

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2102947

FCC REPORT (BLE)

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X6817

Trade mark: Infinix

FCC ID: 2AIZN-X6817

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Dec., 2021

Date of Test: 23 Dec., 2021 to 16 Feb., 2022

Date of report issued: 17 Feb., 2022

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	17 Feb., 2022	Original

Tested by:	Janet	Wei	Date:	17 Feb., 2022	
	Test Engin	eer			

Reviewed by: ______ Date: _____ 17 Feb., 2022

Project Engineer

Contents

			Page
1	COVE	ER PAGE	1
2	VERS	SION	2
3		TENTS	
4	TEST	SUMMARY	4
5	GENE	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
		DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
	5.7	LABORATORY FACILITY	6
		LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	13
		Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	
7	TEST	SETUP PHOTO	42
0	EUT (CONSTRUCTIONAL DETAILS	44

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	45.047.(-1)	Appendix A - BLE Pass	
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45.005.8.45.000	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer/ Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

J.Z General Descripti	011 01 2.0.1.
Product Name:	Mobile Phone
Model No.:	X6817
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Ploymer Battery DC3.87V, 4900mAh
AC adapter:	Model: U180XSA
	Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5.0V/2.4A, 7.5V/2.4A
Remark:	The EUT has two kinds of memory, one is 64+4 memory and the other is 128+6 memory.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R12-2102947

5.3 Test environment and mode, and test samples plans

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Toct	Sami	alac	Dlan	٠.
rest	Sami	Sies	Pian	S.

Samples Number Used for Test Items	
2#	Conducted measurements test method
1#	Radiated measurements test method
1#	EUT constructional details

Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	Tonscend	TS+		Version:3.0.0.1	

Conducted Emission:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022				
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022				
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022				
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022				
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022				
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022				
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b				

Conducted method:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022				
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022				
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022				
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022				
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022				
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A				
PDU	MWRF-test	XY-G10	N/A	N/A	N/A				
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023				
Temperature Humidity	Deli	8840	N/A	03-08-2021	03-07-2022				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R12-2102947

Chamber					
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

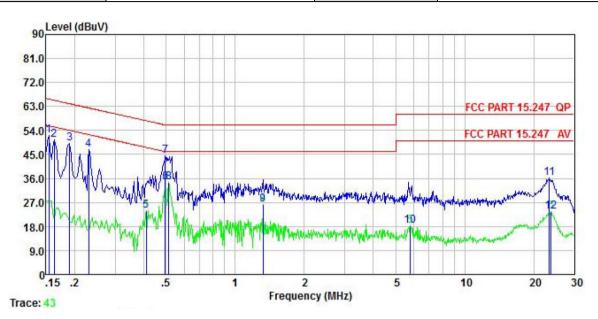
E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.0dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 8 of 44

6.2 Conducted Emission

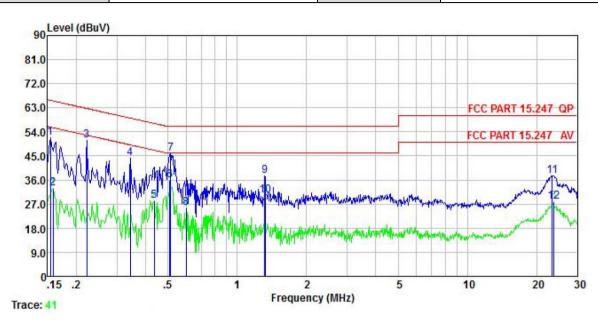

Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	·	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 						
Test setup:	AUX Equipment E.U.T Test table/Insulation plane	80cm LISN Filter	– AC power				
Test Instruments:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
		·					
Test results:	Passed						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	Mobile Phone	Product model:	X6817
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 21.9℃ Huni: 52%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu√	d₿		dBu₹	dBu∜	<u>dB</u>	
1	0.154	52.20	0.04	0.01	52.25	65.78	-13.53	QP
2	0.162	50.56	0.04	0.01	50.61	65.34	-14.73	QP
1 2 3	0.190	49.20	0.04	0.03	49.27	64.02	-14.75	QP
4 5 6	0.230	46.83	0.04	0.02	46.89	62.44	-15.55	QP
5	0.410	23.86	0.04	0.04	23.94	47.64	-23.70	Average
6	0.497	34.61	0.04	0.03	34.68	46.05	-11.37	Average
7	0.497	44.55	0.04	0.03	44.62	56.05	-11.43	QP
8	0.513	34.41	0.04	0.03	34.48	46.00	-11.52	Average
9	1.324	26.07	0.06	0.11	26.24	46.00	-19.76	Average
10	5.805	17.97	0.13	0.09	18.19	50.00	-31.81	Average
11	23.387	35.52	0.35	0.17	36.04	60.00	-23.96	QP
12	23.762	22.96	0.35	0.17	23.48	50.00	-26.52	Average


Notes:

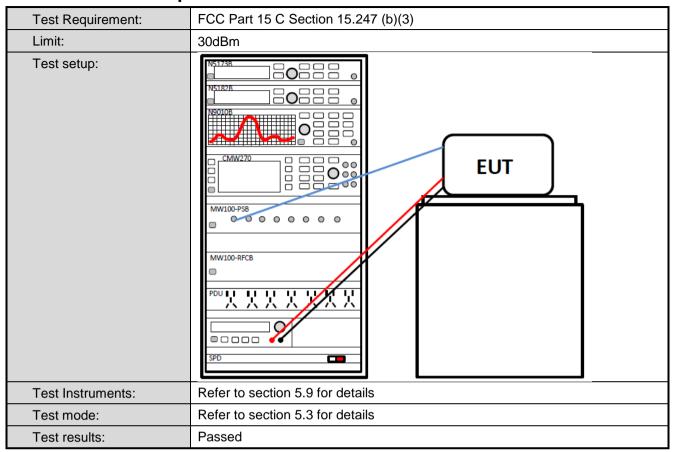
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Mobile Phone	Product model:	X6817
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 21.9℃ Huni: 52%

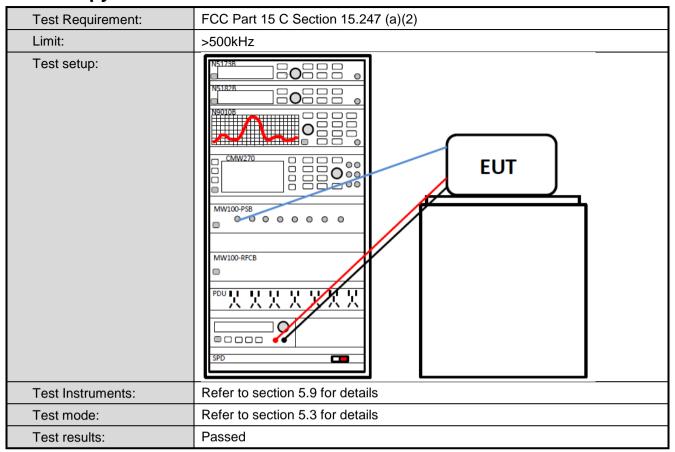
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	₫B	dBu∇	dBu∇	<u>dB</u>	
1	0.154	51.65	0.05	0.01	51.71	65.78	-14.07	QP
2	0.158	32.85	0.05	0.01	32.91	55.56	-22.65	Average
3	0.222	50.61	0.04	0.03	50.68	62.74	-12.06	QP
4	0.343	44.26	0.04	0.02	44.32	59.13	-14.81	QP
1 2 3 4 5 6 7 8 9	0.435	28.27	0.04	0.03	28.34	47.15	-18.81	Average
6	0.510	35.77	0.04	0.03	35.84	46.00	-10.16	Average
7	0.513	45.92	0.04	0.03	45.99	56.00	-10.01	QP
8	0.601	25.52	0.04	0.02	25.58	46.00	-20.42	Average
9	1.317	37.34	0.05	0.11	37.50	56.00	-18.50	QP
10	1.324	30.14	0.05	0.11	30.30	46.00	-15.70	Average
11	23.387	36.99	0.34	0.17	37.50	60.00	-22.50	QP
12	23.636	27.27	0.34	0.17	27.78	50.00	-22.22	Average

Notes


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

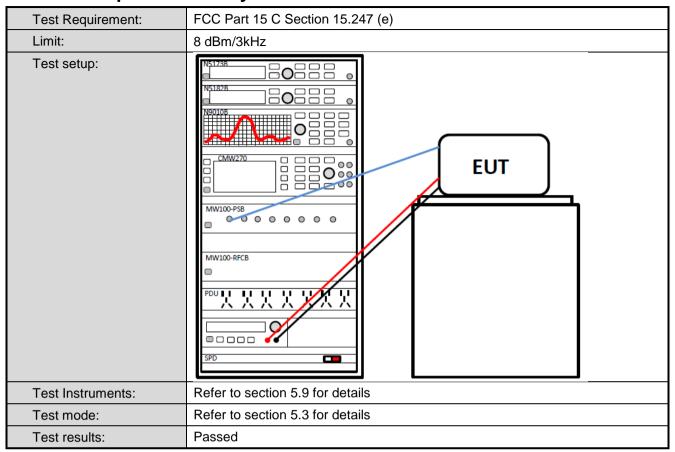
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE

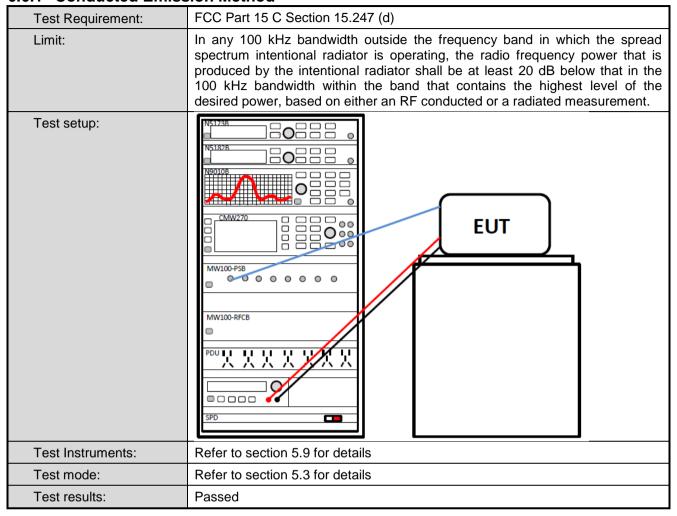
Page 12 of 44

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE

Page 13 of 44

6.5 Power Spectral Density


Measurement Data: Refer to Appendix A - BLE

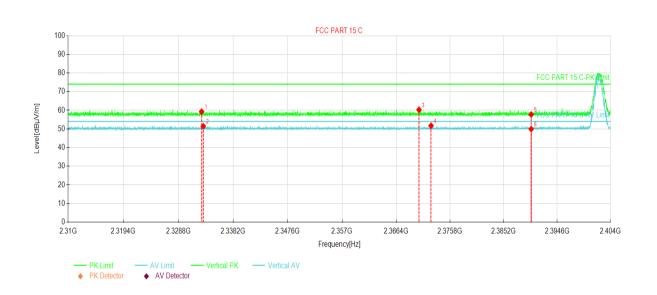
Page 14 of 44

6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

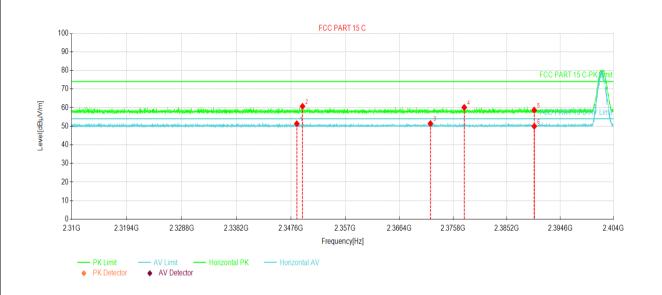
Radiated Emission Method 6.6.2


Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz					
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		RMS	1MHz	3MHz	Average Value		
Limit:	Frequer	ncy Lii	mit (dBuV/m @3		Remark		
	Above 10	GHz —	54.00		verage Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup:	AE WHO THE	Ground Test Receiver	Horn Antenna 3m Reference Plane Amplifer Control	Antenna Tower			
Test Instruments:	Refer to section	n 5.9 for detai	ls				
Test mode:		n 5.3 for detai					
Test results:	Passed						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

PHY: 1MHz

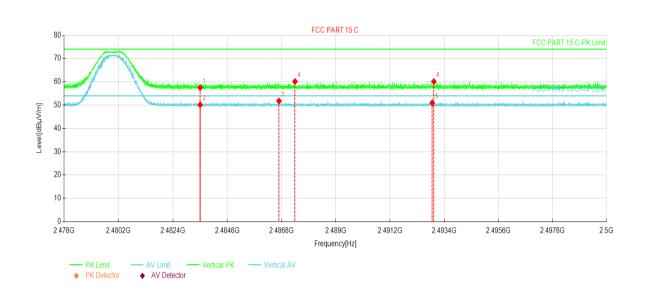
Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2332.78	23.82	59.25	35.43	74.00	14.75	PK	Vertical
2	2333.07	16.02	51.45	35.43	54.00	2.55	AV	Vertical
3	2370.38	24.58	60.28	35.70	74.00	13.72	PK	Vertical
4	2372.48	16.00	51.71	35.71	54.00	2.29	AV	Vertical
5	2390.01	21.90	57.74	35.84	74.00	16.26	PK	Vertical
6	2390.01	14.09	49.93	35.84	54.00	4.07	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

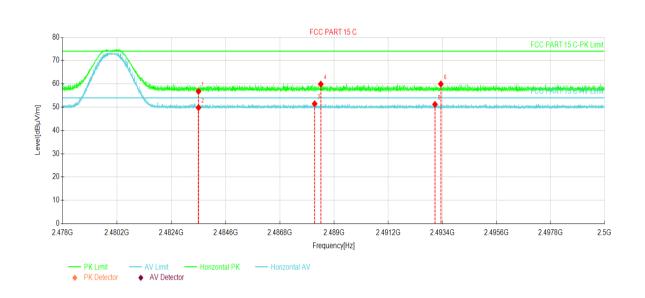
Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2348.61	15.78	51.33	35.55	54.00	2.67	AV	Horizontal
2	2349.59	25.13	60.68	35.55	74.00	13.32	PK	Horizontal
3	2371.82	15.71	51.42	35.71	54.00	2.58	AV	Horizontal
4	2377.73	24.35	60.10	35.75	74.00	13.90	PK	Horizontal
5	2390.00	22.80	58.64	35.84	74.00	15.36	PK	Horizontal
6	2390.01	14.13	49.97	35.84	54.00	4.03	AV	Horizontal

