

TEST REPORT

Applicant: INFINIX MOBILITY LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN HONG KONG

FCC ID: 2AIZN-X6835

Product Name: Mobile Phone

Standard(s): 47 CFR Part 15, Subpart C(15.247) ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR221263962-00E

Date Of Issue: 2023/2/23

Reviewed By: Sun Zhong Swn Zhong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

TEST FACILITY	2
DECLARATIONS	2
DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION	7
1.2.1 EUT Operation Condition:	
1.2.2 Support Equipment List and Details	7
1.2.3 Support Cable List and Details	
1.2.4 Block Diagram of Test Setup 1.3 MEASUREMENT UNCERTAINTY	
2. SUMMARY OF TEST RESULTS	
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 AC LINE CONDUCTED EMISSIONS	
3.1.1 Applicable Standard	
3.1.2 EUT Setup	
3.1.3 EMI Test Receiver Setup3.1.4 Test Procedure	
3.1.5 Corrected Amplitude & Margin Calculation	
3.2 RADIATION SPURIOUS EMISSIONS	
3.2.1 Applicable Standard	14
3.2.2 EUT Setup	
3.2.3 EMI Test Receiver & Spectrum Analyzer Setup3.2.4 Test Procedure	15
3.2.5 Corrected Amplitude & Margin Calculation	
3.3 6 DB EMISSION BANDWIDTH:	
3.3.1 Applicable Standard	
3.3.2 EUT Setup	
3.3.3 Test Procedure 3.4 MAXIMUM CONDUCTED OUTPUT POWER:	
3.4.1 Applicable Standard 3.4.2 EUT Setup	
3.4.3 Test Procedure	
3.5 MAXIMUM POWER SPECTRAL DENSITY:	
3.5.1 Applicable Standard	
3.5.2 EUT Setup	
3.5.3 Test Procedure 3.6 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE:	
-	
3.6.1 Applicable Standard 3.6.2 EUT Setup	
3.6.3 Test Procedure	

Page 3 of 46

Report No.: CR221263962-00E

3.7 DUTY CYCLE:	20
3.7.1 EUT Setup 3.7.2Test Procedure	
3.8 ANTENNA REQUIREMENT	20
3.8.1 Applicable Standard 3.8.2 Judgment	20 20
4. Test DATA AND RESULTS	21
4.1 AC LINE CONDUCTED EMISSIONS	21
4.2 RADIATION SPURIOUS EMISSIONS	24
4.3 6 DB EMISSION BANDWIDTH:	
4.4 99% Occupied Bandwidth:	34
4.5 MAXIMUM CONDUCTED OUTPUT POWER:	37
4.5 MAXIMUM POWER SPECTRAL DENSITY:	
4.6 100 KHz Bandwidth of Frequency Band Edge:	41
4.7 DUTY CYCLE:	44
5. RF EXPOSURE EVALUATION	
5.1 APPLICABLE STANDARD	46

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR221263962-00E	Original Report	2023/2/23

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Mobile Phone
EUT Model:	X6835
Operation Frequency:	2402-2480MHz(BLE)
Maximum Peak Output Power (Conducted):	-6.06 dBm(BLE)
Modulation Type:	BLE: GFSK
Rated Input Voltage:	DC 3.85V from battery or charged by adapter
Serial Number:	1WPX
EUT Received Date:	2023/1/6
EUT Received Status:	Good

Operation Frequency Detail: For BLE:

Channel Frequency (MHz)		Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
•••			
		38	2478
19	2440	39	2480
Per section 15.31(m), the	below frequencies were perform	ned the test as below:	
Test	Channel		quency 1Hz)
Lowest		2402	
Middle		2440	
Highest		2480	

Antenna Information Detail▲:

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
Sunnyway	FPC	50	2.4~2.5GHz	0.8 dBi
The Method of \$15,203 Co	mpliance:			

he Method of §15.203 Compliance:

Antenna must be permanently attached to the unit.

Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Accessory Information:

Accessory Description	Manufacturer	Model
Adapter	Infinix	U180XSA

Page 6 of 46

1.2 Description of Test Configuration 1.2.1 EUT Operation Condition:

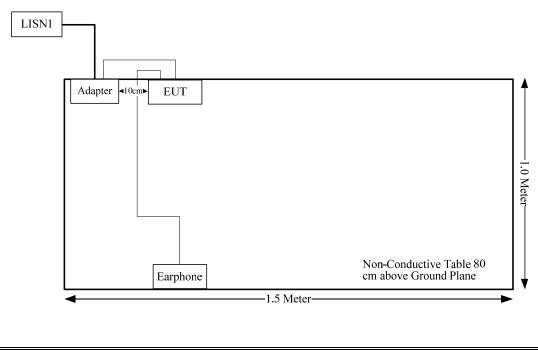
F	or	RTE:	

EUT Operation Mode:	The system was configured for testing in Engineering Mode, which was provided by the manufacturer.		
Equipment Modifications:	No		
EUT Exercise Software:	Engineering mode		
T 1 0			

The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer \blacktriangle :

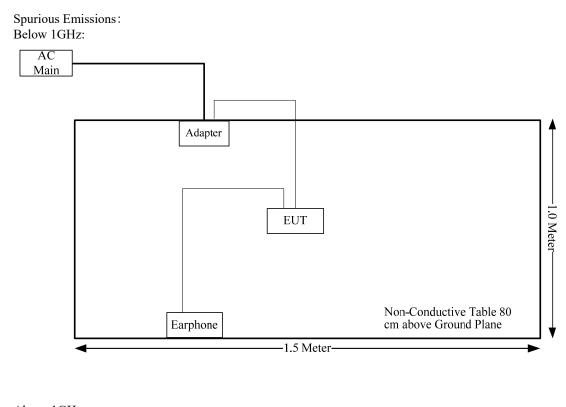
Test Modes	Power Level Setting			
Test Modes	Lowest Channel	Middle Channel	Highest Channel	
1Mbps	default	default	default	
2Mbps	default	default	default	

