

Report No: JYTSZB-R12-2100019

FCC REPORT

INFINIX MOBILITY LIMITED
FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31- 35 SHAN MEI STREET FOTAN NT
:UT)
Mobile Phone
X693
Infinix
2AIZN-X693
FCC CFR Title 47 Part 15 Subpart C Section 15.247
08 Jan., 2021
09 Jan., to 20 Jan., 2021
21 Jan., 2021
PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	21 Jan., 2021	Original

Tested by:

Janet Wei Test Engineer

Date: 21 Jan., 2021

Reviewed by:

Winner Thang

Project Engineer

21 Jan., 2021 Date:

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
	_	T SUMMARY	-
4	_		
5	GEN		5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	_
	5.4 5.5	DESCRIPTION OF SUPPORT UNITS	_
	5.5 5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1	•	
	6.6.2 6.7	2 Radiated Emission Method	
	6.7.1		
	6.7.2		
7	TES	Т SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	
Δ		A – BLE – 1M	2/
			-
	-		
A	PPENDIX	A – BLE – 2M	47
T	EST DATA		47

Test Summary 4

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Conducted Band Edge	15.247 (d)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Radiated Band Edge		See Section 6.6.2	Pass
Conducted Spurious Emission	15.205 & 15.209	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Radiated Spurious Emission		See Section 6.7.2	Pass
Remark: 1. Pass: The EUT complies with the essen 2. N/A: Not Applicable.	tial requirements in the stand	ard.	

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer)

ANSI C63.10-2013 Test Method:

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	X693
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	1M&2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion polymer Battery DC3.85V-4900mAh
AC adapter:	Model: CQ-18LX
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V - 9.0V - 2.0A, 9.0V - 12.0V - 1.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode, and test samples plans

Operating Environment:

oporating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Test Samples Plans	S:			
Samples Number	Used for Test Items			
1#	Conducted measurements test method			
1#	Radiated measurements test method			
1#	EUT constructional details			
Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples,				

and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021		
EMI Test Software	AUDIX	E3	١	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021		
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021		
Cable	HP	10503A	N/A	03-05-2020	03-04-2021		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021					
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021					
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021					
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021					
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021					
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A					
PDU	MWRF-test	XY-G10	N/A	N/A	N/A					
Test Software	MWRF-tes	MTS 8310	,	Version: 2.0.0.0						
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021					

6 Test results and Measurement Data

6.1 Antenna requirement:

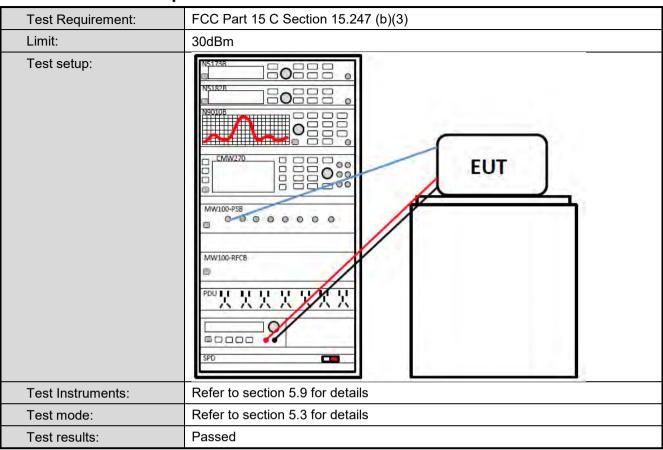
Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.
(4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional rate	ower limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.2 dBi.

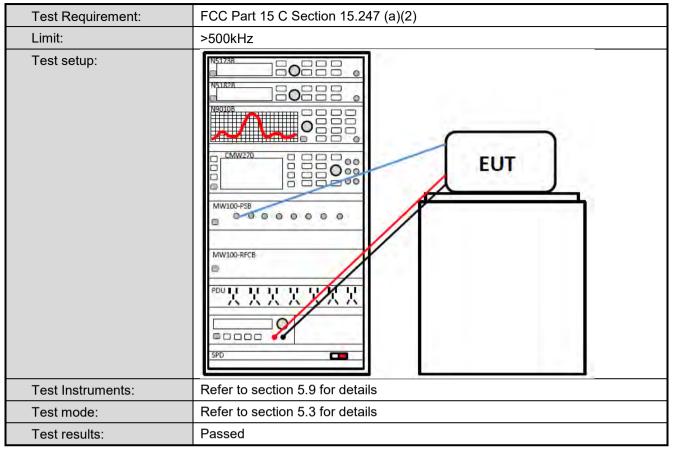
6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)							
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	<u>60</u>	50					
	* Decreases with the logarithm							
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	ich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed					
Test setup:	Reference	80cm Filter EMI Receiver	– AC power					
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details	i						
Test results:	Passed							

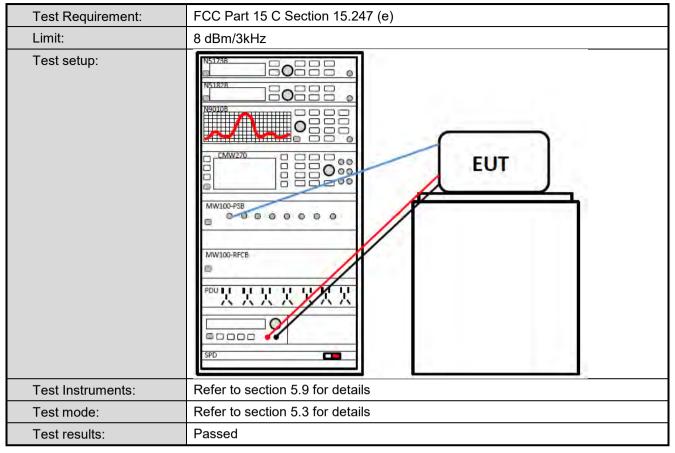

Measurement Data:

		Mobile Pl			FIO	duct mo	del:	X65	X693		
est by:	J	anet			Tes	t mode:		BLE	E Tx mode		
est frequency:	1	50 kHz ~	- 30 MHz		Pha	se:		Lin	e		
fest voltage:	А	C 120 V	/60 Hz		Env	ironmen	nt:	Ter	np: 22.5 ℃	Hur	ni: 55%
80 Level (dBuV) 70 60 50 40 30 20	22 Martin	3 67		wayayawa wayayawa	nhhhhmm	llym.the	(ppp/spikes.htm	gen http://wh	FCC PART	15.207	
10 0.15 .2		.5	1	Fre	2 quency ()	MHz)	5		10	20	30
10 0.15 .2	Read Level 1	LISN	Aux		2 quency (l Level	MHz) Limit Line	Over	Remark	10	20	30
10 0.15 .2		LISN	Aux	Cable	quency (I	Limit	Over		10	20	30

