 43

6.5 Power Spectral Density

Measurement Data: Refer to Appendix A - BLE


Page 15 of 43

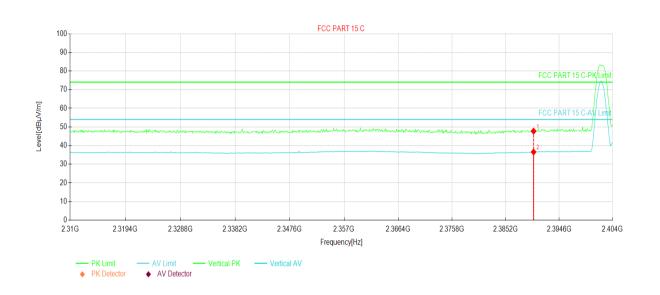
Project No.: JYTSZE2107031

6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 16 of 43


Radiated Emission Method 6.6.2

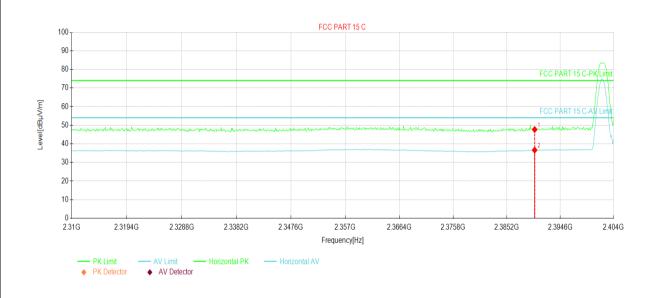
Test Requirement:		Section 15.20	05 and 15.209				
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz			
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value		
		Average Value					
Limit:	Frequer	ncy Liı	mit (dBuV/m @3		Remark		
	Above 10	Above 1GHz 54.00 Average Value 74.00 Peak Value					
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emit the limit so of the EU have 10 ce	ad at a 3 meter inne the position was set 3 met which was mound height is varied to determine zontal and vert measurement suspected emother the anternal the rota table maximum reasurement be maximum reasured to the pecified, then the specified, then T would be republication.	the top of a rot camber. The tan of the highest ers away from the unted on the top aried from one rethe maximum vical polarization ission, the EUT in a was turned from was set to Peading. In was set to Peading to Maximum Hole EUT in peak testing could be ported. Otherwis	ating table 1. ble was rotat radiation. he interference of a variable meter to four value of the fi s of the ante was arrange of heights from of degrees ak Detect Fund Mode. mode was 1 stopped and the the emissione by one u	ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-		
Test setup:	AE (T	Test Receiver	Horn Antenna 3m Reference Plane	Antenna Tower			
Test Instruments:	Refer to section	on 5.9 for detai	ls				
Test mode:	Refer to section	on 5.3 for detai	ls				
Test results:	Passed						

PHY: 1MHz

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	ected Data	List∉						
NO.₽	Freq.⊬ [MHz]∂	Reading⊬ [dBµV/m]₽	Level√ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace∂	Polarity∂
1₽	2390.00₽	40.64₽	47.72₽	7.08₽	74.00₽	26.28₽	PK₽	Vertical₽
2↩	2390.00₽	29.48₽	36.56₽	7.08₽	54.00₽	17.44₽	AV₽	Vertical₽

Remark:

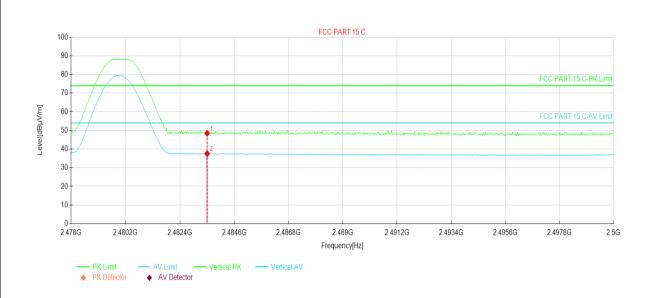

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2107031

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List∂									
NO.₽	Freq.√ [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∂	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽		
1₽	2390.00₽	40.62₽	47.70₽	7.08₽	74.00₽	26.30₽	PK₽	Horizontal₽		
2↩	2390.00₽	29.57₽	36.65₽	7.08₽	54.00₽	17.35₽	AV₽	Horizontal₽		