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.74	57.46	35.72	74.00	16.54	PK	Vertical
2	2483.50	14.43	50.15	35.72	54.00	3.85	AV	Vertical
3	2486.69	16.08	51.79	35.71	54.00	2.21	AV	Vertical
4	2487.34	24.41	60.12	35.71	74.00	13.88	PK	Vertical
5	2492.91	15.28	50.98	35.70	54.00	3.02	AV	Vertical
6	2492.97	24.41	60.11	35.70	74.00	13.89	PK	Vertical

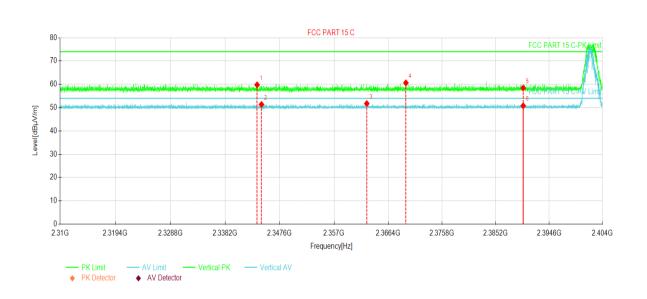
- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.02	56.74	35.72	74.00	17.26	PK	Horizontal
2	2483.50	14.06	49.78	35.72	54.00	4.22	AV	Horizontal
3	2488.20	15.73	51.44	35.71	54.00	2.56	AV	Horizontal
4	2488.45	24.17	59.88	35.71	74.00	14.12	PK	Horizontal
5	2493.09	15.47	51.17	35.70	54.00	2.83	AV	Horizontal
6	2493.33	24.23	59.93	35.70	74.00	14.07	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

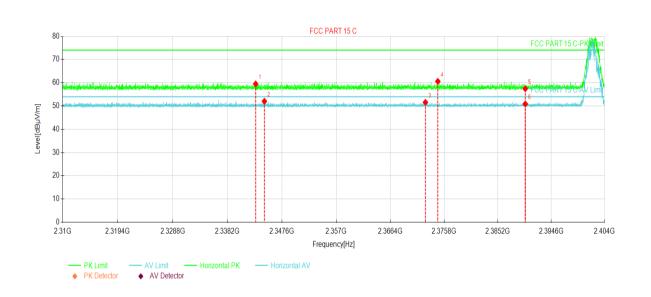

Page 20 of 44

Project No.: JYTSZE2112074

PHY: 2MHz

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8°C Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2343.71	24.26	59.77	35.51	74.00	14.23	PK	Vertical
2	2344.46	15.83	51.35	35.52	54.00	2.65	AV	Vertical
3	2362.68	16.11	51.76	35.65	54.00	2.24	AV	Vertical
4	2369.49	24.94	60.63	35.69	74.00	13.37	PK	Vertical
5	2390.01	22.57	58.41	35.84	74.00	15.59	PK	Vertical
6	2390.01	14.96	50.80	35.84	54.00	3.20	AV	Vertical


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 44

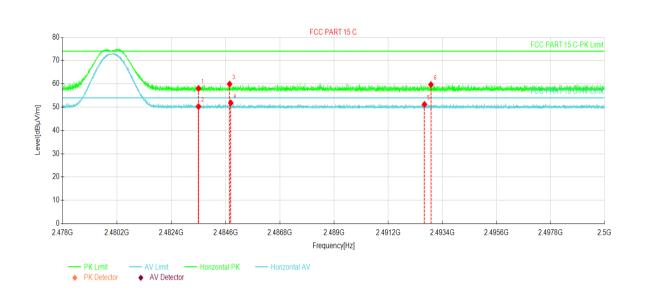
Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2343.06	23.96	59.47	35.51	74.00	14.53	PK	Horizontal
2	2344.56	16.49	52.01	35.52	54.00	1.99	AV	Horizontal
3	2372.52	15.83	51.54	35.71	54.00	2.46	AV	Horizontal
4	2374.68	24.86	60.59	35.73	74.00	13.41	PK	Horizontal
5	2390.01	21.56	57.40	35.84	74.00	16.60	PK	Horizontal
6	2390.01	15.02	50.86	35.84	54.00	3.14	AV	Horizontal

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

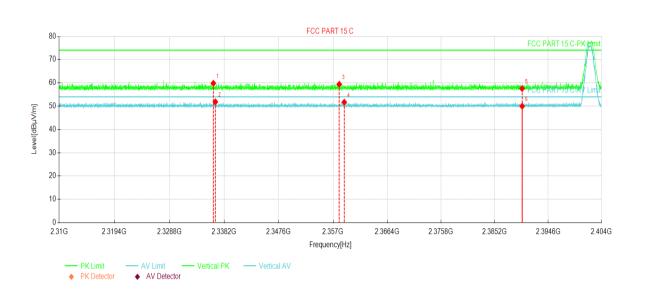

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.91	57.63	35.72	74.00	16.37	PK	Vertical
2	2483.50	14.24	49.96	35.72	54.00	4.04	AV	Vertical
3	2486.25	15.82	51.53	35.71	54.00	2.47	AV	Vertical
4	2486.34	24.33	60.04	35.71	74.00	13.96	PK	Vertical
5	2494.20	24.99	60.68	35.69	74.00	13.32	PK	Vertical
6	2494.63	15.27	50.96	35.69	54.00	3.04	AV	Vertical