1.2.2 Support Equipment List and Details

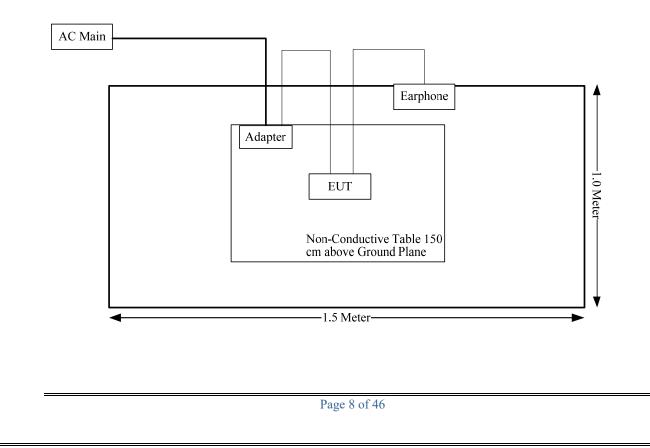

Manufacturer	Description	Model	Serial Number	
/	/	/	/	

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	Yes	No	1.2	Adapter	EUT
Earphone Cable	No	No	1.2	EUT	Earphone


1.2.4 Block Diagram of Test Setup

AC line conducted emissions:



Page 7 of 46

Report No.: CR221263962-00E

Above 1GHz:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB,18G~26.5G;5.47 dB,26.5G~40G;5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	$\pm 1^{\circ}\mathbb{C}$
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
§15.207(a)	AC line conducted emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant
FCC§15.247 (i) & §1.1307 & §2.1093	RF Exposure Evaluation	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 AC Line Conducted Emissions

3.1.1 Applicable Standard

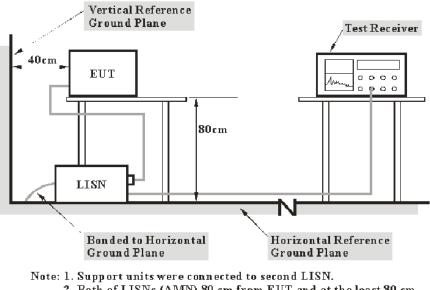
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μV within the frequency band 535-1705 kHz, as measured using a 50 $\mu H/50$ ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

3.1.2 EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductors.

3.1.5 Corrected Amplitude & Margin Calculation

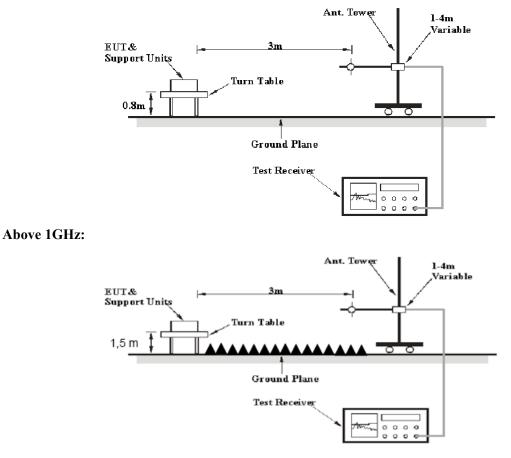
The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.2 Radiation Spurious Emissions


3.2.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.2.2 EUT Setup

Below 1GHz:

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

Page 14 of 46

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

3.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-25GHz:

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
Avo	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

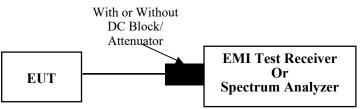
3.2.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result


3.3 6 dB Emission Bandwidth:

3.3.1 Applicable Standard

FCC §15.247 (a)(2)

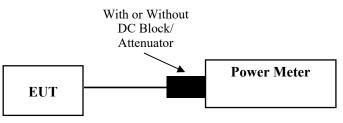
Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3.3.2 EUT Setup

3.3.3 Test Procedure

According to ANSI C63.10-2013 Section 11.8

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


3.4 Maximum Conducted Output Power:

3.4.1 Applicable Standard

FCC §15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.4.2 EUT Setup

3.4.3 Test Procedure

According to ANSI C63.10-2013 Section 11.9.1.3

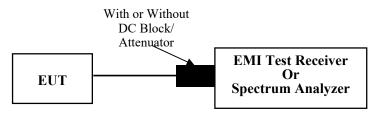
The maximum conducted output power may be measured using a broadband RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

a) Set the EUT in transmitting mode.

b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.

c) Add a correction factor to the display.

d) Set the power meter to test output power, record the result.


3.5 Maximum power spectral density:

3.5.1 Applicable Standard

FCC §15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

3.5.2 EUT Setup

3.5.3 Test Procedure

According to ANSI C63.10-2013 Section 11.10.2

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.

d) Set the VBW \geq [3 × RBW].

e) Detector = peak.

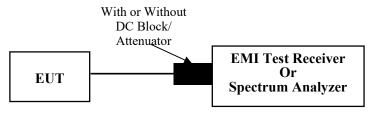
f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.


3.6 100 kHz Bandwidth of Frequency Band Edge:

3.6.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.6.2 EUT Setup

3.6.3 Test Procedure

According to ANSI C63.10-2013 Section 11.11

a) Set the center frequency and span to encompass frequency range to be measured.

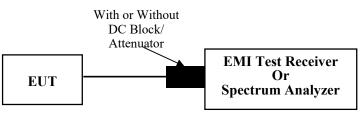
b) Set the RBW = 100 kHz.

c) Set the VBW \geq [3 × RBW].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

3.7 Duty Cycle:

3.7.1 EUT Setup

3.7.2Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \ \mu s$.)

3.8 Antenna Requirement

3.8.1 Applicable Standard

FCC §15.203

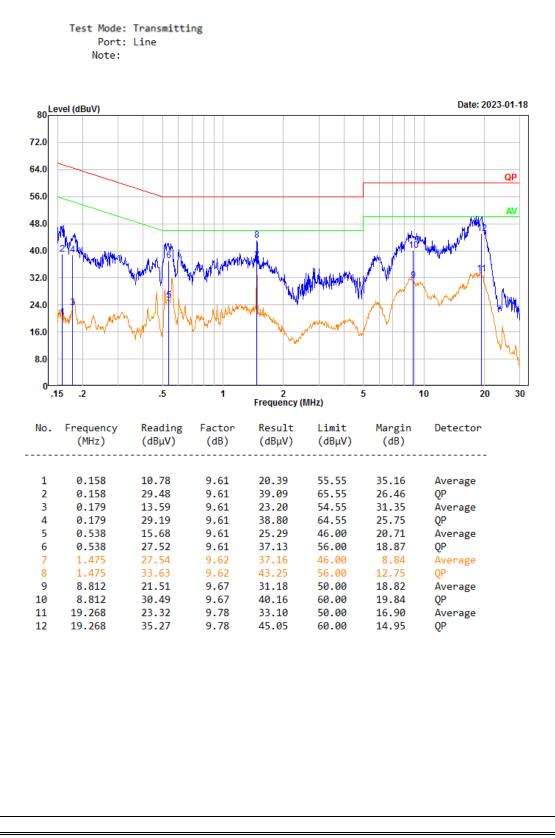
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of \$\$15.211, 15.213, 15.217, 15.219, 15.221, or \$15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with \$15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

