# APPENDIX E - DIPOLE CALIBRATION CERTIFICATES





Add: No.52 Hua Yuan<br/>Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client BACL Certificate No: Z22-60477

# **CALIBRATION CERTIFICATE**

Object D750V3 - SN: 1167

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: October 31, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106276     | 10-May-22 (CTTL, No.J22X03103)            | May-23                |
| Power sensor NRP6A      | 101369     | 10-May-22 (CTTL, No.J22X03103)            | May-23                |
| Reference Probe EX3DV4  | SN 7464    | 26-Jan-22(SPEAG,No.EX3-7464_Jan22)        | Jan-23                |
| DAE4                    | SN 1556    | 12-Jan-22(CTTL-SPEAG,No.Z22-60007)        | Jan-23                |
| Secondary Standards     | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409)            | Jan-23                |
| Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406)            | Jan-23                |
|                         |            |                                           |                       |

|                | Name        | Function           | Signature |
|----------------|-------------|--------------------|-----------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer  | 28        |
| Reviewed by:   | Lin Hao     | SAR Test Engineer  | 州市        |
| Approved by:   | Qi Dianyuan | SAR Project Leader | 200       |

Issued: November 7, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### **Additional Documentation:**

c) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60477 Page 2 of 6





Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 15 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 750 MHz ±1 MHz           |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 42.0         | 0.90 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 42.3 ±6 %    | 0.88 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        |              |                 |

### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 2.09 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 8.48 W/kg ±18.8 % (k=2)  |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 1.39 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.63 W/kg ± 18.7 % (k=2) |

Page 3 of 6 Certificate No: Z22-60477





Add: No.52 Hua Yuan<br/>Bei Road, Haidian District, Beijing, 100191, China Tel<br/>: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

# Appendix (Additional assessments outside the scope of CNAS L0570)

### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 53.0Ω- 3.71jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 26.7dB      |  |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 0.957 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

## **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: Z22-60477 Page 4 of 6





Date: 2022-10-31

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1167

Communication System: UID 0, CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.875$  S/m;  $\epsilon_r = 42.25$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

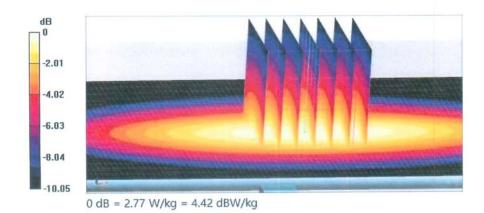
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 54.61 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.10 W/kg

SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.39 W/kg

Smallest distance from peaks to all points 3 dB below = 20.6 mm

Ratio of SAR at M2 to SAR at M1 = 67.5%

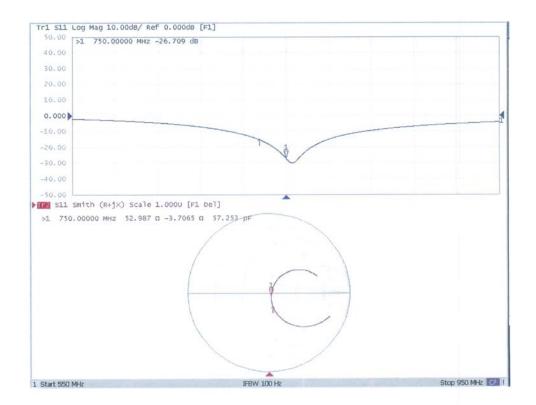
Maximum value of SAR (measured) = 2.77 W/kg



Certificate No: Z22-60477 Page 5 of 6






Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

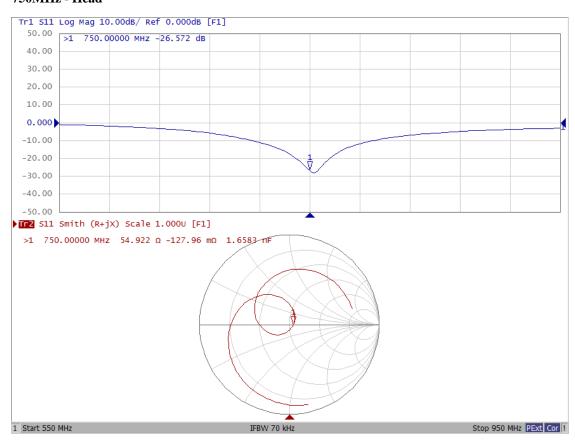
http://www.caict.ac.cn

# Impedance Measurement Plot for Head TSL



# D750V3 - SN:1167 Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss(< -20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