Product name:	Mobile Pl	none	e Product model:					X693			
ſest by:	Janet			Test r	node:		BLE Tx mode				
est frequency:	150 kHz ~	150 kHz ~ 30 MHz					Neutral				
Fest voltage:	voltage: AC 120 V/60			Envir	onment:		Temp: 22.5	℃ Huni: 55%			
80 20 40 40 40 40 40 40 40 40 40 4	2 45 1 2 45 1 2 45 1 45 1 45 1 45 1 5	8	AMAN AMANA AMANANA Erroru	2 uency (Mł	harmen	J	FCC PAR	RT 15.207 QP RT 15.207 AV 10 12 14 14 14 14 14 14 14 14 14 14 14 14 14			
MHz 1 0. 246 2 0. 431 3 0. 489 4 0. 611 5 0. 641 6 0. 641 7 0. 712 8 0. 727	Read LISI Level Factor dBuV dl 19.71 -0.6 33.01 -0.6 20.34 -0.6 36.63 -0.6 36.79 -0.6 24.60 -0.6 23.30 -0.6 38.78 -0.6	$\begin{array}{c} Factor\\ \hline & \\ \hline \hline & \\ \hline \\ \hline$	Loss dB 10.75 10.73 10.76 10.77 10.77 10.77 10.78 10.78	Level dBuV 29.80 43.07 30.47 46.80 46.96 34.77 33.48 48.96	dBuV 51.91 57.24 46.19 56.00 56.00 46.00 46.00 56.00	 dB -22.11 -14.17 -15.72 -9.20 -9.04 -11.23 -12.52 -7.04	Average QP QP Average Average QP				
9 1.511 10 15.388 11 15.388 12 17.944 otes: An initial pre-scan Quasi-Peak and A Final Level = Reco	lverage measure	5 2.87 5 2.87 1 1.30 on the line a ment were	performed	d at the fr	60.00 50.00 60.00 th peak de	-14.46 -18.64 -14.58 etector. s with ma	Average QP	mission.			