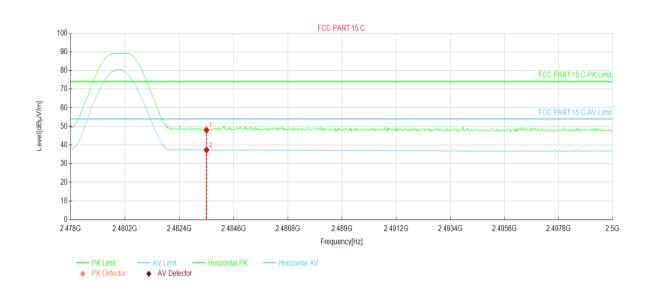

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 19 of 43

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspected Data List								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level√ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	40.77₽	48.46₽	7.69₽	74.00₽	25.54₽	PK₽	Vertical₽
2↩	2483.50	29.87₽	37.56₽	7.69₽	54.00₽	16.44₽	AV₽	Vertical₽


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

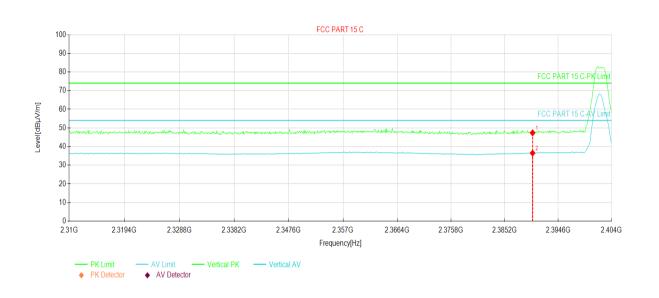
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2107031

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspected Data List₽								
NO.₽	Freq. <i>⊍</i> [MHz] <i>⊍</i>	Reading√ [dBµV/m]∂	Level√ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBμV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	40.32₽	48.01₽	7.69₽	74.00₽	25.99₽	PK₽	Horizontal₽
24□	2483.50	29.68₽	37.37₽	7.69₽	54.00₽	16.63₽	AV₽	Horizontal₽

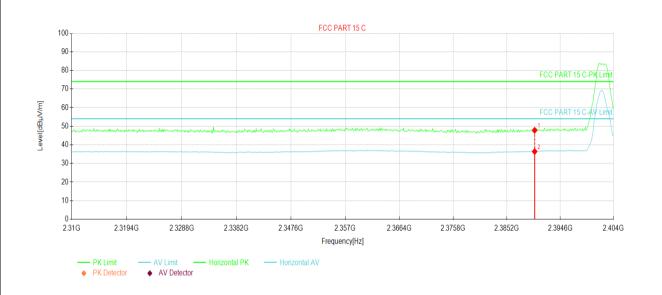
Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 43

PHY: 2MHz

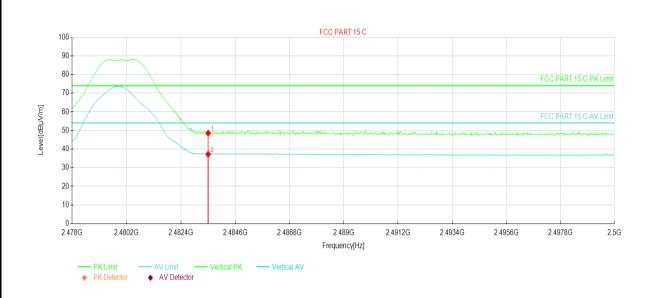
Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Suspected Data List∂								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2390.00₽	40.29₽	47.37₽	7.08₽	74.00₽	26.63₽	PK₽	Vertical₽
2↩	2390.00₽	29.42₽	36.50₽	7.08₽	54.00₽	17.50₽	AV₽	Vertical₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