| Justification of the extended candiation |                     |              |                      |                |                                 |                |
|------------------------------------------|---------------------|--------------|----------------------|----------------|---------------------------------|----------------|
| D750V3 - SN:1167                         |                     |              |                      |                |                                 |                |
|                                          | 750MHz Head         |              |                      |                |                                 |                |
| Date of<br>Measurement                   | Return-Loss<br>(dB) | Delta<br>(%) | Real Impedance (ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2022/10/31<br>(Cal. Report)              | -26.709             | /            | 52.987               | /              | -3.7065                         | /              |
| 2023/10/30<br>(Extended)                 | -26.572             | -0.51        | 54.922               | 1.935          | -0.12796                        | 3.57854        |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

# Dipole Verification Data> D750V3 - SN:1167 (Date of Measurement: 2023/10/30)

# 750MHz - Head



|             | Name      | Title        | Signature |
|-------------|-----------|--------------|-----------|
| Measure By: | Mark Dong | SAR Engineer | Mark Jong |



In Collaboration with







中国认可 国际互认 校准 CALIBRATION CNAS L0570

Client

BACL

Certificate No:

Z21-60314

## **CALIBRATION CERTIFICATE**

Object

D835V2 - SN: 453

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 31, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106277     | 23-Sep-20 (CTTL, No.J20X08336)            | Sep-21                |
| Power sensor NRP8S      | 104291     | 23-Sep-20 (CTTL, No.J20X08336)            | Sep-21                |
| Reference Probe EX3DV4  | SN 7517    | 03-Feb-21(CTTL-SPEAG,No.Z21-60001)        | Feb-22                |
| DAE3                    | SN 536     | 06-Nov-20(CTTL-SPEAG,No.Z20-60452)        | Nov-21                |
| Secondary Standards     | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593)            | Jan-22                |
| NetworkAnalyzer E5071C  | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232)            | Jan-22                |

Calibrated by:

Name

Signature

Reviewed by:

Lin Hao

Zhao Jing

SAR Test Engineer
SAR Test Engineer

Function

林粉

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: September 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60314

Page 1 of 6



Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60314

Page 2 of 6



# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 15 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 835 MHz ± 1 MHz          |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.7 ± 6 %   | 0.88 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                          |
|------------------------------------------------|--------------------|--------------------------|
| SAR measured                                   | 250 mW input power | 2.30 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 9.33 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                          |
| SAR measured                                   | 250 mW input power | 1.49 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 6.03 W/kg ± 18.7 % (k=2) |



### Appendix (Additional assessments outside the scope of CNAS L0570)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 56.2Ω- 6.72jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 21.3dB      |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.300 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# Additional EUT Data

| Manufactured by       |             | SPEAG |  |
|-----------------------|-------------|-------|--|
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
|                       |             |       |  |
| G N 721 (0214         | D4-56       |       |  |
| ificate No: Z21-60314 | Page 4 of 6 |       |  |
|                       |             |       |  |



### DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 453

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz;  $\sigma$  = 0.884 S/m;  $\epsilon_r$  = 41.66;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

DASY5 Configuration:

 Probe: EX3DV4 - SN7517; ConvF(9.81, 9.81, 9.81) @ 835 MHz; Calibrated: 2021-02-03

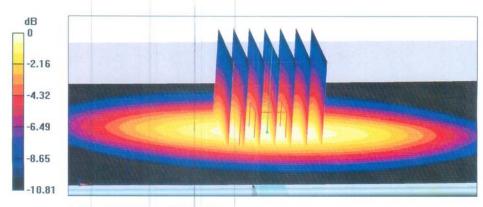
Date: 08.31.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2020-11-06
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 57.46 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 3.64 W/kg

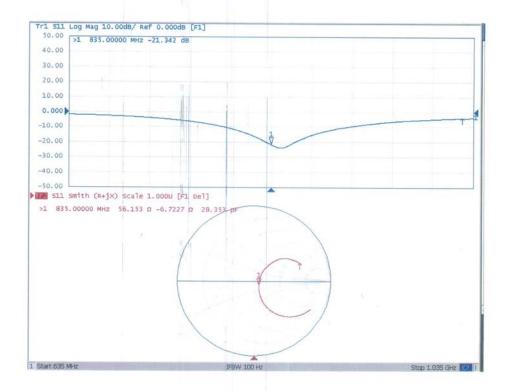
SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.49 W/kg