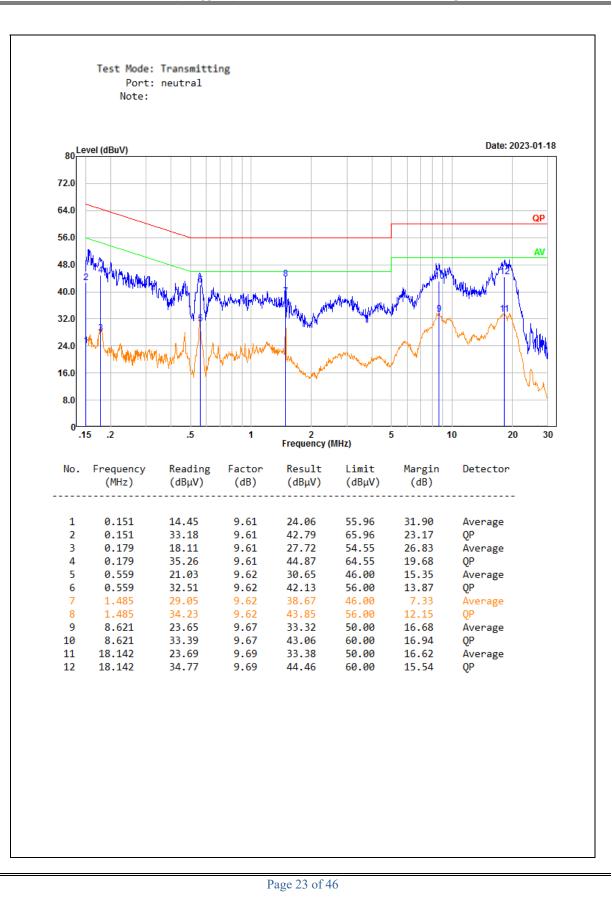
3.8.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.

4. Test DATA AND RESULTS

4.1 AC Line Conducted Emissions


Serial Number:	1WPX	Test Date:	2023/01/18
Test Site:	СЕ	Test Mode:	Transmitting (Middle channel)
Tester:	Vic Du	Test Result:	Pass


Environmental Conditions:						
Temperature: (℃)	20.2	Relative Humidity: (%)	37	ATM Pressure: (kPa)	102.1	

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2022/04/01	2023/03/31
R&S	EMI Test Receiver	ESR3	102726	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2022/08/07	2023/08/06
Audix	Test Software	E3	190306 (V9)	N/A	N/A

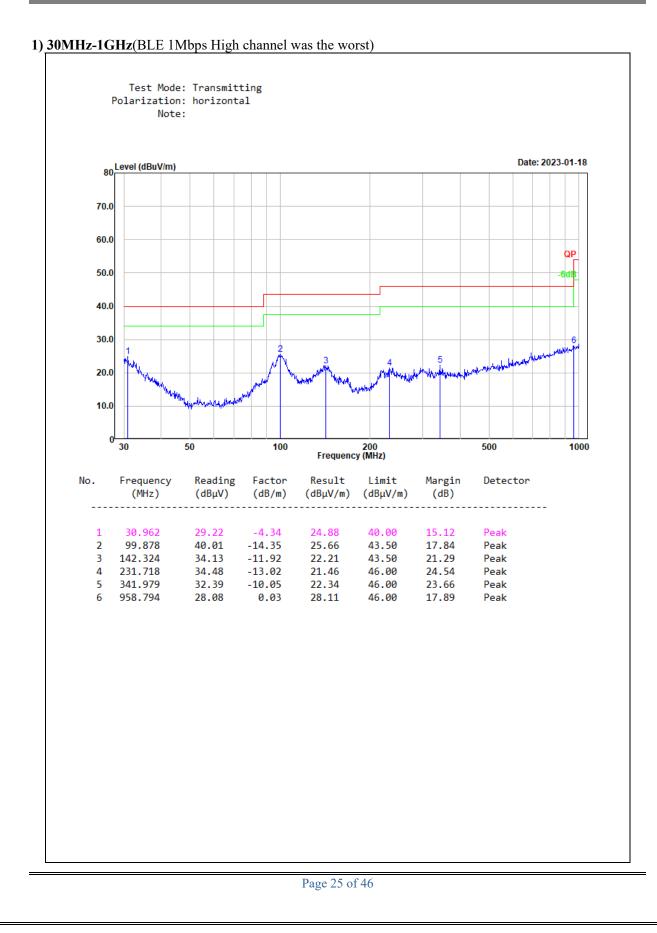
* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

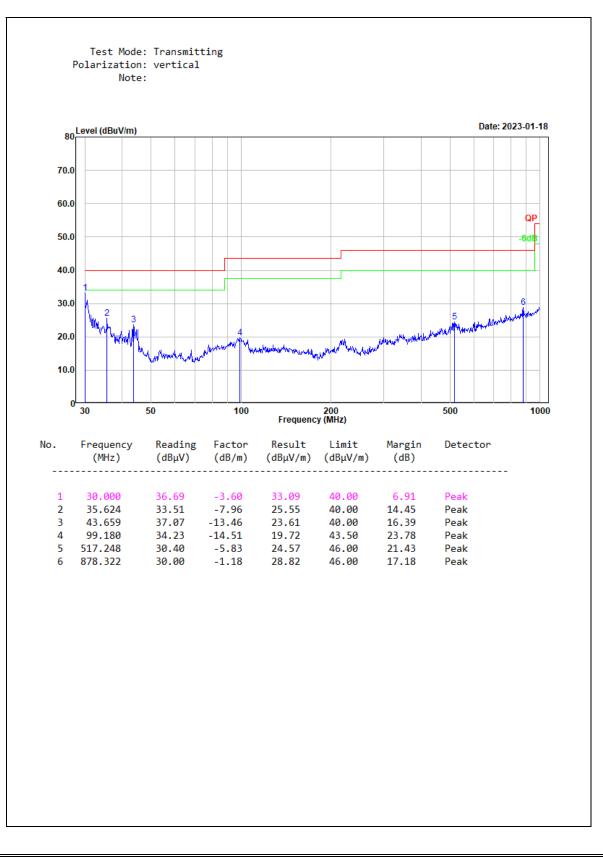
4.2 Radiation Spurious Emissions

Serial Number:	1WPX	Test Date:	2023/01/18 ~2023/02/08
Test Site:	966-2, 966-1	Test Mode:	Transmitting
Tester:	Carl Xue, Mack Huang	Test Result:	Pass