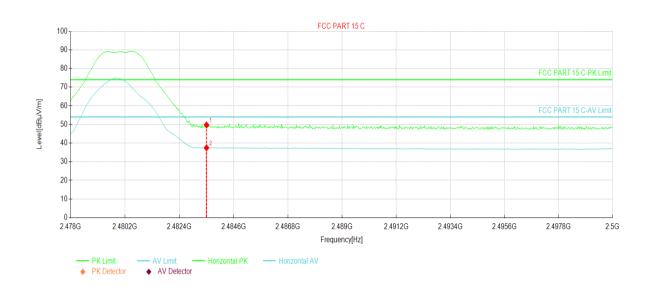
Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Suspe	Suspected Data List							
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∂	Factor⊍ [dB]∂	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2390.00₽	40.72₽	47.80₽	7.08₽	74.00₽	26.20₽	PK₽	Horizontal₽
24□	2390.00₽	29.32₽	36.40₽	7.08₽	54.00₽	17.60₽	AV₽	Horizontal₽ 4

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 43

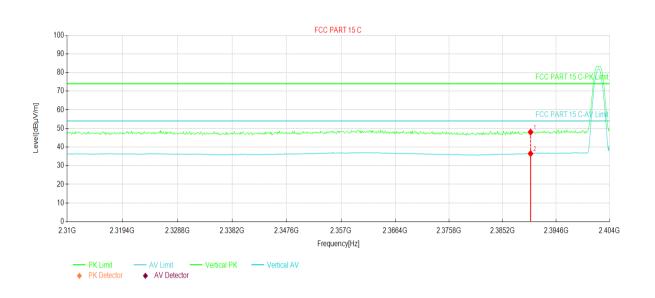
Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspe	Suspected Data Liste							
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	40.82₽	48.51₽	7.69₽	74.00₽	25.49₽	PK₽	Vertical₽
2₽	2483.50	29.55₽	37.24₽	7.69₽	54.00₽	16.76₽	AV₽	Vertical∉

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

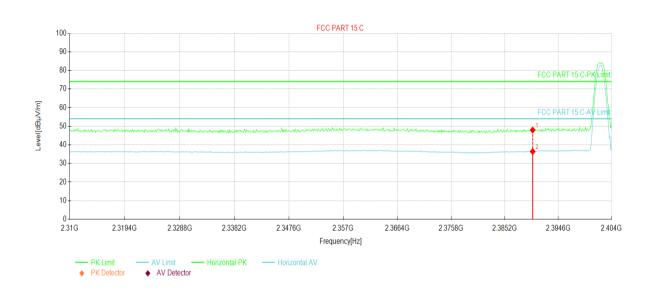

Suspe	Suspected Data List							
NO.₽	Freq.↵ [MHz]↵	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	42.01₽	49.70₽	7.69₽	74.00₽	24.30₽	PK₽	Horizontal₽
2₽	2483.50	29.76₽	37.45₽	7.69₽	54.00₽	16.55₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List							
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	40.32₽	48.01₽	7.69₽	74.00₽	25.99₽	PK₽	Horizontal₽
24□	2483.50	29.68₽	37.37₽	7.69₽	54.00₽	16.63₽	AV₽	Horizontal₽