Smallest distance from peaks to all points 3 dB below = 17.5 mm

Ratio of SAR at M2 to SAR at M1 = 63.4%

Maximum value of SAR (measured) = 3.16 W/kg




0 dB = 3.16 W/kg = 5.00 dBW/kg

Certificate No: Z21-60314

Page 5 of 6

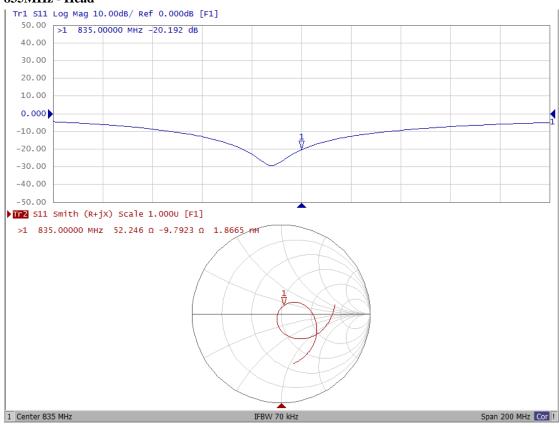


### Impedance Measurement Plot for Head TSL



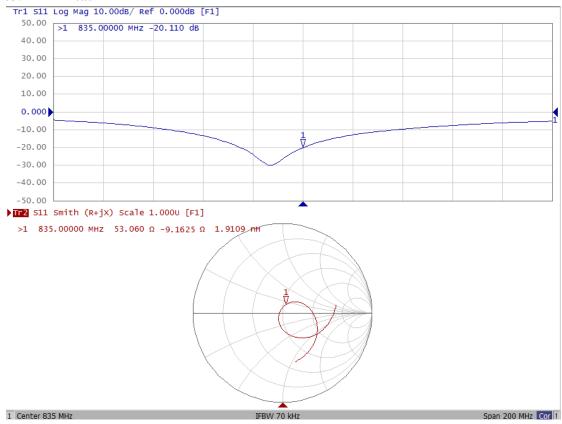
# D835V2 - SN:453 Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss(< -20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

| gustineution of th         | ie extenueu cai     | ioration     |                      |                |                                 |                |
|----------------------------|---------------------|--------------|----------------------|----------------|---------------------------------|----------------|
|                            |                     | I            | 0835V2 - SN:453      |                |                                 |                |
|                            |                     |              | 835MHz Head          |                |                                 |                |
| Date of<br>Measurement     | Return-Loss<br>(dB) | Delta<br>(%) | Real Impedance (ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2021/8/31<br>(Cal. Report) | -21.342             | /            | 56.153               | /              | -6.7227                         | /              |
| 2022/8/30<br>(Extended)    | -20.192             | -5.39        | 52.246               | -3.91          | -9.7923                         | -3.07          |
| 2023/8/30<br>(Extended)    | -20.110             | -5.77        | 53.060               | -3.09          | -9.1625                         | -2.44          |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.


# Dipole Verification Data> D835V2 - SN:453 (Date of Measurement: 2022/8/30)

# 835MHz - Head



# Dipole Verification Data> D835V2 - SN:453 (Date of Measurement: 2023/8/30)

# 835MHz - Head



|             | Name      | Title        | Signature |
|-------------|-----------|--------------|-----------|
| Measure By: | Mark Dong | SAR Engineer | Mark Jong |



In Collaboration with

# S P E A G

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, Ch Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn





Client

BACL

Certificate No:

Z21-60258

# **CALIBRATION CERTIFICATE**

Object

D1750V2 - SN: 1141

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 29, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm$ 3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106277     | 23-Sep-20 (CTTL, No.J20X08336)            | Sep-21                |
| Power sensor NRP8S      | 104291     | 23-Sep-20 (CTTL, No.J20X08336)            | Sep-21                |
| Reference Probe EX3DV4  | SN 3846    | 26-Apr-21(CTTL-SPEAG,No.Z21-60084)        | Apr-22                |
| DAE4                    | SN 549     | 08-Jan-21(CTTL-SPEAG,No.Z21-60002)        | Jan-22                |
| Secondary Standards     | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593)            | Jan-22                |
| NetworkAnalyzer E5071C  | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232)            | Jan-22                |

Calibrated by:

Name Function

Zhao Jing SAR Test Engineer

Signature

Reviewed by:

Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan

SAR Project Leader

Issued: July 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60258

Page 1 of 6



Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60258

Page 2 of 6



# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1750 MHz ± 1 MHz         |             |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.9 ± 6 %   | 1.36 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         | 1202         |                  |

### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 9.01 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 36.1 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 4.66 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 18.7 W/kg ± 18.7 % (k=2) |

# Appendix (Additional assessments outside the scope of CNAS L0570)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.6Ω- 2.23jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 31.3 dB     |  |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.120 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | TOTAL SECTION |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: Z21-60258

Page 4 of 6



# DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1141

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz;  $\sigma = 1.362$  S/m;  $\epsilon_r = 39.93$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN3846; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-04-26

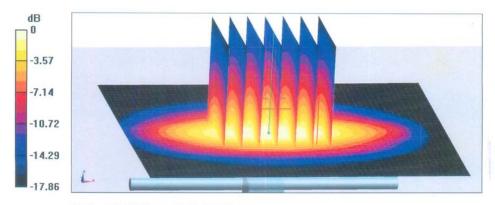
Date: 06.29.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

# System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

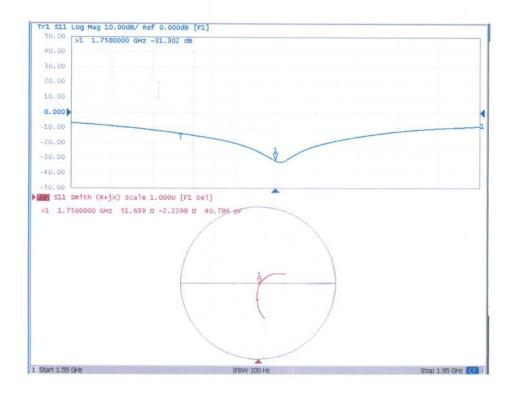
Reference Value = 98.30 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.01 W/kg; SAR(10 g) = 4.66 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 51%


Maximum value of SAR (measured) = 14.4 W/kg



0 dB = 14.4 W/kg = 11.58 dBW/kg

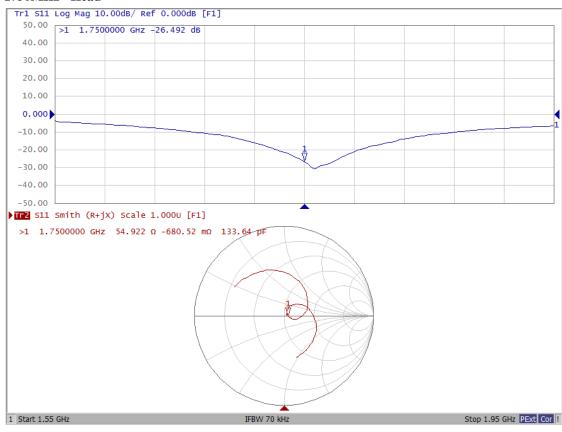


# Impedance Measurement Plot for Head TSL



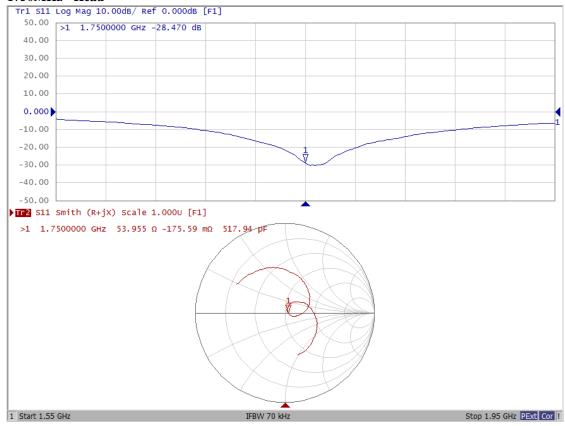
# D1750V2 - SN:1141 Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss(< -20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

|                            | Justification of the extended campi atton |              |                      |                |                                 |                |
|----------------------------|-------------------------------------------|--------------|----------------------|----------------|---------------------------------|----------------|
|                            | D1750V2 - SN:1141                         |              |                      |                |                                 |                |
|                            | 1750MHz Head                              |              |                      |                |                                 |                |
| Date of<br>Measurement     | Return-Loss<br>(dB)                       | Delta<br>(%) | Real Impedance (ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2021/6/29<br>(Cal. Report) | -31.302                                   | /            | 51.639               | /              | -2.2298                         | /              |
| 2022/6/28<br>(Extended)    | -26.492                                   | -15.37       | 54.922               | 3.283          | -0.68052                        | 1.54928        |
| 2023/6/28<br>(Extended)    | -28.470                                   | -9.05        | 53.955               | 2.316          | -0.17559                        | 2.05421        |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.