Environmental Conditions:							
Temperatur (℃	e: 2) 21.5~22.9	Relative Humidity: (%)	41~58	ATM Pressure: (kPa)	101.1~102.1		

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB6	A082520-5	2020/10/19	2023/10/18
R&S	EMI Test Receiver	ESR3	102724	2022/07/15	2023/07/14
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2022/07/17	2023/07/16
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2022/07/17	2023/07/16
Sonoma	Amplifier	310N	186165	2022/07/17	2023/07/16
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020/10/13	2023/10/12
R&S	Spectrum Analyzer	FSV40	101591	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2022/08/07	2023/08/06
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2022/08/07	2023/08/06
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/09	2023/11/08
Audix	Test Software	E3	201021 (V9)	N/A	N/A
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/02/05	2024/02/04
AH	Preamplifier	PAM-1840VH	190	2022/11/09	2023/11/08
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2022/08/07	2023/08/06
E-Microwave	Band Rejection Filter	2400-2483.5MHz	OE01902424	2022/08/07	2023/08/06
Mini Circuits	High Pass Filter	VHF-6010+	31119	2022/08/07	2023/08/06

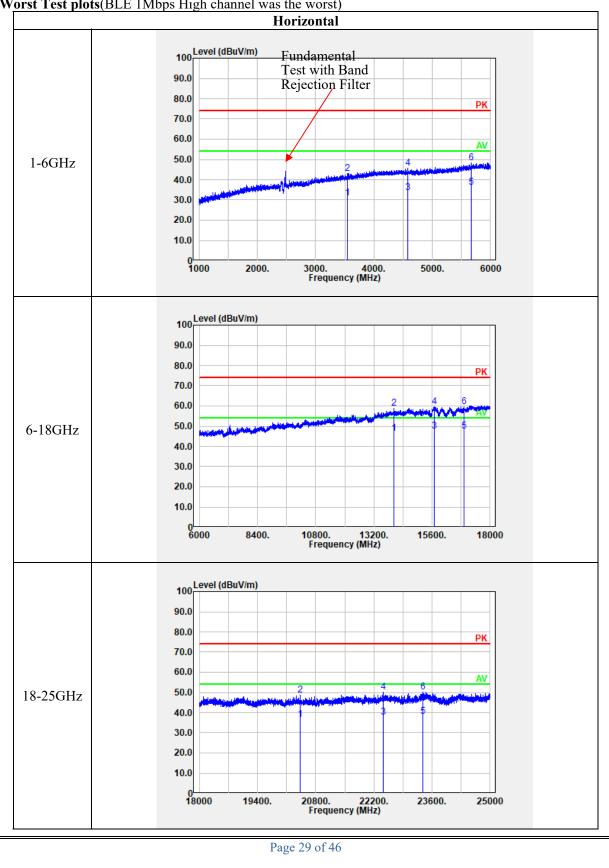

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

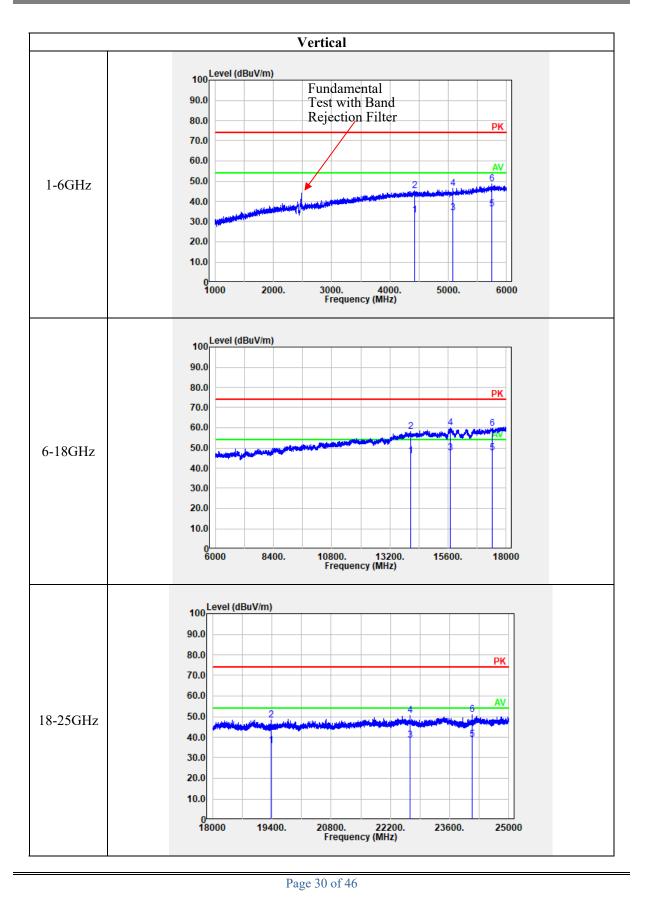
Please refer to the below table and plots.

Note: The device can be mounted in multiple orientations, test was performed with X,Y, Z Axis according to C63.10 Figure 8, the worst orientation was photographed and it's data was recorded.

Page 26 of 46


Report No.: CR221263962-00E

2) 1-25GHz: BLE 1Mbps:


(MHz)Reading (dBµV)Detector(H/V)(dBm)(dBµV/m)(dBµV/m)(dBµV/m)(dBµV/m)(dILow Channel: 2402 MHz2402.000 58.24 PKH 31.51 89.75 N/AN/A2402.000 55.23 AVH 31.51 89.75 N/AN/A2402.000 55.45 PKV 31.51 87.96 N/AN/A2402.000 53.47 AVV 31.51 87.96 N/AN/A2390.000 26.72 PKH 31.46 58.18 74.00 15.3 2390.000 13.83 AVH 10.91 46.01 74.00 27.3 4804.000 23.05 AVH 10.91 43.601 74.00 26.7 7206.000 33.52 PKH 14.22 47.74 74.00 26.7 7206.000 21.26 AVH 14.22 35.48 54.00 18.3 Middle Channel: 2440 MHz2440.000 58.14 PKH 31.60 87.77 N/AN/A2440.000 55.34 AVH 31.60 87.07 N/AN/A2440.000 52.16 AVV 31.60 87.07 N/AN/A2440.000 52.16 AVH 11.07 33.20 54.00 20.3 7320.000 34.05 PKH 11.07 33.20 54.00 20.3 7320.000 $52.$	Encartona	Rece	eiver	Dolor	Factor	Desult	Limit	Mangin	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Detector					Margin (dB)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Low Channel: 2402 MHz								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2402.000	58.24	PK		31.51	89.75	N/A	N/A	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2402.000	55.23	AV	Н	31.51	86.74	N/A	N/A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2402.000	56.45	PK	V	31.51	87.96	N/A	N/A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2402.000	53.47	AV	V	31.51	84.98	N/A	N/A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2390.000	26.72	PK	Н	31.46	58.18	74.00	15.82	
4804.000 23.05 AV H 10.91 33.96 54.00 20.0 7206.000 33.52 PK H 14.22 47.74 74.00 26.2 7206.000 21.26 AV H 14.22 35.48 54.00 18.3 Middle Channel: 2440 MHz 2440.000 58.14 PK H 31.60 89.74 N/A N/A 2440.000 55.34 AV H 31.60 86.94 N/A N/A 2440.000 55.47 PK V 31.60 87.07 N/A N/A 2440.000 52.16 AV V 31.60 83.76 N/A N/A 2440.000 32.16 AV V 31.60 83.76 N/A N/A 4880.000 34.26 PK H 11.07 33.20 54.00 25.7 7320.000 34.05 PK H 14.80 36.83 54.00 17.1	2390.000	13.83	AV	Н	31.46	45.29	54.00	8.71	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4804.000	35.10	PK	Н	10.91	46.01	74.00	27.99	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4804.000	23.05	AV	Н	10.91	33.96	54.00	20.04	
Middle Channel: 2440 MHz 2440.000 58.14 PK H 31.60 89.74 N/A N/A 2440.000 55.34 AV H 31.60 86.94 N/A N/A 2440.000 55.47 PK V 31.60 87.07 N/A N/A 2440.000 52.16 AV V 31.60 83.76 N/A N/A 2440.000 52.16 AV V 31.60 83.76 N/A N/A 2440.000 52.16 AV V 31.60 83.76 N/A N/A 2480.000 34.26 PK H 11.07 33.20 54.00 20.3 7320.000 22.13 AV H 14.80 48.85 74.00 25.5 7320.000 22.03 AV H 14.80 36.83 54.00 17.5 2480.000 57.38 PK H 31.64 89.02 N/A N/A 248	7206.000	33.52	PK	Н	14.22	47.74	74.00	26.26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7206.000	21.26	AV	Н	14.22	35.48	54.00	18.52	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>.</u>		Middle Ch	annel: 2440 MI	Hz			
2440.000 55.47 PK V 31.60 87.07 N/A N/A 2440.000 52.16 AV V 31.60 83.76 N/A N/A 4880.000 34.26 PK H 11.07 45.33 74.00 28.0 4880.000 22.13 AV H 11.07 33.20 54.00 20.3 7320.000 34.05 PK H 14.80 48.85 74.00 25. 7320.000 22.03 AV H 14.80 36.83 54.00 17.1 2480.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 88.09 N/A N/A 2480.000 56.45 PK V 31.64 84.93 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK	2440.000		PK	Н	31.60	89.74	N/A	N/A	
2440.000 52.16 AV V 31.60 83.76 N/A N/A 4880.000 34.26 PK H 11.07 45.33 74.00 28.0 4880.000 22.13 AV H 11.07 33.20 54.00 20.3 7320.000 34.05 PK H 14.80 48.85 74.00 25.7 7320.000 22.03 AV H 14.80 36.83 54.00 17.7 7320.000 22.03 AV H 14.80 36.83 54.00 17.7 7320.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV <td>2440.000</td> <td>55.34</td> <td>AV</td> <td>Н</td> <td>31.60</td> <td>86.94</td> <td>N/A</td> <td>N/A</td>	2440.000	55.34	AV	Н	31.60	86.94	N/A	N/A	
4880.000 34.26 PK H 11.07 45.33 74.00 28.0 4880.000 22.13 AV H 11.07 33.20 54.00 20.3 7320.000 34.05 PK H 14.80 48.85 74.00 25.3 7320.000 22.03 AV H 14.80 48.85 74.00 25.3 7320.000 22.03 AV H 14.80 36.83 54.00 17.3 7320.000 22.03 AV H 14.80 36.83 54.00 17.3 7320.000 22.03 AV H 14.80 36.83 54.00 17.3 7320.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 14.12 AV<	2440.000	55.47	PK	V	31.60	87.07	N/A	N/A	
4880.000 22.13 AV H 11.07 33.20 54.00 20.8 7320.000 34.05 PK H 14.80 48.85 74.00 25.7 7320.000 22.03 AV H 14.80 36.83 54.00 17.7 High Channel: 2480 MHz 2480.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 34.30 54.00 19.7	2440.000	52.16	AV	V	31.60	83.76	N/A	N/A	
7320.000 34.05 PK H 14.80 48.85 74.00 25.7 7320.000 22.03 AV H 14.80 36.83 54.00 17.7 High Channel: 2480 MHz 2480.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7	4880.000	34.26	PK	Н	11.07	45.33	74.00	28.67	
7320.000 22.03 AV H 14.80 36.83 54.00 17.1 High Channel: 2480 MHz 2480.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 46.37 74.00 27.0 4960.000 23.07 AV H 11.23 34.30 54.00 19.7	4880.000	22.13	AV	Н	11.07	33.20	54.00	20.80	
High Channel: 2480 MHz 2480.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 46.37 74.00 27.0 4960.000 23.07 AV H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7	7320.000	34.05	PK	Н	14.80	48.85	74.00	25.15	
2480.000 57.38 PK H 31.64 89.02 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 46.37 74.00 27.0 4960.000 23.07 AV H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7	7320.000	22.03	AV	Н	14.80	36.83	54.00	17.17	
2480.000 54.13 AV H 31.64 85.77 N/A N/A 2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 46.37 74.00 27.0 4960.000 23.07 AV H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7				High Cha	nnel: 2480 MH	Z			
2480.000 56.45 PK V 31.64 88.09 N/A N/A 2480.000 53.29 AV V 31.64 84.93 N/A N/A 2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 46.37 74.00 27.0 4960.000 23.07 AV H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7	2480.000	57.38	PK	Н	31.64	89.02	N/A	N/A	
2480.00053.29AVV31.6484.93N/AN/A2483.50026.30PKH31.6457.9474.0016.02483.50014.12AVH31.6445.7654.008.24960.00035.14PKH11.2346.3774.0027.04960.00023.07AVH11.2334.3054.0019.77440.00034.04PKH15.2649.3074.0024.7	2480.000	54.13	AV	Н	31.64	85.77	N/A	N/A	
2483.500 26.30 PK H 31.64 57.94 74.00 16.0 2483.500 14.12 AV H 31.64 45.76 54.00 8.2 4960.000 35.14 PK H 11.23 46.37 74.00 27.0 4960.000 23.07 AV H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7	2480.000	56.45	PK	V	31.64	88.09	N/A	N/A	
2483.50014.12AVH31.6445.7654.008.24960.00035.14PKH11.2346.3774.0027.04960.00023.07AVH11.2334.3054.0019.77440.00034.04PKH15.2649.3074.0024.7	2480.000	53.29	AV		31.64		N/A	N/A	
4960.00035.14PKH11.2346.3774.0027.04960.00023.07AVH11.2334.3054.0019.77440.00034.04PKH15.2649.3074.0024.7	2483.500	26.30	PK	Н	31.64	57.94	74.00	16.06	
4960.000 23.07 AV H 11.23 34.30 54.00 19.7 7440.000 34.04 PK H 15.26 49.30 74.00 24.7	2483.500	14.12	AV	Н	31.64	45.76	54.00	8.24	
7440.000 34.04 PK H 15.26 49.30 74.00 24.7	4960.000	35.14	PK	Н	11.23	46.37	74.00	27.63	
	4960.000	23.07	AV	Н	11.23	34.30	54.00	19.70	
	7440.000	34.04	PK	Н	15.26	49.30	74.00	24.70	
7440.000 22.02 AV H 15.26 37.28 54.00 16.7	7440.000	22.02	AV	Н	15.26	37.28	54.00	16.72	