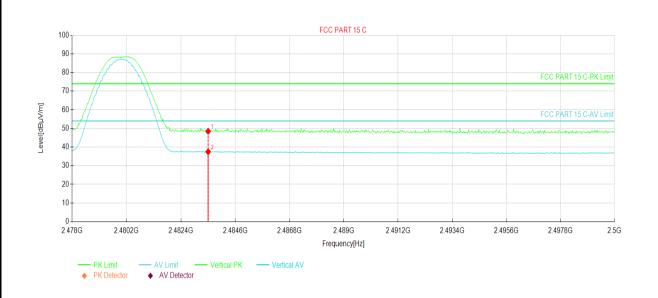

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2107031

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

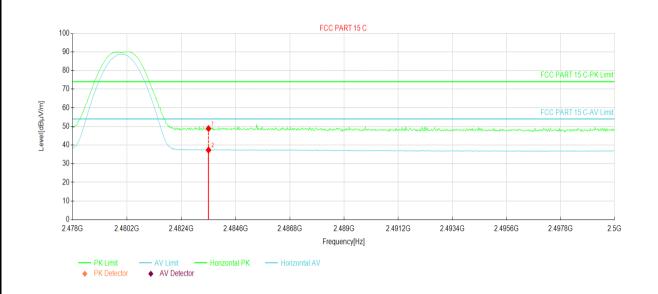
Suspe	Suspected Data List∂							
NO.₽	Freq.⊬ [MHz]∂	Reading⊬ [dBµV/m]∂	Level√ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2390.00₽	40.87₽	47.95₽	7.08₽	74.00₽	26.05₽	PK₽	Horizontal₽
2↔	2390.00₽	29.33₽	36.41₽	7.08₽	54.00₽	17.59₽	AV₽	Horizontal₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 27 of 43

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

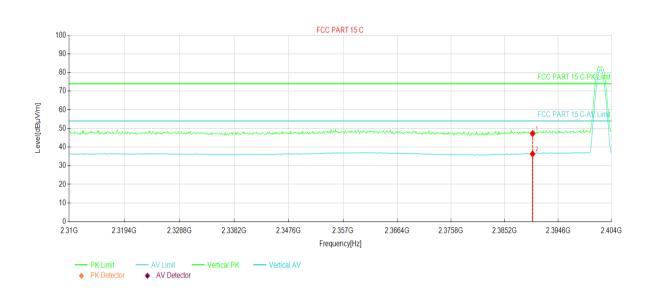


Suspe	Suspected Data List							
NO.₽	Freq.↵ [MHz]↵	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	40.79₽	48.48₽	7.69₽	74.00₽	25.52₽	PK₽	Vertical₽
24□	2483.50	29.80₽	37.49₽	7.69₽	54.00₽	16.51₽	AV₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List							
NO.₽	Freq.√ [MHz]∂	Reading⊬ [dBµV/m]∂	Level⊬ [dBµV/m]₽	Factor⊬ [dB]∉	Limit⊬ [dBμV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
1₽	2483.50	41.16₽	48.85₽	7.69₽	74.00₽	25.15₽	PK₽	Horizontal₽
2₽	2483.50	29.63₽	37.32₽	7.69₽	54.00₽	16.68₽	AV₽	Horizontal₽

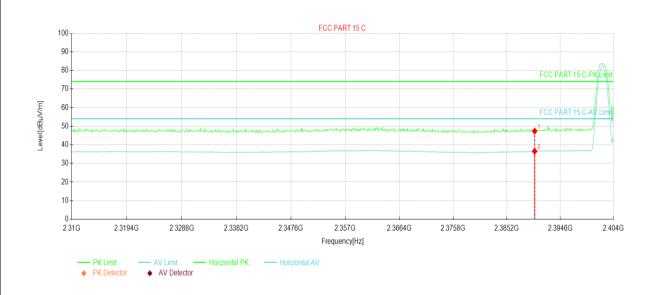

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 43

Coded PHY, S=8

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

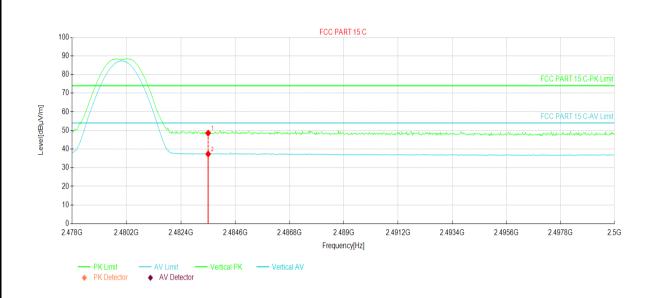
Suspected Data List								
NO.₽	Freq. <i>⊍</i> [MHz] <i>⊍</i>	Reading√ [dBuV/m]√	Level⊬ [dBuV/m]∉	Factor⊍ [dB]∉	Limit. [dBuV/m]∂	Margin∉	Trace∂	Polarity∂
1€	2390.00₽	London 1	47.23₽	7.08₽	74.00₽	[dB]₽ 26.77₽	PK₽	Vertical₽
2↩	2390.00₽	29.24₽	36.32₽	7.08₽	54.00₽	17.68₽	AV₽	Vertical₽


Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 43

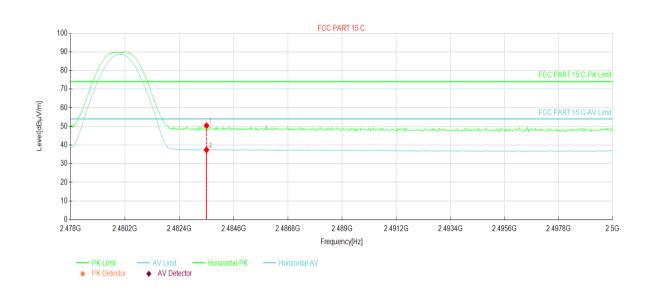
Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Suspected Data List								4
NO.₽	Freq.↵ [MHz]↵	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]∉	Trace∂	Polarity₽
1₽	2390.00₽	40.30₽	47.38₽	7.08₽	74.00₽	26.62₽	PK₽	Horizontal₽
2↔	2390.00₽	29.46₽	36.54₽	7.08₽	54.00₽	17.46₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 31 of 43

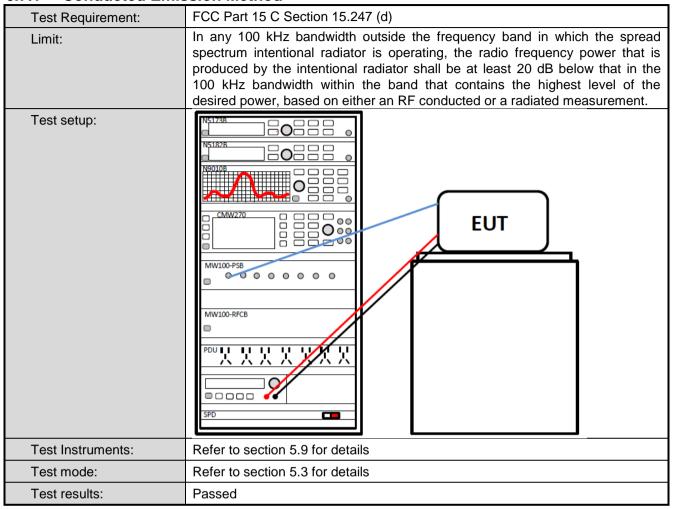
Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspe	Suspected Data List Output Description:										
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level√ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽			
1₽	2483.50	40.84₽	48.53₽	7.69₽	74.00₽	25.47₽	PK₽	Vertical₽			
2↩	2483.50	29.65₽	37.34₽	7.69₽	54.00₽	16.66₽	AV₽	Vertical₽			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Susp	Suspected Data List										
NO.	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level√ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽			
1₽	2483.50	42.70₽	50.39₽	7.69₽	74.00₽	23.61₽	PK₽	Horizontal₽			
2₽	2483.50	29.70₽	37.39₽	7.69₽	54.00₽	16.61₽	AV₽	Horizontal₽			

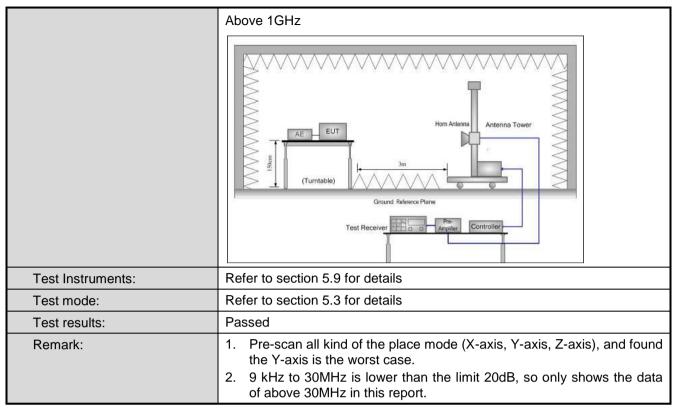
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