# Dipole Verification Data> D1750V2 - SN:1141 (Date of Measurement: 2022/6/28)

### 1750MHz - Head



# Dipole Verification Data> D1750V2 - SN:1141 (Date of Measurement: 2023/6/28)

# 1750MHz - Head



|             | Name      | Title        | Signature |
|-------------|-----------|--------------|-----------|
| Measure By: | Mark Dong | SAR Engineer | Mark Jong |







Add: No.52 Hua Yuan<br/>Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

BACL Client

Certificate No: Z22-60478

### CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 543

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 2, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106276     | 10-May-22 (CTTL, No.J22X03103)            | May-23                |
| Power sensor NRP6A      | 101369     | 10-May-22 (CTTL, No.J22X03103)            | May-23                |
| Reference Probe EX3DV4  | SN 7464    | 26-Jan-22(SPEAG,No.EX3-7464_Jan22)        | Jan-23                |
| DAE4                    | SN 1556    | 12-Jan-22(CTTL-SPEAG,No.Z22-60007)        | Jan-23                |
| Secondary Standards     | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409)            | Jan-23                |
| Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406)            | Jan-23                |
|                         |            |                                           |                       |

|                | Name        | Function           | Signature |
|----------------|-------------|--------------------|-----------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer  | 300       |
| Reviewed by:   | Lin Hao     | SAR Test Engineer  | 村先        |
| Approved by:   | Qi Dianyuan | SAR Project Leader | 20        |

Issued: November 7, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60478

Page 1 of 6





Glossary:

TSL tissue simulating liquid ConvF

sensitivity in TSL / NORMx,y,z not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Additional Documentation:

c) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





### **Measurement Conditions**

| DASY Version                 | DASY52                   | 52.10.4     |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1900 MHz ±1 MHz          |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 40.0         | 1.40 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 40.5 ±6 %    | 1.39 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        | -            |                 |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 9.96 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 40.2 W/kg ±18.8 % (k=2)  |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 5.20 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 18.7 % (k=2) |





### Appendix (Additional assessments outside the scope of CNAS L0570)

### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.9Ω+ 3.89jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 28.2dB      |  |

### **General Antenna Parameters and Design**

|                                  | 1.20     |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.107 ns |

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

### **Additional EUT Data**

| NY 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |
|-------------------------------------------|-------|
| Manufactured by                           | SPEAG |
|                                           |       |

Certificate No: Z22-60478 Page 4 of 6





Date: 2022-11-02

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

### **DASY5 Validation Report for Head TSL**

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 543

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz;  $\sigma = 1.388$  S/m;  $\varepsilon_r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

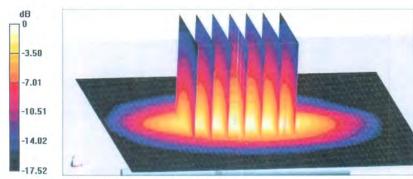
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY5** Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dv=5mm, dz=5mm

Reference Value = 100.4 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.2 W/kg

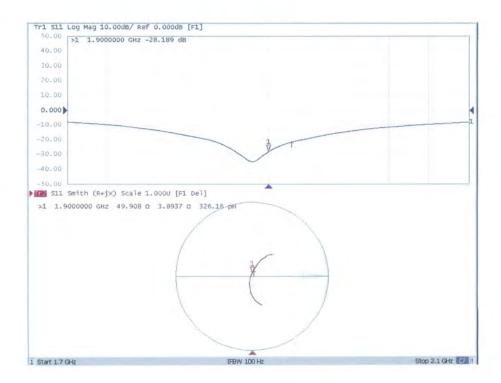
Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 54.6%

Maximum value of SAR (measured) = 15.4 W/kg



0 dB = 15.4 W/kg = 11.88 dBW/kg


Certificate No: Z22-60478

Page 5 of 6



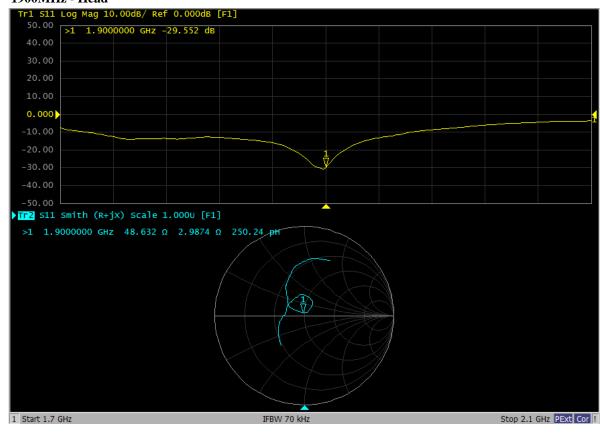


### Impedance Measurement Plot for Head TSL



# D1900V2 - SN:543 Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss(< -20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