6.3 Conducted Output Power



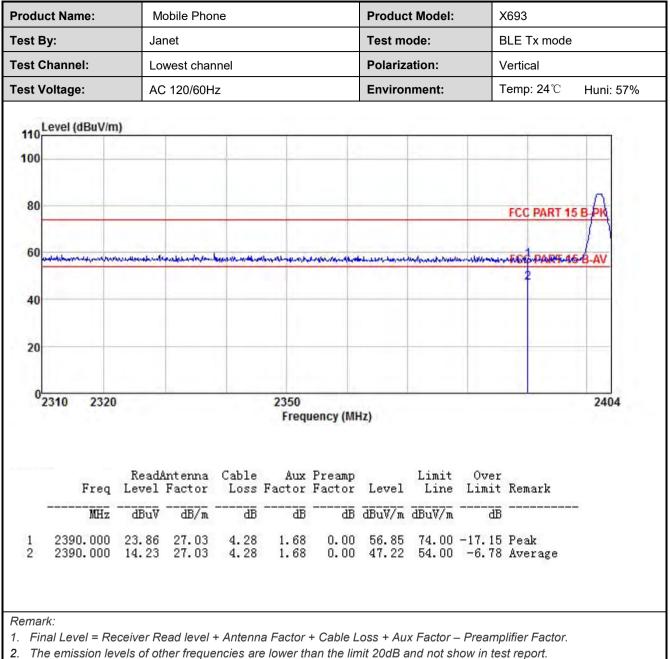
6.4 Occupy Bandwidth

6.5 Power Spectral Density

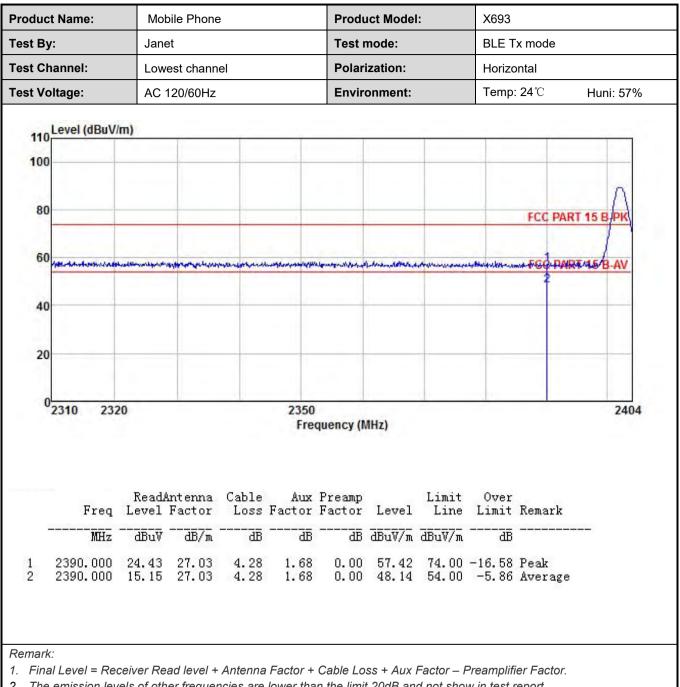
6.6 Band Edge

6.6.1 Conducted Emission Method

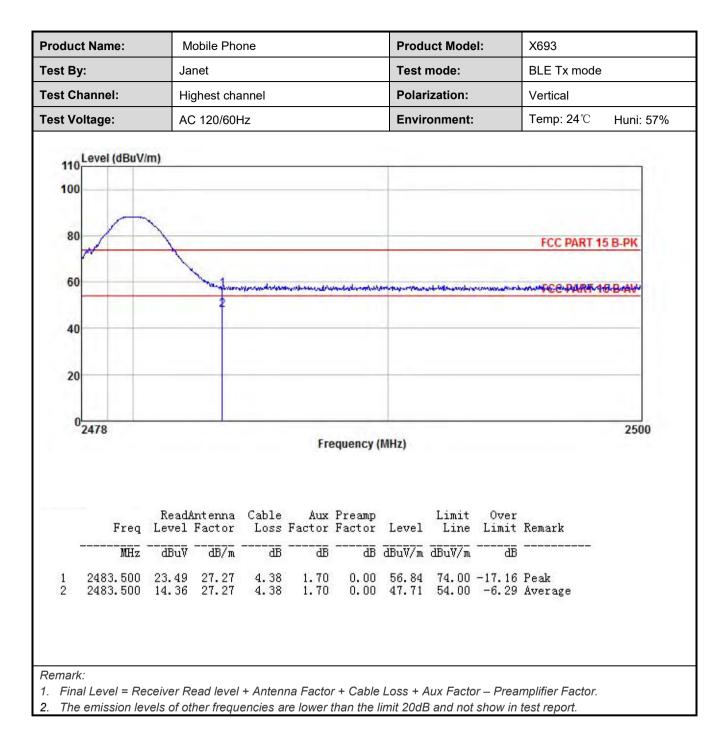
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

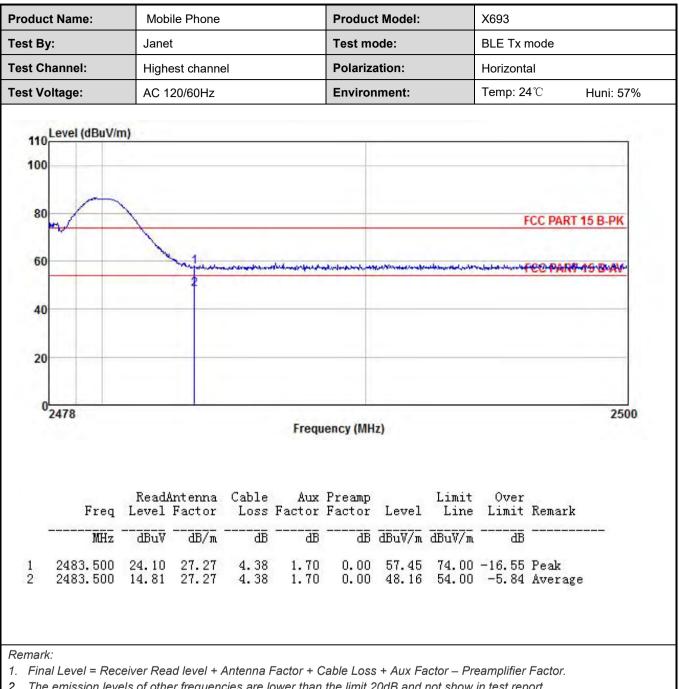


6.6.2 Radiated Emission Method

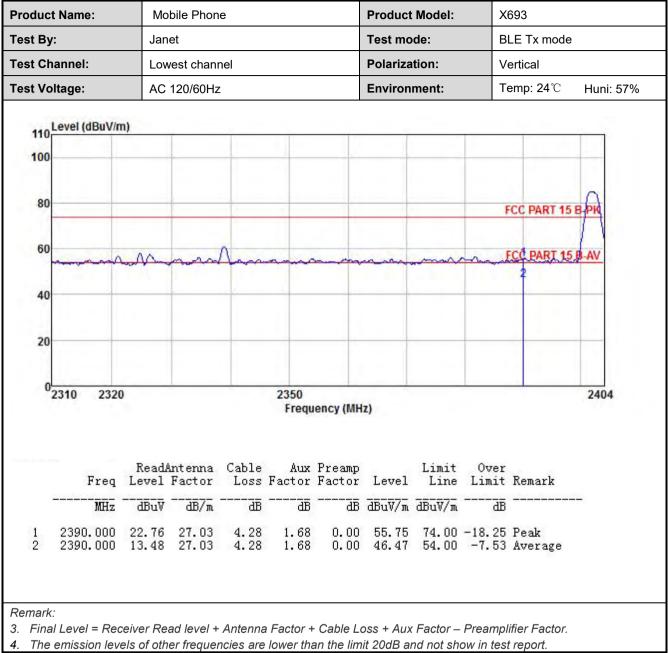

Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2390 MHz ar	nd 2483.5M⊦	Iz to 2500	MHz			
Test Distance:	3m							
Receiver setup:	Frequency	Detector			VBW	Remark		
	Above 1GHz	Peak	1MH		<u>BMHz</u>	Peak Value		
	Fraguan	RMS	1MH		<u>BMHz</u>	Average Value Remark		
Limit:	Frequen	icy	/ <u>Limit (dBuV</u> 54.0		Δ	verage Value		
	Above 10	GHz –	74.0		1	Peak Value		
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 c 	ad at a 3 meta ine the posit was set 3 m which was m and height is ad to determine zontal and ver measureme suspected e then the ant ad the rota ta e maximum m receiver syste Bandwidth v ssion level o specified, the T would be m dB margin wo	er camber. T ion of the hig eters away f nounted on t varied from ne the maxin ertical polari: ent. mission, the enna was turn eading. em was set with Maximu f the EUT in n testing con eported. Oth puld be re-te	The table weighest radia from the in the top of a one mete mum value zations of EUT was ned to heighed to Peak D m Hold Mo peak moo uld be stop nerwise the sted one l	vas rotat ation. terferen a variable r to four e of the f the ante arrange ghts fror degrees etect Fu ode. le was 1 oped and e emissi oy one u	e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees		
Test setup:		urntable)	Hern A		Tower			
Test Instruments:	Refer to section	on 5.9 for det	ails					
Test mode:	Refer to section	on 5.3 for det	ails					
Test results:	Passed							

