

TEST REPORT

Applicant Name: Address:

Report Number: FCC ID: INFINIX MOBILITY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT, Hong Kong 2401S73382E-RF-00B 2AIZN-X6861

Test Standard (s)

FCC PART 96

Sample Description

Product Type:	Mobile Phone
Model No.:	X6861
Multiple Model(s) No.:	N/A
Trade Mark:	Infinix
Date Received:	2024/04/30
Issue Date:	2024/07/05

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Andy Yu RF Engineer

Approved By:

Wan and

Nancy Wang RF Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF050

Page 1 of 24

Version 1.0 (2023/10/07)

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications Support Equipment List and Details	
SUPPORT CABLE DESCRIPTION	
BLOCK DIAGRAM OF TEST SETUP	9
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §1.1307(B) & §2.1093 - RF EXPOSURE INFORMATION	
Applicable Standard	
TEST RESULT	
FCC§2.1047 - MODULATION CHARACTERISTIC	14
FCC § 2.1046,§96.41(B) - RF OUTPUT POWER	15
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §2.1049,§96.41 - OCCUPIED BANDWIDTH	
Applicable Standard Test Procedure	
TEST DATA	
FCC §2.1051,§96.41(E) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC § 2.1053;§96.41(E) - SPURIOUS RADIATED EMISSIONS	
Test Procedure	
TEST DATA	
FCC§96.41(E) - BAND EDGES	20
APPLICABLE STANDARD	
Test Procedure Test Data	
IESI DAIA	

TR-EM-RF050

Version 1.0 (2023/10/07)

FCC § 2.1055- FREQUENCY STABILITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	22
EUT PHOTOGRAPHS	23
TEST SETUP PHOTOGRAPHS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401S73382E-RF-00B	Original Report	2024/07/05

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

D 1 (
Product	Mobile Phone
Tested Model	X6861
Multiple Model(s)	N/A
Eraguanay Danga	5G NR Band 77: 3550-3700MHz (TX/RX)
Frequency Range	5G NR Band 78: 3550-3700MHz (TX/RX)
	DC_2A_n78A, DC_4A_n78A, DC_5A_n78A, DC_7A_n78A, DC_38A_n78A,
EN-DC possible combinations	DC_41A_n78A, DC_66A_n78A, DC_5A_n77A, DC_7A_n77A, DC_41A_n77A,
	DC_66A_n77A
Carrier aggregation	None Carrier aggregation
Modulation Technique	DFT-s-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM
Modulation Technique	CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM
Antenna Specification [#]	Please refer to the Antenna Specifications [#] , which was provided by manufacturer.
Voltage Range	DC 3.91V from battery or DC 5V/5-10V/ 11V from adapter
	2KRB-1 for Radiated Emissions Test
Sample serial number	2KRB-2 for RF Conducted Test
	(Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
	VL: Low Voltage 3.45V
Normal/Extreme condition [#]	VN: Normal Voltage 3.91V
	VH: High Voltage 4.5V (provided by the applicant)
	Model: U450XSB
	Input: 100-240V,50/60Hz,1.8A
Adapter Information	Output: 5.0V,3.0A,15.0W
	or 5.0~10.0V,4.5A
	or 11.0V,4.1A,45.0W Max

Remark:

1. For NSA mode, we only show the combination of the maximum power among all NSA combinations in the report as below: DC 5A n77A, DC 5A n78A. Please refer to report 2401S73382E-RF-00A for worst case.

2. The device is an End User Device.

3. The device has multiple antennas in each frequency band, all of which share the same transmit signal paths, and the transmit antenna is selected by the antenna switch. Only the worst case is recorded in this report.