| D1900V2 - SN:543           |                     |              |                      |                |                                 |                |
|----------------------------|---------------------|--------------|----------------------|----------------|---------------------------------|----------------|
|                            | 1900MHz Head        |              |                      |                |                                 |                |
| Date of<br>Measurement     | Return-Loss<br>(dB) | Delta<br>(%) | Real Impedance (ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2022/11/2<br>(Cal. Report) | -28.189             | /            | 49.908               | /              | 3.8937                          | /              |
| 2023/11/1<br>(Extended)    | -29.552             | 4.84         | 48.632               | -1.276         | 2.9874                          | -0.9063        |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

# Dipole Verification Data> D1900V2 - SN:543 (Date of Measurement: 2023/11/1)

1900MHz - Head



|             | Name      | Title        | Signature |
|-------------|-----------|--------------|-----------|
| Measure By: | Mark Dong | SAR Engineer | Mark Jong |



In Collaboration with

# S P e a g

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn





Client

BACL

Certificate No:

Z21-60260

# **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 971

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| ID#        | Cal Date (Calibrated by, Certificate No.)                  | Scheduled Calibration                                                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 106277     | 23-Sep-20 (CTTL, No.J20X08336)                             | Sep-21                                                                                                                                                                                                                                                                  |
| 104291     | 23-Sep-20 (CTTL, No.J20X08336)                             | Sep-21                                                                                                                                                                                                                                                                  |
| SN 3846    | 26-Apr-21(CTTL-SPEAG,No.Z21-60084)                         | Apr-22                                                                                                                                                                                                                                                                  |
| SN 549     | 08-Jan-21(CTTL-SPEAG,No.Z21-60002)                         | Jan-22                                                                                                                                                                                                                                                                  |
| ID#        | Cal Date (Calibrated by, Certificate No.)                  | Scheduled Calibration                                                                                                                                                                                                                                                   |
| MY49071430 | 01-Feb-21 (CTTL, No.J21X00593)                             | Jan-22                                                                                                                                                                                                                                                                  |
| MY46110673 | 14-Jan-21 (CTTL, No.J21X00232)                             | Jan-22                                                                                                                                                                                                                                                                  |
|            | 106277<br>104291<br>SN 3846<br>SN 549<br>ID#<br>MY49071430 | 106277 23-Sep-20 (CTTL, No.J20X08336)<br>104291 23-Sep-20 (CTTL, No.J20X08336)<br>SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084)<br>SN 549 08-Jan-21(CTTL-SPEAG,No.Z21-60002)<br>ID# Cal Date (Calibrated by, Certificate No.)<br>MY49071430 01-Feb-21 (CTTL, No.J21X00593) |

Name Function

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: July 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60260

Page 1 of 6



Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)". July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



### In Collaboration with

s p e a

### CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 2450 MHz ± 1 MHz         |             |

# Head TSL parameters The following parameters a

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.1 ± 6 %   | 1.78 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              | 1444             |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 13.3 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 53.5 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 6.04 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.2 W/kg ± 18.7 % (k=2) |



# Appendix (Additional assessments outside the scope of CNAS L0570)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.7Ω+ 4.06jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 23.6dB      |  |

### General Antenna Parameters and Design

| 1.071 ns |
|----------|
| 1        |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |



# DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 971

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f=2450 MHz;  $\sigma=1.779$  S/m;  $\epsilon_r=39.12$ ;  $\rho=1000$  kg/m<sup>3</sup>

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN3846; ConvF(7.45, 7.45, 7.45) @ 2450 MHz; Calibrated: 2021-04-26

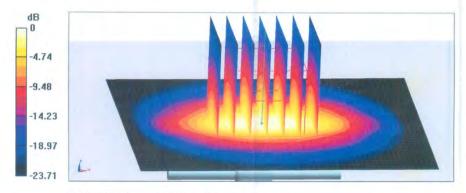
Date: 06.28.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 106.9 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.04 W/kg