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

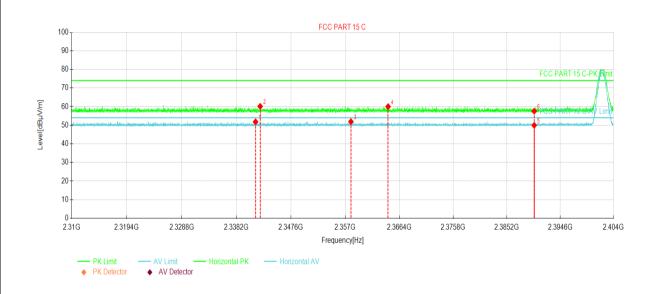
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.32	58.04	35.72	74.00	15.96	PK	Horizontal
2	2483.50	14.52	50.24	35.72	54.00	3.76	AV	Horizontal
3	2484.75	24.17	59.89	35.72	74.00	14.11	PK	Horizontal
4	2484.80	16.12	51.83	35.71	54.00	2.17	AV	Horizontal
5	2492.66	15.47	51.17	35.70	54.00	2.83	AV	Horizontal
6	2492.93	23.96	59.66	35.70	74.00	14.34	PK	Horizontal


- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 24 of 44

Coded PHY, S=2

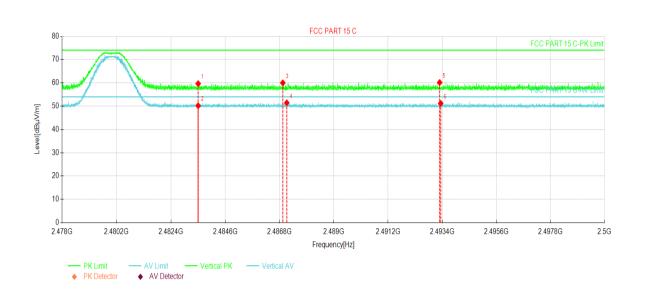
Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2336.35	24.35	59.81	35.46	74.00	14.19	PK	Vertical
2	2336.69	16.39	51.85	35.46	54.00	2.15	AV	Vertical
3	2358.08	23.77	59.38	35.61	74.00	14.62	PK	Vertical
4	2358.95	16.05	51.67	35.62	54.00	2.33	AV	Vertical
5	2390.00	21.69	57.53	35.84	74.00	16.47	PK	Vertical
6	2390.01	14.14	49.98	35.84	54.00	4.02	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

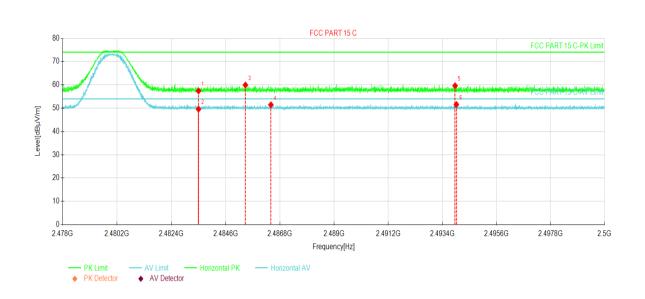
Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2341.49	16.33	51.82	35.49	54.00	2.18	AV	Horizontal
2	2342.28	24.61	60.11	35.50	74.00	13.89	PK	Horizontal
3	2357.98	16.30	51.91	35.61	54.00	2.09	AV	Horizontal
4	2364.44	24.34	60.00	35.66	74.00	14.00	PK	Horizontal
5	2390.00	14.11	49.95	35.84	54.00	4.05	AV	Horizontal
6	2390.00	21.73	57.57	35.84	74.00	16.43	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 26 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

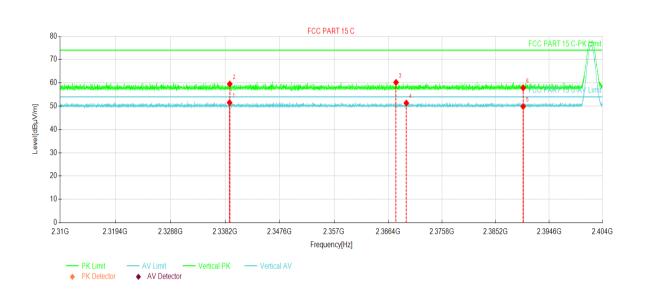


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.92	59.64	35.72	74.00	14.36	PK	Vertical
2	2483.50	14.45	50.17	35.72	54.00	3.83	AV	Vertical
3	2486.92	24.27	59.98	35.71	74.00	14.02	PK	Vertical
4	2487.08	15.71	51.42	35.71	54.00	2.58	AV	Vertical
5	2493.29	24.42	60.12	35.70	74.00	13.88	PK	Vertical
6	2493.33	15.48	51.18	35.70	54.00	2.82	AV	Vertical