Objective

This test report is in accordance with Part 2-Subpart J, Part 96 of the Federal Communication Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 96-Citizens Broadband Radio Service

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Channel Bandwidth		$\pm 5\%$	
	RF Frequency	213.55Hz(k=2, 95% level of confidence)	
RF o	output power, conducted	0.72 dB(k=2, 95% level of confidence)	
Unwa	nted Emission, conducted	1.75 dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Horizontal)	4.48dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Vertical)	4.55dB(k=2, 95% level of confidence)	
	200MHz~1000MHz (Horizontal)	4.85dB(k=2, 95% level of confidence)	
Emissions, Radiated	200MHz~1000MHz (Vertical)	5.05dB(k=2, 95% level of confidence)	
	1GHz - 6GHz	5.35dB(k=2, 95% level of confidence)	
	6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)	
	18GHz - 40GHz	5.16dB(k=2, 95% level of confidence)	
Temperature		±1°C	
	Humidity	$\pm 1\%$	
	Supply voltages	$\pm 0.4\%$	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The final qualification test was performed with the EUT operating at normal mode.

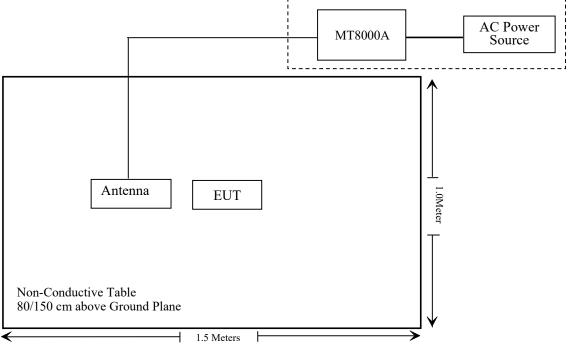
The test items were performed with the EUT operating at testing mode. Test was performed with channels as below table:

D	Frequency Range	Bandwidth		Test Frequency (MHz)	
Bands	(MHz)	(MHz)	Low Channel	Middle Channel	High Channel
		10	3555.0	3625.0	3695.0
		15	3557.5	3625.0	3692.5
		20	3560.0	3625.0	3690.0
		30	3565.0	3625.0	3685.0
		40	3570.0	3625.0	3680.0
N77	3550-3700	50	3575.0	3625.0	3675.0
		60	3580.0	3625.0	3670.0
		70	3585.0	3625.0	3665.0
		80	3590.0	3625.0	3660.0
		90	3595.0	3625.0	3655.0
		100 3600.0	3600.0	3625.0	3650.0
		10	3555.0	3625.0	3695.0
		15	3557.5	3625.0	3692.5
		25	3562.5	3625.0	3687.5
		30	3565.0	3625.0	3685.0
		40	3570.0	3625.0	3680.0
N78	3550-3700	50	3575.0	3625.0	3675.0
		60	3580.0	3625.0	3670.0
		70	3585.0	3625.0	3665.0
		80	3590.0	3625.0	3660.0
		90	3595.0	3625.0	3655.0
		100	3600.0	3625.0	3650.0

OFDM modulation, therefore, we chose higher power (DFT-s-OFDM modulation) to perform all tests and show in the report.

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Anritsu	Radio Communication Test Station	MT8000A	6262309799

Support Cable Description

Cable Description	Length (m)	From / Port	То
Un-shielded Un-detachable AC cable	1.2	AC Power	MT8000A

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
§1.1307 ,§2.1093	RF Exposure Information	Compliant
§2.1046;§96.41(b)	RF Output Power	Compliant
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049;§96.41	Occupied Bandwidth	Compliant
§ 2.1051;§96.41(e)	Spurious Emissions at Antenna Terminal	Compliant
§ 2.1053;§96.41(e)	Field Strength of Spurious Radiation	Compliant
§96.41(e)	Band Edge	Compliant
§ 2.1055	Frequency stability	Compliant