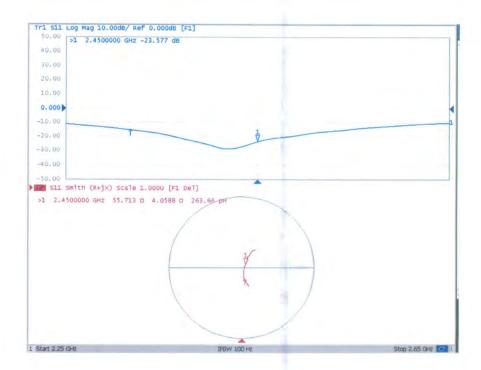
Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 45.6%

Maximum value of SAR (measured) = 22.8 W/kg



0 dB = 22.8 W/kg = 13.58 dBW/kg




In Collaboration with

s p e CALIBRATION LABORATORY

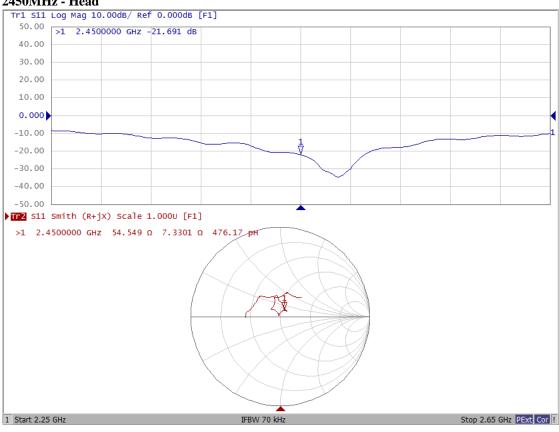
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

### Impedance Measurement Plot for Head TSL



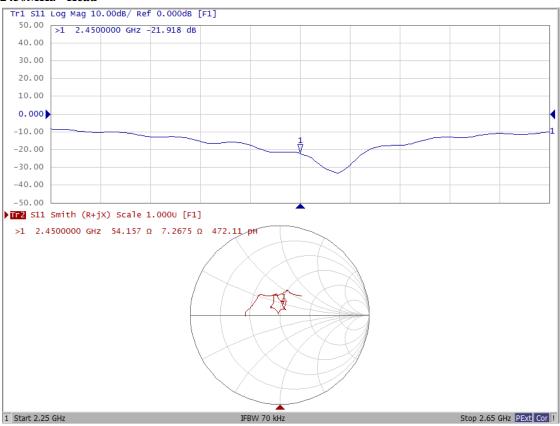
# D2450V2 - SN:971 Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss(< -20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

| Justification of the extended candidation |                     |              |                      |                |                                 |                |
|-------------------------------------------|---------------------|--------------|----------------------|----------------|---------------------------------|----------------|
| D2450V2 - SN:971                          |                     |              |                      |                |                                 |                |
|                                           | 2450MHz Head        |              |                      |                |                                 |                |
| Date of<br>Measurement                    | Return-Loss<br>(dB) | Delta<br>(%) | Real Impedance (ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |
| 2021/6/28<br>(Cal. Report)                | -23.577             | /            | 55.713               | /              | 4.0588                          | /              |
| 2022/6/27<br>(Extended)                   | -21.691             | -8           | 54.549               | -1.164         | 7.3301                          | 3.2713         |
| 2023/6/27<br>(Extended)                   | -21.918             | -7.04        | 54.157               | -1.556         | 7.2675                          | 3.2087         |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.


### Dipole Verification Data> D2450V2 - SN:971 (Date of Measurement: 2022/6/27)

### 2450MHz - Head



# Dipole Verification Data> D2450V2 - SN:971 (Date of Measurement: 2023/6/27)

# 2450MHz - Head



|             | Name      | Title        | Signature |
|-------------|-----------|--------------|-----------|
| Measure By: | Mark Dong | SAR Engineer | Mark Jong |





Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn BACL Client

Certificate No: Z22-60479

# **CALIBRATION CERTIFICATE**

Object D2600V2 - SN: 1132

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: November 1, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106276     | 10-May-22 (CTTL, No.J22X03103)            | May-23                |
| Power sensor NRP6A      | 101369     | 10-May-22 (CTTL, No.J22X03103)            | May-23                |
| Reference Probe EX3DV4  | SN 7464    | 26-Jan-22(SPEAG,No.EX3-7464_Jan22)        | Jan-23                |
| DAE4                    | SN 1556    | 12-Jan-22(CTTL-SPEAG,No.Z22-60007)        | Jan-23                |
| Secondary Standards     | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409)            | Jan-23                |
| Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406)            | Jan-23                |
|                         |            |                                           |                       |

|                | Name        | Function           | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer  | The state of the s |
| Reviewed by:   | Lin Hao     | SAR Test Engineer  | 林光                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Approved by:   | Qi Dianyuan | SAR Project Leader | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Issued: November 7, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60479