BLE 2Mbps:

Enguise	Rec	eiver	Polar	Factor	Result	Limit	Margin
Frequency (MHz)	Reading (dBµV)	Detector	(H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
			Low Char	nnel: 2402 MH	Z		
2402.000	56.94	PK	Н	31.51	88.45	N/A	N/A
2402.000	50.28	AV	Н	31.51	81.79	N/A	N/A
2402.000	54.72	PK	V	31.51	86.23	N/A	N/A
2402.000	48.35	AV	V	31.51	79.86	N/A	N/A
2390.000	26.81	PK	Н	31.46	58.27	74.00	15.73
2390.000	13.83	AV	Н	31.46	45.29	54.00	8.71
4804.000	34.66	PK	Н	10.91	45.57	74.00	28.43
4804.000	22.33	AV	Н	10.91	33.24	54.00	20.76
7206.000	33.99	PK	Н	14.22	48.21	74.00	25.79
7206.000	21.50	AV	Н	14.22	35.72	54.00	18.28
			Middle Ch	annel: 2440 M	Hz		
2440.000	55.78	PK	Н	31.60	87.38	N/A	N/A
2440.000	49.36	AV	Н	31.60	80.96	N/A	N/A
2440.000	53.12	PK	V	31.60	84.72	N/A	N/A
2440.000	47.08	AV	V	31.60	78.68	N/A	N/A
4880.000	35.11	PK	Н	11.07	46.18	74.00	27.82
4880.000	23.06	AV	Н	11.07	34.13	54.00	19.87
7320.000	34.10	PK	Н	14.80	48.90	74.00	25.10
7320.000	22.05	AV	Н	14.80	36.85	54.00	17.15
			High Cha	nnel: 2480 MH	ĺz		
2480.000	56.32	PK	Н	31.64	87.96	N/A	N/A
2480.000	50.80	AV	Н	31.64	82.44	N/A	N/A
2480.000	56.11	PK	V	31.64	87.75	N/A	N/A
2480.000	50.09	AV	V	31.64	81.73	N/A	N/A
2483.500	27.28	PK	Н	31.64	58.92	74.00	15.08
2483.500	14.22	AV	Н	31.64	45.86	54.00	8.14
4960.000	35.07	PK	Н	11.23	46.30	74.00	27.70
4960.000	23.04	AV	Н	11.23	34.27	54.00	19.73
7440.000	33.88	PK	Н	15.26	49.14	74.00	24.86
7440.000	21.44	AV	Н	15.26	36.70	54.00	17.30

Worst Test plots(BLE 1Mbps High channel was the worst)

4.3 6 dB Emission Bandwidth:

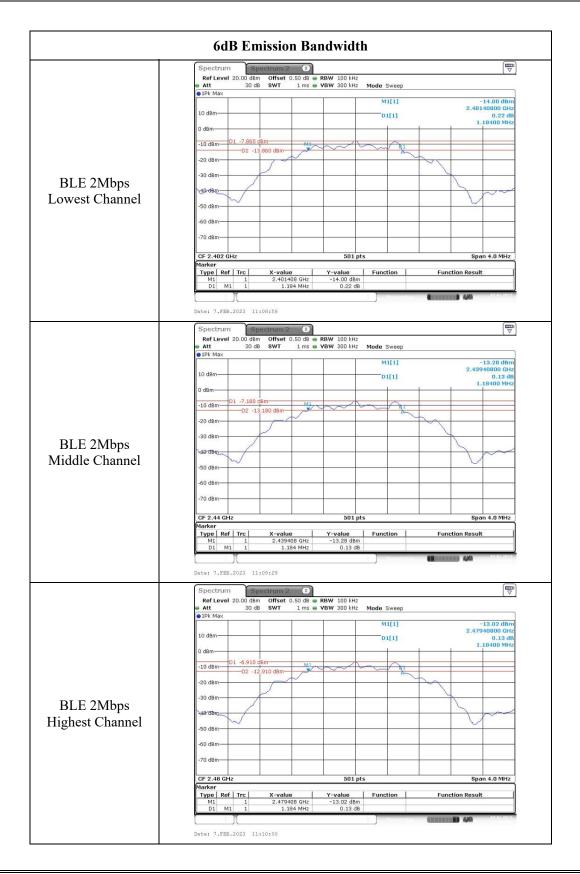
Serial Number:	1WPX	Test Date:	2023/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

Environmental Conditions:						
Temperature: (℃)	20.8	Relative Humidity: (%)	68	ATM Pressure: (kPa)	101.5	