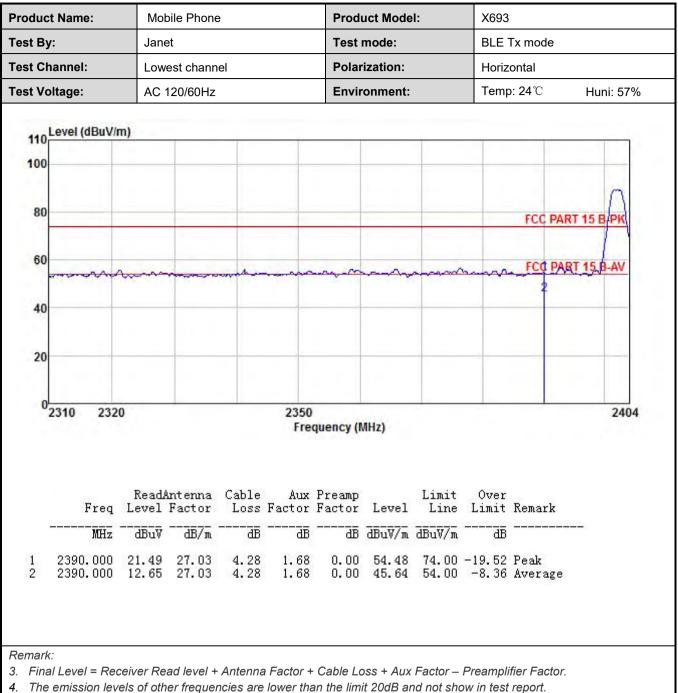
1M PHY

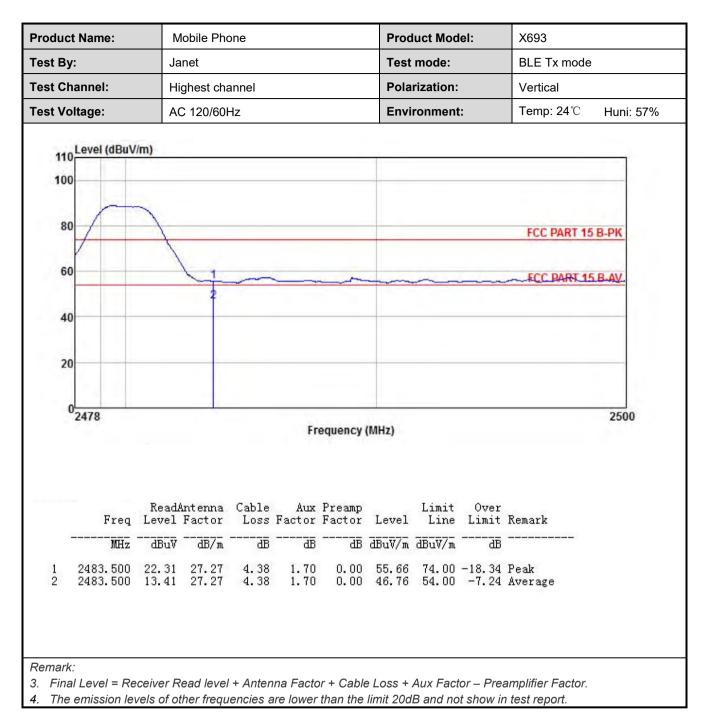


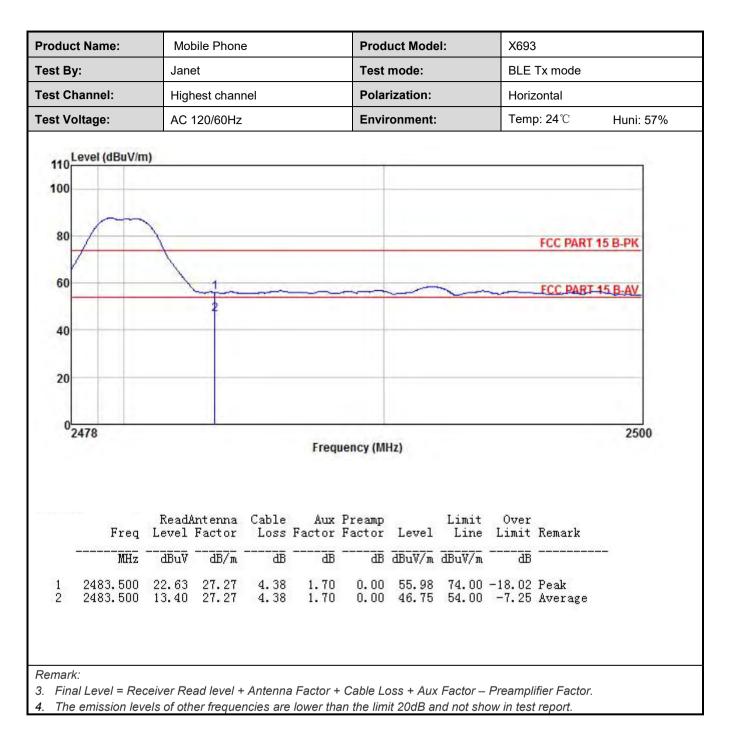


2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.




The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


2M PHY



6.7 Spurious Emission

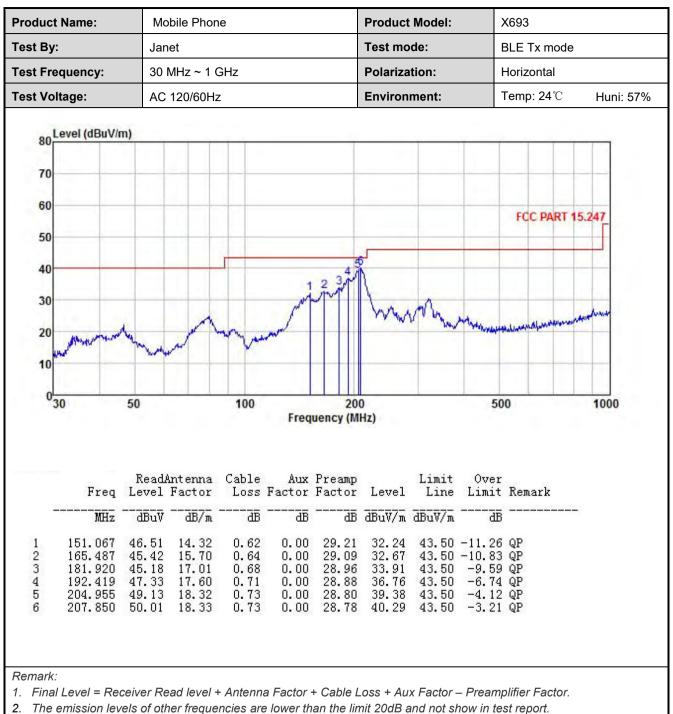
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detecto	or	RBW	VB	W	Remark	
'	30MHz-1GHz	Quasi-pe	eak	120KHz	300	KHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3M	Hz	Peak Value	
	ADOVE IGHZ	RMS		1MHz	3M	Hz	Average Value	
Limit:	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-88M	Hz		40.0		G	Quasi-peak Value	
	88MHz-216N	/Hz		43.5		G	uasi-peak Value	
	216MHz-960I			46.0			Quasi-peak Value	
	960MHz-1G	Hz		54.0			Quasi-peak Value	
	Above 1GF	17		54.0			Average Value	
				74.0			Peak Value table 0.8m(below	
	 The table of highest rad The EUT antenna, we tower. The antenna the ground Both horized make the n For each so case and the meters and to find the n The test-rest specified E If the emission the limit sp of the EUT have 10 dE 	was rotate liation. was set 3 which was na height to detern ontal and neasureme suspected then the a d the rota maximum eceiver sy Bandwidth sion level ecified, the would be B margin w	ed 36 3 m ⁴ mou is va mine vert ent. I em table reac yster with of th en te e rep vould	60 degrees t eters away inted on the t aried from o the maxim ical polarizat ission, the E ina was turned ing. m was set Maximum H be EUT in pe esting could b ported. Other d be re-tested	o deter from the top of a ne met um valitions of EUT was do he from 0 to Pea lold Mo ak moo pe stop wise the d one b	rmine ne inten varial er to f ue of f the a as arra eights degre k Def de. de was ped ar ie emis y one	a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 set to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data	
Test setup:		3m < 4m				Antenna Search Antenn Test eiver –		