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.67	57.39	35.72	74.00	16.61	PK	Horizontal
2	2483.50	13.84	49.56	35.72	54.00	4.44	AV	Horizontal
3	2485.40	24.20	59.91	35.71	74.00	14.09	PK	Horizontal
4	2486.43	15.71	51.42	35.71	54.00	2.58	AV	Horizontal
5	2493.91	23.92	59.61	35.69	74.00	14.39	PK	Horizontal
6	2493.96	15.86	51.55	35.69	54.00	2.45	AV	Horizontal

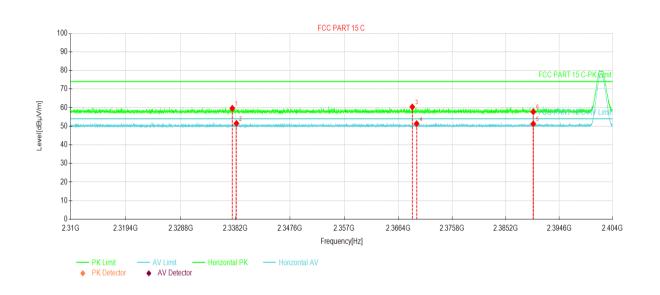

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 28 of 44

Coded PHY, S=8

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

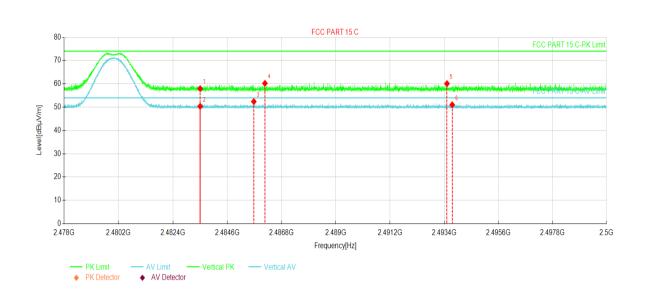
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2338.96	16.03	51.51	35.48	54.00	2.49	AV	Vertical
2	2338.99	24.02	59.50	35.48	74.00	14.50	PK	Vertical
3	2367.77	24.50	60.18	35.68	74.00	13.82	PK	Vertical
4	2369.57	15.63	51.32	35.69	54.00	2.68	AV	Vertical
5	2390.01	14.03	49.87	35.84	54.00	4.13	AV	Vertical
6	2390.01	22.00	57.84	35.84	74.00	16.16	PK	Vertical


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 44

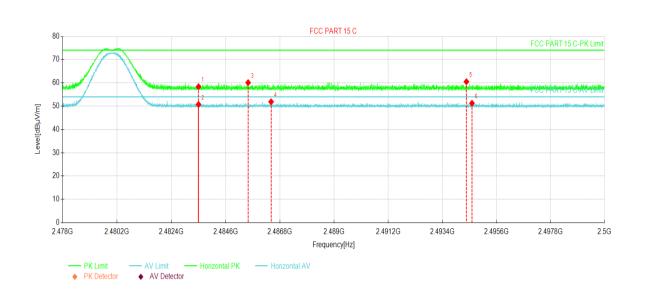
Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2337.65	24.15	59.62	35.47	74.00	14.38	PK	Horizontal
2	2338.37	16.06	51.53	35.47	54.00	2.47	AV	Horizontal
3	2368.83	24.66	60.35	35.69	74.00	13.65	PK	Horizontal
4	2369.59	15.68	51.37	35.69	54.00	2.63	AV	Horizontal
5	2390.01	15.43	51.27	35.84	54.00	2.73	AV	Horizontal
6	2390.01	21.91	57.75	35.84	74.00	16.25	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 30 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

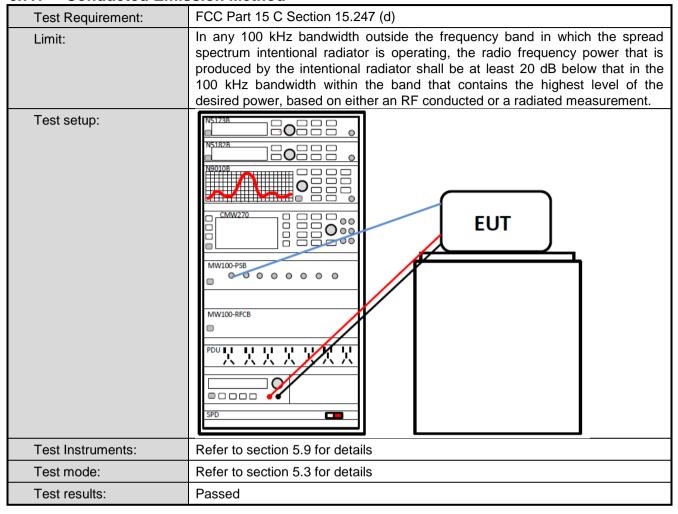


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.23	57.95	35.72	74.00	16.05	PK	Vertical
2	2483.50	14.62	50.34	35.72	54.00	3.66	AV	Vertical
3	2485.67	16.68	52.39	35.71	54.00	1.61	AV	Vertical
4	2486.12	24.50	60.21	35.71	74.00	13.79	PK	Vertical
5	2493.51	24.39	60.08	35.69	74.00	13.92	PK	Vertical
6	2493.72	15.31	51.00	35.69	54.00	3.00	AV	Vertical