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Test Modes	Test Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
	2402	0.672	0.5
BLE 1Mbps	2440	0.672	0.5
	2480	0.672	0.5
	2402	1.184	0.5
BLE 2Mbps	2440	1.184	0.5
	2480	1.184	0.5

Report No.: CR221263962-00E

Report No.: CR221263962-00E

4.4 99% Occupied Bandwidth:

Serial Number:	1WPX	Test Date:	2023/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

Environmental Conditions:						
Temperature: (°C)	20.8	Relative Humidity: (%)	68	ATM Pressure: (kPa)	101.5	

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Channel	Test Channel	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)
	Lowest	2402	1.026
BLE 1Mbps	Middle	2440	1.026
	Highest	2480	1.026
	Lowest	2402	2.052
BLE 2Mbps	Middle	2440	2.052
	Highest	2480	2.052

Page 36 of 46

4.5 Maximum conducted output power:

Serial Number:	1WPX	Test Date:	2023/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

Environmental Conditions:							
Temperature: (℃)	20.8	Relative Humidity: (%)	68	ATM Pressure: (kPa)	101.5		

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A
Agilent	USB Wideband Power Sensor	U2021XA	MY54080015	2022/07/15	2023/07/14

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

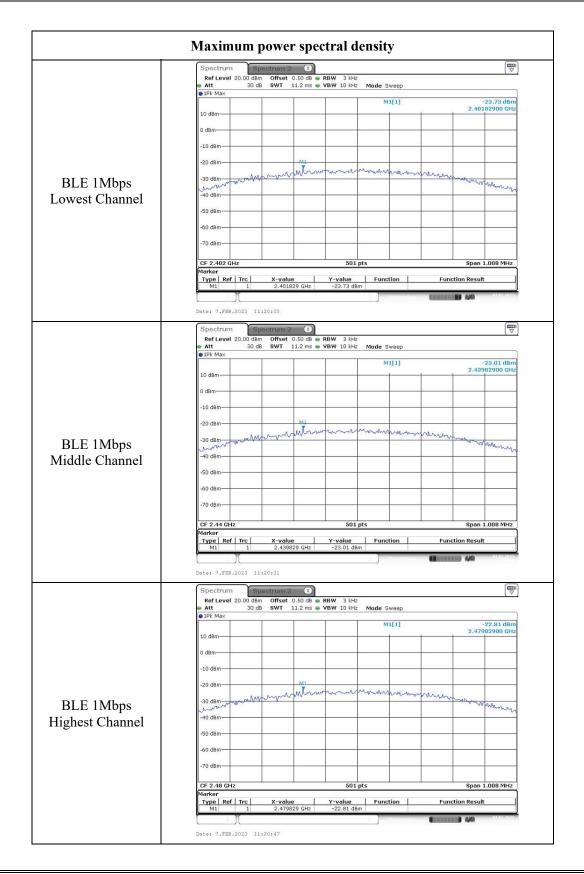
Test Data:

Test Modes	Test Channel	Test Frequency (MHz)	Maximum Conducted Peak Output Power (dBm)	Limit (dBm)
	Lowest	2402	-7.02	30
BLE 1Mbps	Middle	2440	-6.34	30
	Highest	2480	-6.06	30
	Lowest	2402	-7.04	30
BLE 2Mbps	Middle	2440	-6.34	30
	Highest	2480	-6.07	30

4.5 Maximum power spectral density:

Serial Number:	1WPX	Test Date:	2023/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass

Environmental Conditions:Temperature:
(°C)20.8Relative
Humidity:
(%)68ATM Pressure:
(kPa)101.5


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

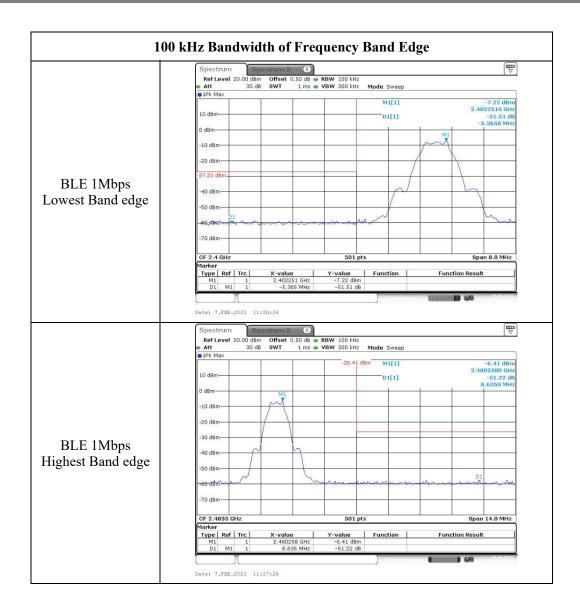
Test Data:

Test Channel	Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
	2402	-23.73	8.00
BLE 1Mbps	2440	-23.01	8.00
	2480	-22.81	8.00
	2402	-25.92	8.00
BLE 2Mbps	2440	-25.18	8.00
	2480	-24.89	8.00

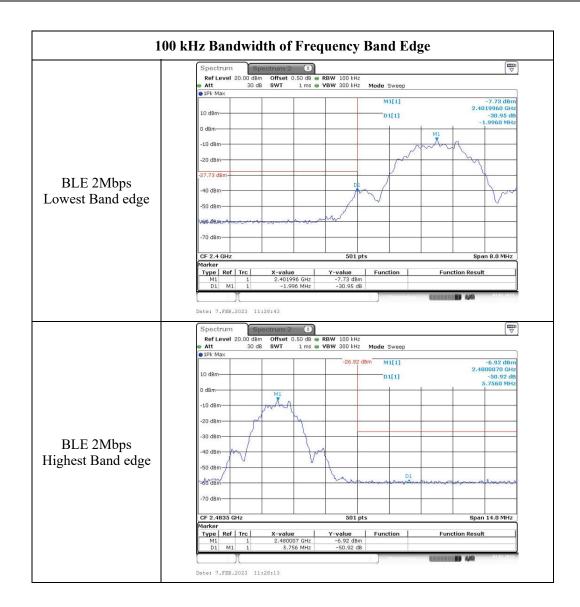
Page 40 of 46

4.6 100 kHz Bandwidth of Frequency Band Edge:

Serial Number:	1WPX	Test Date:	2023/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Morpheus Shi	Test Result:	Pass


Environmental Conditions:						
Temperature: (℃)	20.8	Relative Humidity: (%)	68	ATM Pressure: (kPa)	101.5	