Report No.: 2401S73382E-RF-00B

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
R&S	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15
Sonoma instrument	Pre-amplifier	310 N	186238	2023/06/08	2024/06/07
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber Cable 1	F-03-EM236	2023/08/03	2024/08/02
Unknown	Cable	Chamber Cable 4	EC-007	2023/08/03	2024/08/02
COM-POWER	Dipole Antenna	AD-100	721027	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26
COM-POWER	Pre-amplifier	PA-122	181919	2023/06/29	2024/06/28
Schwarzbeck	Horn Antenna	BBHA9120D (1201)	1143	2023/07/26	2026/07/25
A.H.System	Horn Antenna	SAS-200/571	135	2021/07/14	2024/07/13
Unknown	RF Cable	KMSE	0735	2023/10/08	2024/10/07
Unknown	RF Cable	UFA147	219661	2023/10/08	2024/10/07
Unknown	RF Cable	XH750A-N	J-10M	2023/10/08	2024/10/07
JD	Filter Switch Unit	DT7210FSU	DQ77930	NCR	NCR
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	NCR	NCR
Anritsu	Radio Communication Analyzer	MT8821C	6262287697	2023/12/18	2024/12/17
Anritsu	Radio Communication Test Station	MT8000A	6262309799	2023/12/18	2024/12/17
A.H.System	Pre-amplifier	PAM-1840VH	190	2023/08/02	2024/08/01
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
Electro-Mechanics Co	Horn Antenna	3116	2026	2023/09/18	2026/09/17
UTIFLEX	RF Cable	NO. 13	232308-001	2023/08/03	2024/08/02
Agilent	Signal Generator	N5183A	MY50140588	2023/12/18	2024/12/17

Report No.: 2401S73382E-RF-00B

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	RF Conducted Test					
R&S	SPECTRUM ANALYZER	FSV40-N	102259	2024/01/16	2025/01/15	
BACL	Temperature & Humidity Chamber	BTH-150-40	30145	2024/01/16	2025/01/15	
Anritsu	Radio Communication Analyzer	MT8821C	6262287697	2023/12/18	2024/12/17	
Anritsu	Radio Communication Test Station	MT8000A	6262309799	2023/12/18	2024/12/17	
Keysight	UXM 5G Wireless Test Platform	E7515B	MY58120284	2024/04/15	2025/04/14	
JD	Filter Switch Unit	DT7210FSU	DQ77930	NCR	NCR	
JD	Multiplex Switch Test Control Set	DT7210SCU	DQ77929	NCR	NCR	
instek	DC Power Supply	GPS-3030DD	EM832096	NCR	NCR	
Fluke	Digital Multimeter	287	19000011	2023/06/08	2024/06/07	
Fluke	Digital Multimeter	287	19000011	2024/05/21	2025/05/20	
WEINSCHEL	3dB Attenuator	Unknown	F-03-EM220	2023/07/04	2024/07/03	
narda	Power divider	SN5	100005	2023/12/07	2024/12/06	
Unknown	RF Cable	65475	01670515	2023/07/04	2024/07/03	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) & §2.1093 - RF EXPOSURE INFORMATION

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: 2401S73382E-SA.

FCC§2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d) and Part 96, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 96.41(b) - RF OUTPUT POWER

Applicable Standard

According to §96.41(b) The following power requirements apply to stations transmitting in the 3550-3700MHz band:

Unless otherwise specified in this section, the maximum effective isotropic radiated power (EIRP) and maximum Power Spectral Density (PSD) of any CBSD and End User Device must comply with the limits shown in the table in this paragraph (b):

Device	Maximum EIRP (dBm/10 megahertz)	Maximum PSD (dBm/MHz)
End User Device	23	n/a
Category A CBSD	30	20
Category B CBSD ¹	47	37

¹ Category B CBSDs will only be authorized for use after an ESC is approved and commercially deployed consistent with §§ 96.15 and 96.67.

Test Procedure

Conducted method: ANSI C63.26-2015 Section 5.2

The RF output of the transmitter was connected to the MT8000A through sufficient attenuation.

Test Data

Environmental Conditions

Temperature:	24.5~26 °C
Relative Humidity:	45~60%
ATM Pressure:	101kPa

The testing was performed by Jim Cheng from 2024-05-15 to 2024-05-31.

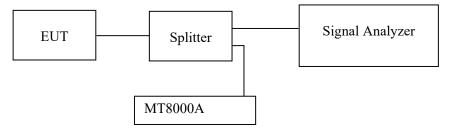
EUT operation mode: Transmitting (Worst case record in the reports)

Please refer to the Appendix D3 for Conducted Power

Please refer to the Appendix E2 for Peak-to-average ratio (PAR)

FCC §2.1049, § 96.41 - OCCUPIED BANDWIDTH

Applicable Standard


FCC 47 §2.1049, § 96.41

Test Procedure

ANSI C63.26-2015 Section 5.4.4

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Data

Environmental Conditions

Temperature:	24.5~26 °C
Relative Humidity:	45~60%
ATM Pressure:	101kPa

The testing was performed by Jim Cheng from 2024-05-28 to 2024-06-18.