Page 34 of 43

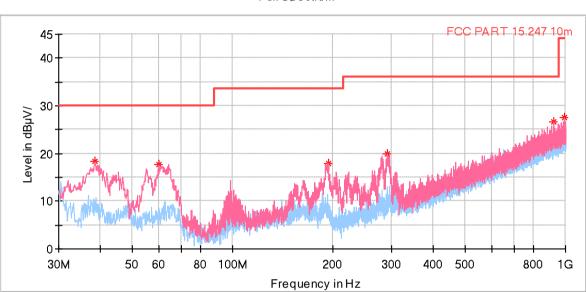


6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency Dete		r	RBW	VB	W	Remark
	30MHz-1GHz	Quasi-pea	ak	120KHz	3001		
	Above 1GHz	Peak		1MHz	3M	Hz	Peak Value
	7,0000 10112	RMS		1MHz	3M	Hz	Average Value
Limit:	Frequency		Lim	nit (dBuV/m @	10m)		Remark
	30MHz-88M			30.0			Quasi-peak Value
	88MHz-216N			33.5			Quasi-peak Value
	216MHz-960I 960MHz-1G			36.0 44.0			Quasi-peak Value Quasi-peak Value
	Frequency		Lin	nit (dBuV/m @	3m)		Remark
			LIII	54.0	OIII)		Average Value
	Above 1GF	lz		74.0			Peak Value
Test Procedure:	1. The EUT	was place	ed c		f a ro	tating	table 0.8m(below
	(below 1G rotated 36 radiation. 2. The EUT waway from on the top of the ground Both horizon make the nate of the ground to find the state of the limit spoof the EUT have 10 defined the state of the s	was set 10 the interfect of a variable and v	meters to meters to meters to meters to meter tent. emmeter tent. emmeter tent to fit the meters tent to meter tent tent tent tent tent tent tent	er chamber(and determined ters(below 10 deters(below	above the part of	1GHz cositio 3 me na, wh er to h ue of the a as arra eights degre de was ped ar e eminy one	10 meter chamber (a). The table was in of the highest eters (above 1GHz) inich was mounted four meters above the field strength. Internal are set to anged to its worst from 1 meter to 4 ees to 360 degrees etect Function and is 10 dB lower than and the peak values sisions that did not using peak, quasi-reported in a data
Test setup:	Below 1GHz Turn Table Ground Plane	4m			S A RF	earch earch intenna Test ceiver	ower

Project No.: JYTSZE2107031

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 36 of 43



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	X698
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

_iCritical_Freqs.

•	Frequency↓ (MHz)∂	MaxPeak↓ (dB µ V/m)∂	Limit↓ (dBµV/m)₽	Margin↓ (dB)∂	Height↓ (cm)∂	Pol∉	Azimuth↓ (deg)∂	Corr.↓ (dB/m)∂
-	38.536000₽	18.43₽	30.00₽	11.57∂	100.0₽	V₽	196.0₽	-16.0₽
-	59.973000₽	17.61₽	30.00₽	12.39↩	100.0₽	V₽	200.0₽	-16.3₽
-	193.542000₽	17.98₽	33.50∂	15.52↩	100.0₽	V₽	0.0	-18.0₽
-	291.415000₽	20.04₽	36.00∂	15.96∂	100.0₽	V₽	328.0₽	-14.4₽
-	920.363000₽	26.60₽	36.00∂	9.40∂	100.0₽	V₽	200.0₽	-0.5₽
•	990.785000₽	27.63₽	44.00↩	16.37↩	100.0₽	V₽	178.0₽	0.4

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

PHY: 1MHz

	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	57.25	-9.60	47.65	74.00	26.35	Vertical			
4804.00	56.25	-9.60	46.65	74.00	27.35	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	49.68	-9.60	40.08	54.00	13.92	Vertical			
4804.00	49.67	-9.60	40.07	54.00	13.93	Horizontal			