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: CR221263962-00E

Report No.: CR221263962-00E

4.7 Duty Cycle:

Serial Number:	1WPX	Test Date:	2023/02/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Julie Tan, Morpheus Shi	Test Result:	Pass

Environmental Conditions:						
Temperature: (℃)	20.8	Relative Humidity: (%)	68	ATM Pressure: (kPa)	101.5	

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022/07/15	2023/07/14
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)
BLE 1Mbps	2.21	2.49	88.76	452
BLE 2Mbps	1.14	1.89	60.32	877

Report No.: CR221263962-00E

		Duty Cycle		
	Spectrum Spe	ectrum 2 🛛 🛞		
BLE 1Mbps	Ref Level 20.00 dBm Offset 0.50 dB 🖷 RBW 1 MHz			
	Att 30 dB SGL	SWT 8 ms VBW	3 MHz	
	1Pk Clrw			
			D2[1]	-1.11 dB
	10 dBm		M1[1]	2.4900 ms -51.46 dBm
	0 dBm-		milil	2.7506 ms
	0 dBm			
	-10 dBm			
	-20 dBm-			
	-30 dBm			
	-40 dBm			
	EC dbm	MI		
	-50 dBm-	And	dan 1/2	bun
	-60 dBm			
	-70 dBm			
	10000			
	CF 2.44 GHz		501 pts	800.0 µs/
	Marker	Number Num	stur I rousting I	Constinu Desult
	Type Ref Trc M1 1	X-value Y-v 2.7506 ms -51	alue Function	Function Result
	D1 M1 1		-4.50 dB	
	D2 M1 1	2.49 ms	-1.11 dB	4 M2 07.02.2023
			Ready	67.02.2023 11:33:54
	Date: 7.FEB.2023 11:	33:54		
	Spectrum Spectrum Ref Level 20.00 dBm	offset 0.50 dB		
	Spectrum Sp Ref Level 20.00 dBm Att 30 dB	ectrum 2 🛛 🕱		
	Spectrum Spe Ref Level 20.00 dBm Att 30 dB SGL	offset 0.50 dB		
	Spectrum Sp Ref Level 20.00 dBm Att 30 dB	offset 0.50 dB		-0.89 dB
	Spectrum Spe Ref Level 20.00 dBm Att 30 dB SGL	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms
	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB Att 30 dB SGL O 1Pk Cirw 10 dBm 10 dBm	offset 0.50 dB	3 MHz	-0.89 dB
	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB SGL ● IPk Cirw 10 dBm 0 dBm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB Att 30 dB SGL O 1Pk Cirw 10 dBm 10 dBm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB SGL 9 FPk Clrw 10 dBm 0 dBm -10 dBm -10 dBm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
	Spectrum Spectrum Spectrum Ref Level 20.00 dBm 30 dB SGL 9 TPK CIrW 10 dBm 0 dBm -10 dBm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
	Spectrum Sp Ref Level 20.00 dbm Att 30 db SGL ● FPk Clrw 10 dBm 0 dbm -10 dBm -10 dbm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
BI F 2Mhns	Spectrum Spectrum Spectrum Ref Level 20.00 dBm 30 dB SGL 9 TPK CIrW 10 dBm 0 dBm -10 dBm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
BLE 2Mbps	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB SGL I D dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	offset 0.50 dB	3 MHz	-0.89 dB 1.8870 ms -53.49 dbm 2.0663 ms
BLE 2Mbps	Spectrum Spectrum Spectrum Ref Level 20.00 dBm 30 dB SGL 9 TPK CIrw 10 dBm 0 dBm -10 dBm	offset 0.50 dB	3 MHz D2[1]	-0.89 dB 1.8870 ms -53.49 dBm
BLE 2Mbps	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB SGL I D dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	ectrum 2 3 Offset 0.50 db = RBW SWT 6 ms VBW	3 MHz	-0.89 dB 1.8870 ms -53.49 dbm 2.0663 ms
BLE 2Mbps	Spectrum Spectrum Spectrum Ref Level 20.00 dBm 30 dB SGL 9 IPk CIrw 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -50 dBm - -60 dBm -	ectrum 2 3 Offset 0.50 db = RBW SWT 6 ms VBW	3 MHz	-0.89 dB 1.8870 ms -53.49 dbm 2.0663 ms
BLE 2Mbps	Spectrum Spectrum Spectrum Ref Level 20.00 dBm 30 dB SGL 9 IPK CIrw 10 dBm 0 dBm -10 dBm	ectrum 2 3 Offset 0.50 db = RBW SWT 6 ms VBW	3 MHz	-0.89 dB 1.8870 ms -53.49 dbm 2.0663 ms
BLE 2Mbps	Spectrum Spectrum Ref Level 20.00 dBm Att 30 dB SGL 91Pk CIrw 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	ectrum 2 3 Offset 0.50 db = RBW SWT 6 ms VBW	3 MHz	-0.89 dB 1.8870 ms -53.49 dBm 2.0663 ms
BLE 2Mbps	Spectrum Spectrum Spectrum Ref Level 20.00 dBm 30 dB SGL 9 IPk CIrw 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -50 dBm - -60 dBm -	ectrum 2 3 Offset 0.50 db = RBW SWT 6 ms VBW	3 MHz D2[1] M1[1] M1[1] M1[1] S01 pts	-0.89 dB 1.8870 ms -53.49 dBm 2.0663 ms -20.063 ms -20.
BLE 2Mbps	Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Solution Solution	Ctrum 2 S Offset 0.50 db = RBW SWT SWT 6 ms VBW 1 Image: SWT 1	3 MHz	-0.89 dB 1.8870 ms -53.49 dBm 2.0663 ms
BLE 2Mbps	Spectrum Spectrum Ref Level 20.00 dBm • Att 30 dB • 1Pk Clrw 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm -	Action Action<	3 MHz	-0.89 dB 1.8870 ms -53.49 dBm 2.0663 ms -20.063 ms -20.
BLE 2Mbps	Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Solution Solution	X-value Y-value Y-value Y-value Y-value	3 MHz	-0.89 dB 1.8870 ms -53.49 dBm 2.0663 ms -20.063 ms -20.

5. RF EXPOSURE EVALUATION

5.1 Applicable Standard

According to \$15.247(i) and \$1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot \left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

5.2 Measurement Result

For BLE:

The max conducted power including tune-up tolerance is -6.0 dBm (0.25 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] =0.25/5*($\sqrt{2.480}$) = 0.1< 3.0

Result: Compliance. The stand-alone SAR evaluation is not necessary.

==== END OF REPORT ====