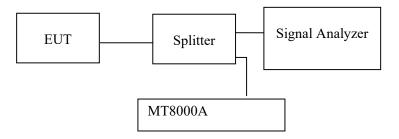
EUT operation mode: Transmitting (Worst case record in the reports)

Test Result: Pass

Please refer to the Appendix F2 for occupied bandwidth

FCC §2.1051, § 96.41(e) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard


FCC §2.1051, § 96.41(e)

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

ANSI C63.26-2015 Section 5.7

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Note: the worst case path loss (cable loss and splitter inset loss) among the test frequency range has included in plots.

Test Data

Environmental Conditions

Temperature:	24.5~26 °C
Relative Humidity:	45~60%
ATM Pressure:	101kPa

The testing was performed by Jim Cheng from 2024-05-23 to 2024-05-24.

EUT operation mode: Transmitting (Worst case record in the reports)

Test result: Pass

Please refer to the Appendix G2 for spurious emissions at antenna terminals.

FCC § 2.1053; § 96.41(e) - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, § 96.41(e)

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

ANSI/TIA-603-E-2016 Section 2.2.12 KDB 671168 D01 v03r01 Section 6.2

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the receiving antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Test Data

Environmental Conditions

Temperature:	25~25.6 °C		
Relative Humidity:	50 %		
ATM Pressure:	101 kPa		

The testing was performed by Warren Huang from 2024-05-08 to 2024-05-11 for Below1GHz and Dylan Yang from 2024-05-10 to 2024-05-11 for above 1GHz.

EUT operation mode: Transmitting (Scan with X-axis, Y-axis, Z-axis, the worst case Y-axis was recorded)

The worst case is as below:

Test Mode Description: (worst case)

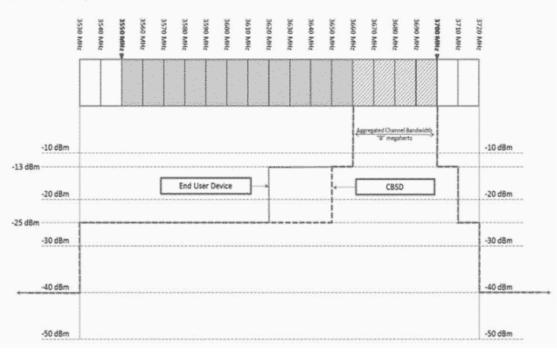
Mode	NR Band	Channel	SCS(kHz)	Condition
S A	n77	Low/Middle/High	30	10MHz_DFT-s-OFDM (QPSK)
SA	n78	Low/Middle/High	30	10MHz_DFT-s-OFDM (QPSK)