		Test ch	annel: Middle ch	nannel		
		De	tector: Peak Valı	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	56.78	-9.04	47.74	74.00	26.26	Vertical
4884.00	56.52	-9.04	47.48	74.00	26.52	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	49.60	-9.04	40.56	54.00	13.44	Vertical
4884.00	50.09	-9.04	41.05	54.00	12.95	Horizontal

	Test channel: Highest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.94	-8.45	48.49	74.00	25.51	Vertical				
4960.00	56.47	-8.45	48.02	74.00	25.98	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	49.15	-8.45	40.70	54.00	13.30	Vertical				
4960.00	49.68	-8.45	41.23	54.00	12.77	Horizontal				

Remark:

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

		Test ch	annel: Lowest ch	nannel				
		De	tector: Peak Valu	ie		_		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	55.76	-9.60	46.16	74.00	27.84	Vertical		
4804.00	55.87	-9.60	46.27	74.00	27.73	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	48.35	-9.60	38.75	54.00	15.25	Vertical		
4804.00	48.40	-9.60	38.80	54.00	15.20	Horizontal		
	Test channel: Middle channel							
			tector: Peak Valu					
Frequency	Read Level	De	Level	Limit Line	Margin			
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization		
4884.00	56.07	-9.04	47.03	74.00	26.97	Vertical		
4884.00	55.72	-9.04	46.68	74.00	27.32	Horizontal		
	_	Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4884.00	48.68	-9.04	39.64	54.00	14.36	Vertical		
4884.00	48.48	-9.04	39.44	54.00	14.56	Horizontal		
		Test ch	annel: Highest c	hannel				
		De	tector: Peak Valu	re				
	1			i	1	1		

L							
			Test ch	annel: Highest c	hannel		
			De	tector: Peak Valu	ıe		
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
ſ	4960.00	56.20	-8.45	47.75	74.00	26.25	Vertical
I	4960.00	55.28	-8.45	46.83	74.00	27.17	Horizontal
			Dete	ctor: Average Va	alue		
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
I	4960.00	48.22	-8.45	39.77	54.00	14.23	Vertical
I	4960.00	48.56	-8.45	40.11	54.00	13.89	Horizontal

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	55.69	-9.60	46.09	74.00	27.91	Vertical			
4804.00	57.04	-9.60	47.44	74.00	26.56	Horizontal			
		Dete	ctor: Average Va	alue		·			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	48.62	-9.60	39.02	54.00	14.98	Vertical			
4804.00	48.93	-9.60	39.33	54.00	14.67	Horizontal			

Test channel: Middle channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4884.00	55.29	-9.04	46.25	74.00	27.75	Vertical		
4884.00	57.28	-9.04	48.24	74.00	25.76	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4884.00	48.30	-9.04	39.26	54.00	14.74	Vertical		
4884.00	48.71	-9.04	39.67	54.00	14.33	Horizontal		

Test channel: Highest channel							
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	55.66	-8.45	47.21	74.00	26.79	Vertical	
4960.00	57.54	-8.45	49.09	74.00	24.91	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	48.44	-8.45	39.99	54.00	14.01	Vertical	
4960.00	48.51	-8.45	40.06	54.00	13.94	Horizontal	

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Test channel: Lowest channel							
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	57.66	-9.60	48.06	74.00	25.94	Vertical	
4804.00	55.98	-9.60	46.38	74.00	27.62	Horizontal	
		Dete	ctor: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	48.91	-9.60	39.31	54.00	14.69	Vertical	
4804.00	48.61	-9.60	39.01	54.00	14.99	Horizontal	

		Test ch	nannel: Middle ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	58.07	-9.04	49.03	74.00	24.97	Vertical
4884.00	55.87	-9.04	46.83	74.00	27.17	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	49.18	-9.04	40.14	54.00	13.86	Vertical
4884.00	48.61	-9.04	39.57	54.00	14.43	Horizontal

Test channel: Highest channel							
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	57.64	-8.45	49.19	74.00	24.81	Vertical	
4960.00	55.85	-8.45	47.40	74.00	26.60	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	48.81	-8.45	40.36	54.00	13.64	Vertical	
4960.00	48.23	-8.45	39.78	54.00	14.22	Horizontal	

Remark:

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.