	Horn Anienna Tower Horn Anienna Tower U U U U U U U U U U U U U U U U U U U
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.



Measurement Data (worst case):

Below 1GHz:

Product Name:	ame: Mobile Phon			Mobile Phone			Product Model:			X693				
est By:	Jan	et				Test m	ode:		BLE Tx m	node				
est Frequency:	30	MHz ~ 1 G	Hz			Polariza	ation:	n: Vertical						
est Voltage:	AC	120/60Hz				Environment:			Temp: 24°C Huni: 5			Temp: 24℃ Huni:		
80 Level (dBu	V/m)													
80														
70														
60							_		FCC	DART	15.247			
50									i uc i		5.24			
40 13	-													
Im	m	Å		-	m	Ň								
30	h	mer a	7	p	Var	Mary	marin				and they			
20			Loug	V			A. M	- March	wathymputer	ANDALATA				
10	-			YM.		-		_		-				
0														
030	50		100	Free	20 quency (f	00 MHz)			500		1000			
	Read	Intenna	Cable	Å1192	Presmo		Limit	Over						
Fre	eq Level		Loss 1	Factor	Factor	Level			Remark					
m	Hz dBuV		dB	₫₿	dB	dBuV/m	dBuV/m	dB						
1 33.60 2 34.76		12.40 12.56	0.36 0.34	0.00 0.00	29.96 29.95	38.34 37.94	40.00 40.00	-1.66 -2.06						
2 34.7(3 35.2) 4 46.6(5 79.5)	51 54.36	12.61 13.00	0.34 0.38	0.00	29.95	37.36 37.18	40.00	-2.64 -2.82	QP					
		12.66	0.47 0.73	0.00	29.64	35.59	40.00 43.50	-4.41	QP					
emark:														
. Final Level = I . The emission										tor.				
The Aux Facto								-	1					

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

1M PHY

			Te	est channe	el: Lowest cl	nannel			
				Detecto	or: Peak Valu	le			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.20	30.78	6.80	2.44	41.81	46.41	74.00	-27.59	Vertical
4804.00	49.03	30.78	6.80	2.44	41.81	47.24	74.00	-26.76	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	41.48	30.78	6.80	2.44	41.81	39.69	54.00	-14.31	Vertical
4804.00	42.42	30.78	6.80	2.44	41.81	40.63	54.00	-13.37	Horizontal
			Т	est chann	el: Middle ch	nannel			
	Γ			Detecto	or: Peak Val	Je			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	48.71	30.96	6.86	2.47	41.84	47.16	74.00	-26.84	Vertical
4884.00	49.16	30.96	6.86	2.47	41.84	47.61	74.00	-26.39	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	41.36	30.96	6.86	2.47	41.84	39.81	54.00	-14.19	Vertical
4884.00	42.13	30.96	6.86	2.47	41.84	40.58	54.00	-13.42	Horizontal
			Te	oct channe	el: Highest c	hannol			
					or: Peak Val				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.97	31.11	6.91	2.49	41.87	47.61	74.00	-26.39	Vertical
4960.00	49.85	31.11	6.91	2.49	41.87	48.49	74.00	-25.51	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	41.13	31.11	6.91	2.49	41.87	39.77	54.00	-14.23	Vertical
4960.00	42.69	31.11	6.91	2.49	41.87	41.33	54.00	-12.67	Horizontal
						+ Aux Factor - 0dB and not s			

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2M PHY

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	49.24	30.78	6.80	2.44	41.81	47.45	74.00	-26.55	Vertical
4804.00	49.85	30.78	6.80	2.44	41.81	48.06	74.00	-25.94	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	42.16	30.78	6.80	2.44	41.81	40.37	54.00	-13.63	Vertical
4804.00	42.44	30.78	6.80	2.44	41.81	40.65	54.00	-13.35	Horizontal
Test channel: Middle channel									
					or: Peak Valu				
	Read	Antenna	Cable	Aux	Preamp		Limit	Over	
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)	Polarization
4884.00	49.40	30.96	6.86	2.47	41.84	47.85	74.00	-26.15	Vertical
4884.00	48.24	30.96	6.86	2.47	41.84	46.69	74.00	-27.31	Horizontal
				Detector:	Average Va	alue	r		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	42.16	30.96	6.86	2.47	41.84	40.61	54.00	-13.39	Vertical
4884.00	43.56	30.96	6.86	2.47	41.84	42.01	54.00	-11.99	Horizontal
			Te	est channe	el: Highest c	hannel			
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	49.24	31.11	6.91	2.49	41.87	47.88	74.00	-26.12	Vertical
4960.00	49.18	31.11	6.91	2.49	41.87	47.82	74.00	-26.18	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
	42.38	31.11	6.91	2.49	41.87	41.02	54.00	-12.98	Vertical
4960.00	42.71	31.11							

3. Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor – Preamplifier Factor.