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:21.8℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.62	58.34	35.72	74.00	15.66	PK	Horizontal
2	2483.50	15.00	50.72	35.72	54.00	3.28	AV	Horizontal
3	2485.51	24.37	60.08	35.71	74.00	13.92	PK	Horizontal
4	2486.44	16.15	51.86	35.71	54.00	2.14	AV	Horizontal
5	2494.37	24.80	60.49	35.69	74.00	13.51	PK	Horizontal
6	2494.60	15.54	51.23	35.69	54.00	2.77	AV	Horizontal

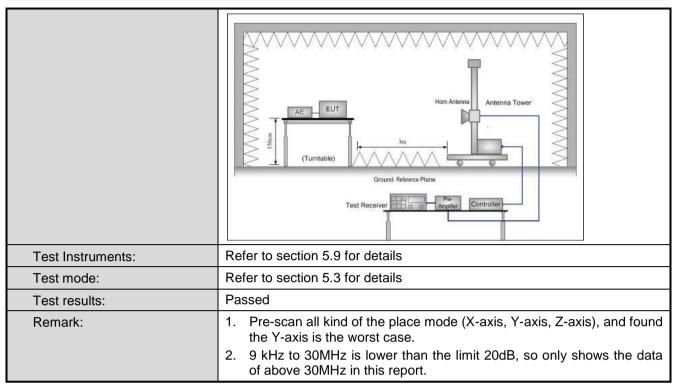

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 32 of 44

6.7 Spurious Emission

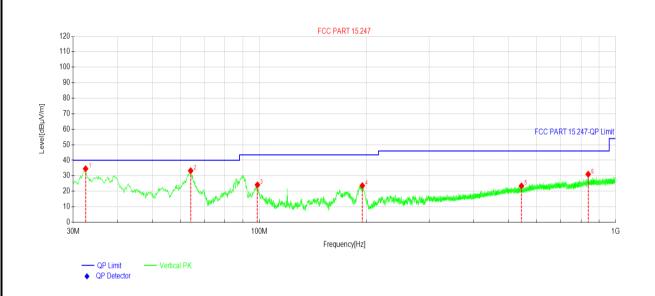
6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 33 of 44

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	205	and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detector		RBW	VB	3W	Remark
	30MHz-1GHz Quasi-p		ak	120KHz	3001	KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3M	Hz	Peak Value
	RMS			1MHz	3M	Hz	Average Value
Limit:	Frequency	/	Limi	it (dBuV/m @	10m)		Remark
	30MHz-88M	Hz		30.0		C	Quasi-peak Value
	88MHz-216N			33.5		C	Quasi-peak Value
	216MHz-960N	ИHz		36.0			Quasi-peak Value
	960MHz-1G			44.0		C	Quasi-peak Value
	Frequency	1	Lim	nit (dBuV/m @	3m)		Remark
	Above 1GH	lz		54.0			Average Value
				74.0		<u> </u>	Peak Value table 0.8m(below
	chamber(al determine to determine the ground Both horizon make the make the make the meters and to find the meters and to find the folial to determine the limit spoof the EUT have 10 determine to determine the determin	bove 1GHz the position vas set 3 me antenna, wh nna tower. na height is to determ ontal and v neasuremer suspected e hen the and I the rota ta maximum re eceiver sys sandwidth w sion level of ecified, ther would be is margin wo	z). n of the term	The table the highest restabove 1Gla was mound the maximuted polarizates as turned ing. In was set of Maximum Here EUT in pesting could borted. Other be re-tested.	was radiation Hz) aw hted or he met hum vali hions of to Pea hold Mo h	otated n. ray from the ter to fixe the a as arra eights degre ak Det de was ped ar ie eminy one	at a 3 meter 360 degrees to method the interference-top of a variable-four meters above the field strength. Antenna are set to anged to its worst from 1 meter to 4 less to 360 degrees tect Function and as 10 dB lower than and the peak values assions that did not using peak, quasi-reported in a data
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	10m 4m			S A RF	Antenna To search Antenna Test ceiver	ower

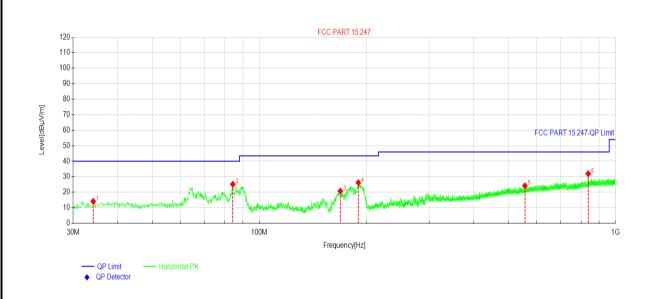

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 22.1℃ Huni: 55%

NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	32.5223	50.11	34.53	-15.58	40.00	5.47	PK	Vertical
2	64.1474	48.80	33.27	-15.53	40.00	6.73	PK	Vertical
3	98.7799	40.53	24.13	-16.40	43.50	19.37	PK	Vertical
4	194.625	39.34	23.63	-15.71	43.50	19.87	PK	Vertical
5	544.442	30.32	23.48	-6.84	46.00	22.52	PK	Vertical
6	838.187	32.83	30.98	-1.85	46.00	15.02	PK	Vertical