Page 1 of 6





Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### **Additional Documentation:**

c) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60479 Page 2 of 6





Measurement Conditions

A split of the second secon

| DASY Version                 | DASY52                   | 52.10.4     |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 2600 MHz ±1 MHz          |             |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 39.0         | 1.96 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 39.0 ±6 %    | 1.97 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        | _            |                 |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                         |
|---------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                            | 250 mW input power | 14.0 W/kg               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 55.8 W/kg ±18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                         |
| SAR measured                                            | 250 mW input power | 6.35 W/kg               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.4 W/kg ±18.7 % (k=2) |

Page 3 of 6 Certificate No: Z22-60479





# Appendix (Additional assessments outside the scope of CNAS L0570)

### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 47.0Ω- 6.44jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 22.7dB      |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.058 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: Z22-60479

Page 4 of 6





Date: 2022-11-01

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

### DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1132

Communication System: UID 0, CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 1.974$  S/m;  $\epsilon_r = 39.04$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

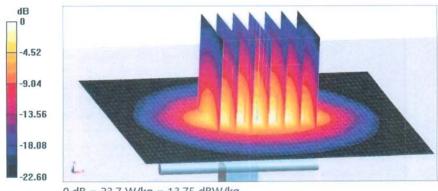
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

### DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.64, 7.64, 7.64) @ 2600 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 29.2 W/kg

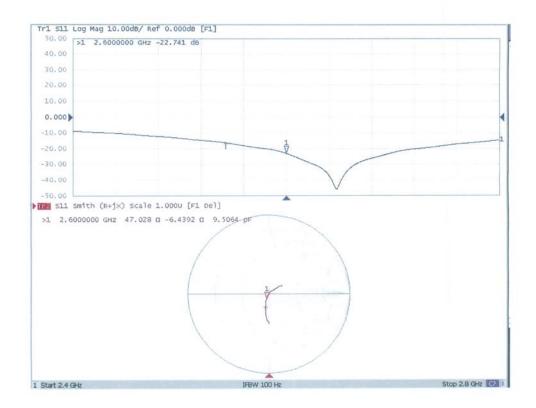
SAR(1 g) = 14 W/kg; SAR(10 g) = 6.35 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 48.5%

Maximum value of SAR (measured) = 23.7 W/kg




0 dB = 23.7 W/kg = 13.75 dBW/kg

Certificate No: Z22-60479 Page 5 of 6



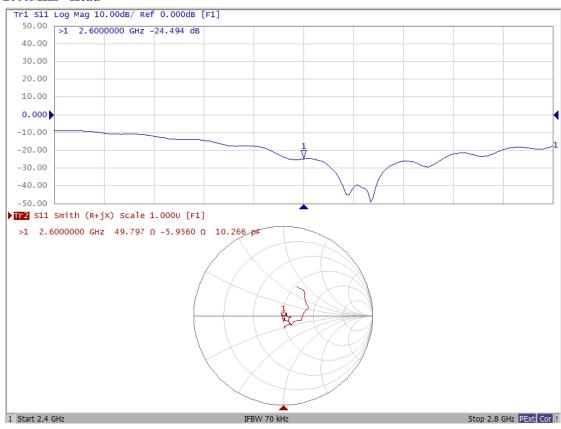


### Impedance Measurement Plot for Head TSL



# D2600V2 - SN:1132 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss(< -20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

| businession of the extended campitation |                     |              |                      |                |                                 |                |  |
|-----------------------------------------|---------------------|--------------|----------------------|----------------|---------------------------------|----------------|--|
|                                         | D2600V2 - SN:1132   |              |                      |                |                                 |                |  |
|                                         | 2600MHz Head        |              |                      |                |                                 |                |  |
| Date of<br>Measurement                  | Return-Loss<br>(dB) | Delta<br>(%) | Real Impedance (ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(ohm) | Delta<br>(ohm) |  |
| 2022/11/1<br>(Cal. Report)              | -22.741             | /            | 47.028               | /              | -6.4392                         | /              |  |
| 2023/10/31<br>(Extended)                | -24.494             | 7.71         | 49.797               | 2.769          | -5.9560                         | 0.4832         |  |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

# Dipole Verification Data> D2600V2 - SN:1132 (Date of Measurement: 2023/10/31)

### 2600MHz - Head



|             | Name      | Title        | Signature |
|-------------|-----------|--------------|-----------|
| Measure By: | Mark Dong | SAR Engineer | Mark Jong |