4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Appendix A – BLE – 1M Test Data

Maximum Conducted Output Power

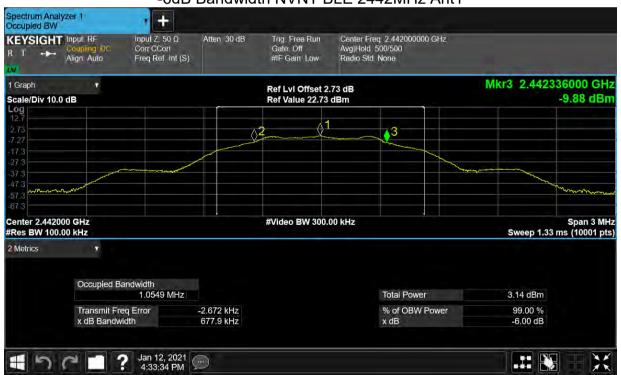
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)		
NVNT	BLE	2402	Ant1	-3.98	0	-3.98	30	Pass
NVNT	BLE	2442	Ant1	-3.037	0	-3.037	30	Pass
NVNT	BLE	2480	Ant1	-4.917	0	-4.917	30	Pass

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth


Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.68	0.5	Pass
NVNT	BLE	2442	Ant1	0.678	0.5	Pass
NVNT	BLE	2480	Ant1	0.679	0.5	Pass

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

-6dB Bandwidth NVNT BLE 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.042337649
NVNT	BLE	2442	Ant1	1.040431462
NVNT	BLE	2480	Ant1	1.03805987

OBW NVNT BLE 2402MHz Ant1

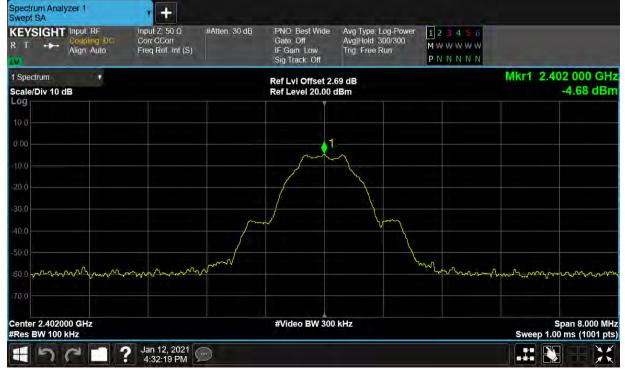
OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-18.844	8	Pass
NVNT	BLE	2442	Ant1	-17.925	8	Pass
NVNT	BLE	2480	Ant1	-19.8	8	Pass

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1


PSD NVNT BLE 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-51.32	-20	Pass
NVNT	BLE	2480	Ant1	-50.65	-20	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission


EYSIGHT	Input RF Coupling DC Align Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref. Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Avg Hold 300/300 Trig: Free Run	123456 MWWWWW PNNNNN		
Spectrum ale/Div 10 o	, dB			Ref Lvi Offset 2 Ref Level 20.00			Mkr1 2.44 -5	80 0 GH 5.60 dB
00 1								
								DL1-25.66 d
0.0 1								
0.0	\$ ² ⁴	m.m.m.m.de.m	Loopan Maralian Loopan Ka	en hann hannar tallen war	<u>~Maranarahitennitanarahitana</u>	Anang Maalum magang mangana	<u>المراجع معرفة المراجع معرفة المراجع ا</u>	on and and the second
2.0 2.0 art 2.47600 res BW 100	GHz	<u></u> 3	j namanina kaka wangin	#Video BW 300) kHz	Jung ang Mandhan pangkan apan apan apan a	Stop 2 Sweep 9.60 m	2.57600 G ns (1001 p
art 2.47600	GHz	<u>~~~</u> 3	jengengengendenska en geografie	#Video BW 30() kHz	Ange Halter teneration		
Ant 2.47600 es BW 100 Marker Table Mode	GHz kHz	X		Ŷ		Function Width		ns (1001)
Art 2.47600 es BW 100 Marker Table Mode	GHz kHz Trace Scale 1 f	× 2.	480 0 GHz	Y -5.599 dBm			Sweep 9.60 m	ns (1001)
Art 2.47600 es BW 100 Marker Table	GHz kHz	X 2. 2.	480 0 GHz 483 5 GHz 500 0 GHz	Ŷ			Sweep 9.60 m	ns (1001
And the second s	GHz kHz Trace Scale 1 f 1 f	X 2. 2.	483 5 GHz	Y -5.599 dBm -59.37 dBm			Sweep 9.60 m	ns (1001)

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-31.92	-20	Pass
NVNT	BLE	2442	Ant1	-37.23	-20	Pass
NVNT	BLE	2480	Ant1	-33.14	-20	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

EYSIGH	Cound	ing: DC	Input Z. 50 Ω Corr CCorr Freq Ref. Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Pow Avg Hold 10/10 Trig: Free Run	er 123456 MWWWWW PNNNNN		
Spectrum cale/Div 10	dB	1¥			Ref Lvi Offset 2 Ref Level 20.00			Mkr1	2.402 GH -6.21 dB
0.0 0.0		1							
0.0	_∧2								DL1 -24.70 df
0.0		a star atta	3	<u> </u>	5	hanna the total and a second		ما مواند و المراجع الم	malizeration
0.0 American	ماه سراله میداند. ا		and the second s			hours to be a second to be a second	Aleson produces and a second second second		
0.0 art 30 MHz					#Video BW 30				
0.0 art 30 MHz tes BW 100 Marker Table) kHz								Stop 25.00 G .49 s (1001 p
art 30 MHz es BW 100) kHz		×		#Video BW 30		Function Width		.49 s (1001 p
0.0 art 30 MHz es BW 100 Marker Table Mode 1 N) kHz Trace	Scale	100	2.402 GHz	#Video BW 30 Y -6.209 dBm	0 kHz		Sweep ~2	.49 s (1001 p
art 30 MHz es BW 100 Marker Table Mode 1 N 2 N) kHz Trace	Scale f		2.402 GHz 1.953 GHz	#Video BW 30 Y -6.209 dBm -36.63 dBm	0 kHz		Sweep ~2	.49 s (1001 p
0.0 art 30 MHz tes BW 100 Marker Table Mode 1 N 2 N 3 N) kHz Trace	Scale f f		2.402 GHz 1.953 GHz 4.949 GHz	#Video BW 30 Υ -6.209 dBm -36.63 dBm -53.52 dBm	0 kHz		Sweep ~2	.49 s (1001 p
art 30 MHz es BW 100 Marker Table Mode 1 N 2 N) kHz Trace	Scale f		2.402 GHz 1.953 GHz	#Video BW 30 Y -6.209 dBm -36.63 dBm	0 kHz		Sweep ~2	.49 s (1001 p

Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

000 ↓ 1 000 ↓ 1 000 ↓ 0			Input F Couplin Align: /	ig DC	Input Z: 50 Ω Corr CCorr Freq Ref: Int (#Atten: 30 dB S)	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Pov Avg Hold 10/10 Trig: Free Run	wer 123456 M ** ** ** ** P N N N N N		
000 1 0	cale/		dB	1						Mkr1	2.452 GH -3.83 dB
000 000 <th>0.0</th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	0.0			1							
Mode Trace Scale X Y Function Function Width Function Value 1 N 1 f 2.452 GHz -3.832 dBm	0.0										DL1-23-76-dl
Mode Trace Scale X Y Function Function Width Function Value 1 N 1 f 2.452 GHz -3.832 dBm	0.0						. 5				
Art 30 MHz. #Video BW 300 kHz Stop 25.00 C es BW 100 kHz * Sweep ~2.49 s (1001 f Warker Table * Mode Trace Scale X Y Function 1 1 f 2 N 1 1 f 5.174 GHz 3 N 1 4 N 1 5 N 1 5 N 1	0.0	Landhan	wand	مىرىكى مەركىرىيە مەركىيە مەركىرىيە	munsturian			matter	wanted and the second and the second	An poulante de la contra de la co	and a contraction of the second s
Mode Trace Scale X Y Function Function Width Function Value 1 N 1 f 2.452 GHz -3.832 dBm	art 3		kHz				#Video BW 3	00 kHz			
I N 1 f 2.452 GHz -3.832 dBm 2 N 1 f 5.174 GHz -40.98 dBm 3 N 1 f 5.174 GHz -52.30 dBm 4 N 1 f 7.246 GHz -54.19 dBm 5 N 1 f 9.918 GHz -54.37 dBm	/lark	er Table									
2 N 1 f 5.174 GHz -40.98 dBm 3 N 1 f 4.999 GHz -52.00 dBm 4 N 1 f 7.246 GHz -54.19 dBm 5 N 1 f 9.918 GHz -54.37 dBm		Mode	Trace	Scale	X				Function Width	Function	n Value
3 N 1 f 4.999 GHz -52.30 dBm 4 N 1 f 7.246 GHz -54.19 dBm 5 N 1 f 9.918 GHz -54.37 dBm			1	f							
4 N 1 f 7.246 GHz -54.19 dBm 5 N 1 f 9.918 GHz -54.37 dBm	1										
5 N 1 f 9.918 GHz -54.37 dBm			1								
	3	N									
	3 4	N N	1								

Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

EYSIGHT	Input RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref. Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Avg Hold 10/10 Trig: Free Run	123456 MWWWWW PNNNNN		
Spectrum ale/Div 10 d	v B			Ref LvI Offset 2 Ref Level 20.00			Mkr1	2.477 GH -6.28 dBr
00 0.0 .00	1							
0.0		^2						DL1 -25.64 dB
0.0	a marten martine	3	<u>4</u>	5 marine	t _{illege del} tation (1996)	- Jane of the and the state of the	M	a lante wash
0.0 art 30 MHz Res BW 100 M	Hz			#Video BW 30	0 kHz			Stop 25.00 G .49 s (1001 p
Marker Table								
	Trace Scale	X		Y	Function	Function Width	Function	n Value
1 N 2 N	1 f		2.477 GHz 5.174 GHz	-6.285 dBm -38.78 dBm				
2 N 3 N	1 I 1 f		5.049 GHz	-38.78 dBm -53.21 dBm				
4 N	1 f		7.246 GHz	-54.72 dBm				
5 N	1. f		0.118 GHz	-53.47 dBm				
0								

Appendix A – BLE – 2M Test Data

Maximum Conducted Output Power

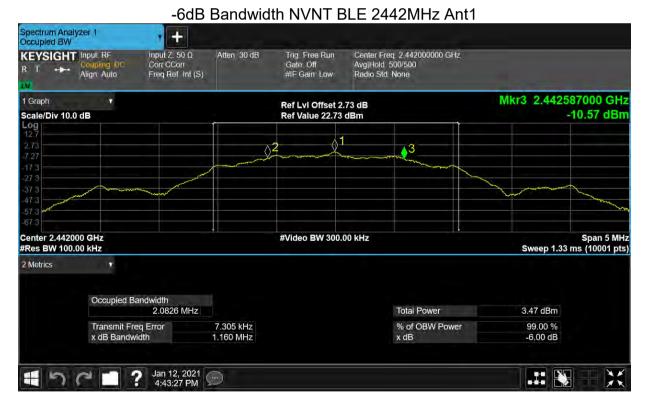
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)		
NVNT	BLE	2402	Ant1	-4.117	0	-4.117	30	Pass
NVNT	BLE	2442	Ant1	-3.178	0	-3.178	30	Pass
NVNT	BLE	2480	Ant1	-4.975	0	-4.975	30	Pass

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth


Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	1.159	0.5	Pass
NVNT	BLE	2442	Ant1	1.16	0.5	Pass
NVNT	BLE	2480	Ant1	1.166	0.5	Pass

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

-6dB Bandwidth NVNT BLE 2480MHz Ant1

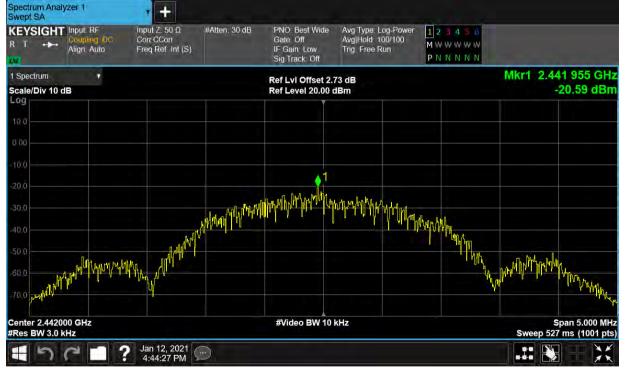
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	2.07556749
NVNT	BLE	2442	Ant1	2.073579961
NVNT	BLE	2480	Ant1	2.077783729