	Receiver p. Substituted Absolute							
Frequency	Reading	Polar	Substituted	Cable	Antenna	Level	Limit	Margin
(MHz)	(dBµV)	(H / V)	Level (dBm)	Loss (dB)	Gain (dBi/dBd)	(dBm)	(dBm)	(dB)
				. ,	, ,			
	N77_2(3550MHz-3700MHz)_ANT0 Low Channel							
953.0	32.59	Н	-63.9	1.36	0.0	-65.26	-40	25.26
953.0	32.58	V	-61.5	1.36	0.0	-62.86	-40	22.86
7110.00	44.28	Н	-53.1	1.90	10.20	-44.80	-40	4.80
7110.00	44.54	V	-53.0	1.90	10.20	-44.70	-40	4.70
			Middle (Channel				
955.8	32.61	Н	-63.9	1.36	0.0	-65.26	-40	25.26
955.8	32.75	V	-61.3	1.36	0.0	-62.66	-40	22.66
7250.00	45.14	Н	-51.5	1.90	10.40	-43.00	-40	3.00
7250.00	44.92	V	-52.0	1.90	10.40	-43.50	-40	3.50
			High Cl					
954.3	32.86	Н	-63.6	1.36	0.0	-64.96	-40	24.96
954.3	32.88	V	-61.2	1.36	0.0	-62.56	-40	22.56
7390.00	44.82	Н	-51.5	1.90	10.60	-42.80	-40	2.80
7390.00	44.96	V	-51.7	1.90	10.60	-43.00	-40	3.00
		I	N78_2(3550MHz-3		z)_ANT0			
			Low Cl	1			1	
958.5	32.31	Н	-64.2	1.36	0.0	-65.56	-40	25.56
958.5	32.34	V	-61.7	1.36	0.0	-63.06	-40	23.06
7110.00	46.28	Н	-51.1	1.90	10.20	-42.80	-40	2.80
7110.00	45.87	V	-51.6	1.90	10.20	-43.30	-40	3.30
			Middle (1				
954.5	32.96	Н	-63.5	1.36	0.0	-64.86	-40	24.86
954.5	33.01	V	-61.0	1.36	0.0	-62.36	-40	22.36
7250.00	44.72	Н	-51.9	1.90	10.40	-43.40	-40	3.40
7250.00	43.65	V	-53.3	1.90	10.40	-44.80	-40	4.80
052.2	22.10	TT	High C	1	0.0	() ((10	24.66
953.3	33.19	H	-63.3	1.36	0.0	-64.66	-40	24.66
953.3	33.28	V	-60.8	1.36	0.0	-62.16	-40	22.16
7390.00	44.89	H	-51.4	1.90	10.60	-42.70	-40	2.70
7390.00	45.52	V	-51.1	1.90	10.60	-42.40	-40	2.40

Note:

Absolute Level = Reading Level + Substituted Factor Substituted Factor contains: Substituted Level - Cable loss+ Antenna Gain Margin = Limit - Absolute Level

FCC§96.41(e) - BAND EDGES


Applicable Standard

According to FCC § 96.41(e)

3.5 GHz Emissions and Interference Limits -

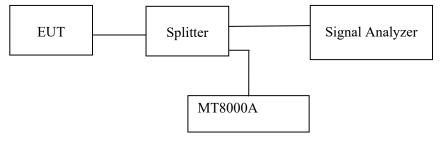
(1) General protection levels.

Figure 1 to paragraph (e) - Protection levels

(i) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by the SAS to CBSDs, the conducted power of any CBSD emission outside the fundamental emission bandwidth as specified in paragraph (e)(3) of this section (whether the emission is inside or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge, the conducted power of any CBSD emission shall not exceed -25 dBm/MHz. The upper and lower SAS assigned channel edges are the upper and lower limits of any channel assigned to a CBSD by an SAS, or in the case of multiple contiguous channels, the upper and lower limits of the combined contiguous channels.

(ii) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25

dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.


(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

Test Procedure

ANSI C63.26-2015 Section 5.7

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency

Test Data

Environmental Conditions

Temperature:	24.5~26 °C		
Relative Humidity:	45~60%		
ATM Pressure:	101kPa		

The testing was performed by Jim Cheng from 2024-05-25 to 2024-05-31

EUT operation mode: Transmitting (Worst case record in the reports)

Test Result: Pass

Please refer to the Appendix H2 for band edges.

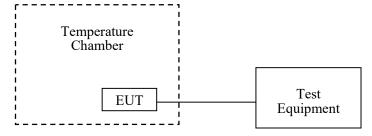
Please refer to the Appendix J ACLR

FCC § 2.1055- FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055

According to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.


Test Procedure

ANSI C63.26-2015 Section 5.6

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Data

Environmental Conditions

Temperature:	24.5~26 °C
Relative Humidity:	45~60%
ATM Pressure:	101kPa

The testing was performed by Jim Cheng from 2024-05-15 to 2024-05-31.

EUT operation mode: Transmitting (Worst case record in the reports)

Test Result: Pass

Please refer to the Appendix I14~I24 for frequency stability.

EUT PHOTOGRAPHS

Please refer to the attachment 2403S73382E-RF-EXP External photo and 2403S73382E-RF-INP Internal photo

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401S73382E-RF Test Setup photo.

***** END OF REPORT *****