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

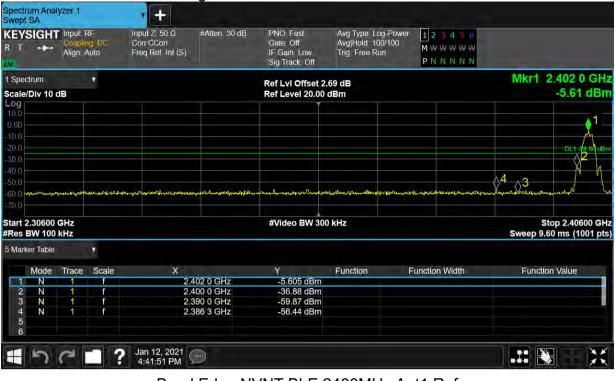

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-21.528	8	Pass
NVNT	BLE	2442	Ant1	-20.585	8	Pass
NVNT	BLE	2480	Ant1	-22.429	8	Pass

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1

PSD NVNT BLE 2480MHz Ant1

Band Edge


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-51.57	-20	Pass
NVNT	BLE	2480	Ant1	-51.34	-20	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

EYS	IGHT	Input F Couplin Align: A	ig: DC	Input Z, 50 Ω Corr CCorr Freq Ref. Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Avg Hold 100/100 Trig: Free Run	123456 MWWWWW PNNNNN		
	rum Div 10 c	B				Ref LvI Offset 2 Ref Level 20.00			Mkr1 2	.480 0 GH -5.57 dBr
0.0	1									
0.0	A									D£1 -25.70 dB
0.0 50.0 <mark>M</mark> 50.0		1 22	ممرض المعود	wellenson weiter sinnen	u-prs-stjategiaetsaegan	لموسي المستعمل المستعم و	uttay to by a superior and the states of the	-	-wardy March Parton	Lucybalvotbaau
	47600 W 100				4	#Video BW 30	0 kHz			op 2.57600 G 0 ms (1001 p
	r Table		T.							
	Mode	Trace	Scale	×		Y S S S S S S S S S S S S S S S S S S S	Function	Function Width	Function	n Value
2	N	1	f		2.480 0 GHz 2.483 5 GHz		-5.568 dBm -57.04 dBm			
3	N	1	f		500 0 GHz	-58.59 dBm				
4 5 6	N	1	t	2.4	183 5 GHz	-57.04 dBm				

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-36.19	-20	Pass
NVNT	BLE	2442	Ant1	-36.76	-20	Pass
NVNT	BLE	2480	Ant1	-37.13	-20	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

		ut RF Ipling DC m Auto	Corr C	Z: 50 Ω Corr Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type. Log-Powe Avg Hold 10/10 Trig. Free Run	1 2 3 4 5 6 M W W W W W P N N N N N		
Spectrum cale/Div						Ref Lvi Offsei Ref Level 20.			Mkr1	2.412 GH -7.56 dBr
0.0		<u>1</u>								
0.0										DL1 -24.75 dB
0.0 0.0 0.0	2	harman	3		4 5	and margin and a stranger and the stranger	and product and starting the start of the	allingen fall particular after attack	Langer of the state of the stat	ىيەر بەر بىرى مەرىيى مەرىيى مەرىيى بىرىيى بىرىي مەرىيى بىرىيى
0.0 art 30 M Res BW 1						#Video BW 3	300 kHz			Stop 26.50 G .57 s (1001 p
Marker Ta	ble									
Mo	de Tra	ce Scale		х		Y	Function	Function Width	Function	n Value
1 N		f		2	2.412 GHz	-7.565 dBr				
2 N		f			904 MHz	-40.95 dBr				
3 N		f			1.900 GHz	-53.69 dBr				
		f			7.336 GHz 9.744 GHz	-54.34 dBr -53.93 dBr				
4 N 5 N	1					-00,800 (D)				

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

	Alig	pling: DC n: Auto		CCorr Ref. Int (S)		Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log Avg Hold 10/ Trig: Free Rur			
Spectrum ale/Div						Ref Lvi Offsei Ref Level 20.			Mkr1	2.439 GH -7.24 dB
0.0 00		1								
0.0										DL1-23.97 d
).0).0	^2		_∆3		45					
0.0 0.0 Lund	Lowensel with	homen	mon	munu	in marine marker	and the station of the state	Marine and a second and	MJInday Tophelon April provide and a first by a work of the sys	and the second	Jan Basern Januar Janaman
art 30 Mi es BW 1	Hz 100 kHz					#Video BW 3	300 kHz		Sweep ~:	Stop 26.50 C 2.57 s (1001 p
/larker Ta	ble									
Mod	de Trad	e Scal	e	х		Ý	Function	Function Width	Functio	on Value
1 N		f			2.439 GHz	-7.241 dBr				
2 N		f			1.936 GHz	-40.73 dBr				
3 N 4 N		f			4.821 GHz 7.283 GHz	-53.57 dBr -53.54 dBr				
5 N		f			9.665 GHz	-54.14 dBr				

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

T		Input F Couplin Align: /	ng: DC	Input Z: 5 Corr CCo Freq Ref		#Atten: 30 dB	PNO Fast Gate Off IF Gain: Low Sig Track: Off	Avg Type: Log Avg Hold 10/1 Trig: Free Run	10 1	123456 M₩₩₩₩₩₩ PNNNNN		
ale/	trum Div 10 (dB	1				Ref Lvi Offset Ref Level 20.0				Mkr1	2.492 GH -8.91 dB
og 0.0 .00		-	I—									
0.0 0.0 0.0												DL1 -25.84 d
0.0 0.0 0.0	2	and the second sec	aluman and alutha	and 3	4	from the marked of the second s	۹۹۰۴۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	ىيە _{يىدى} مەرنىدەمەرسىملار	warrander and	ىرىلىكىرىمىيە ^{رىر} ىمىيە يەرىمىيە يەرىمىيە يەرىپىرىن	an transformer and	ang ta an
	0 MHz 3W 100	kHz					#Video BW 3	300 kHz			Sweep ~2	Stop 26.50 G 2.57 s (1001 p
Mark	er Table											
	Mode	Trace	Scale		х		Y	Function	Fur	nction Width	Functio	n Value
1	N	1	f			.492 GHz	-8.912 dBr					
2	N	1	f			904 MHz	-42.97 dBr					
3	N	1	f			.033 GHz	-53.89 dBr					
4 5	N	1	f			.283 GHz	-53.79 dBr					
	N	1			9	.771 GHz	-53.99 dBr	1				

-----End of report-----