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 36 of 44

Product Name:	Mobile Phone	Product Model:	X6817
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 22.1 °C Huni: 55%

NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	34.1714	29.31	14.11	-15.20	40.00	25.89	PK	Horizontal
2	84.2284	42.63	25.17	-17.46	40.00	14.83	PK	Horizontal
3	168.820	37.82	20.77	-17.05	43.50	22.73	PK	Horizontal
4	189.678	42.13	26.20	-15.93	43.50	17.30	PK	Horizontal
5	556.665	30.80	24.14	-6.66	46.00	21.86	PK	Horizontal
6	838.187	33.86	32.01	-1.85	46.00	13.99	PK	Horizontal

- 3. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

PHY: 1MHz

	1111. 191112									
		Test ch	annel: Lowest ch	nannel						
		De	tector: Peak Valu	ie						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	56.13	-9.60	46.53	74.00	27.47	Vertical				
4804.00	55.72	-9.60	46.12	74.00	27.88	Horizontal				
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	49.09	-9.60	39.49	54.00	14.51	Vertical				
4804.00	49.03	-9.60	39.43	54.00	14.57	Horizontal				
	Test channel: Middle channel									
		De	tector: Peak Valu	ie						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	55.65	-9.04	46.61	74.00	27.39	Vertical				
4884.00	55.36	-9.04	46.32	74.00	27.68	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	49.08	-9.04	40.04	54.00	13.96	Vertical				
4884.00	49.37	-9.04	40.33	54.00	13.67	Horizontal				
		Test cha	annel: Highest cl	nannel						
		De	tector: Peak Valu	ıe						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.17	-8.45	47.72	74.00	26.28	Vertical				
4960.00	55.79	-8.45	47.34	74.00	26.66	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	49.03	-8.45	40.58	54.00	13.42	Vertical				

Remark:

4960.00

49.10

40.65

-8.45

54.00

13.35

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2112074

Horizontal

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

		Test ch	annel: Lowest ch	nannel					
		De	tector: Peak Valu	ie					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	55.84	-9.60	46.24	74.00	27.76	Vertical			
4804.00	55.76	-9.60	46.16	74.00	27.84	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	48.73	-9.60	39.13	54.00	14.87	Vertical			
4804.00	49.10	-9.60	39.50	54.00	14.50	Horizontal			
	Test channel: Middle channel								
		De	tector: Peak Valu	ıe					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	56.08	-9.04	47.04	74.00	26.96	Vertical			
4884.00	55.60	-9.04	46.56	74.00	27.44	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	48.93	-9.04	39.89	54.00	14.11	Vertical			
4884.00	48.64	-9.04	39.60	54.00	14.40	Horizontal			
		Test ch	annel: Highest cl	nannel					
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			

47.02

47.71

Detector: Average Value

Level

(dBuV/m)

40.77

41.04

74.00

74.00

Limit Line

(dBuV/m)

54.00

54.00

Vertical

Horizontal

Polarization

Vertical

Horizontal

Project No.: JYTSZE2112074

26.98

26.29

Margin

(dB)

13.23

12.96

Remark:

4960.00

4960.00

Frequency

(MHz)

4960.00

4960.00

55.47

56.16

Read Level

(dBuV)

49.22

49.49

-8.45

-8.45

Factor(dB)

-8.45

-8.45

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 39 of 44

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	55.35	-9.60	45.75	74.00	28.25	Vertical		
4804.00	56.13	-9.60	46.53	74.00	27.47	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	48.45	-9.60	38.85	54.00	15.15	Vertical		
4804.00	49.17	-9.60	39.57	54.00	14.43	Horizontal		

		Test ch	annel: Middle ch	nannel				
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4884.00	55.51	-9.04	46.47	74.00	27.53	Vertical		
4884.00	55.80	-9.04	46.76	74.00	27.24	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4884.00	38.90	-9.04	29.86	54.00	24.14	Vertical		
4884.00	49.45	-9.04	40.41	54.00	13.59	Horizontal		

Test channel: Highest channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4960.00	55.70	-8.45	47.25	74.00	26.75	Vertical		
4960.00	56.22	-8.45	47.77	74.00	26.23	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4960.00	48.13	-8.45	39.68	54.00	14.32	Vertical		
4960.00	49.54	-8.45	41.09	54.00	12.91	Horizontal		

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	55.65	-9.60	46.05	74.00	27.95	Vertical		
4804.00	55.63	-9.60	46.03	74.00	27.97	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	48.10	-9.60	38.50	54.00	15.50	Vertical		
4804.00	49.00	-9.60	39.40	54.00	14.60	Horizontal		

		Test ch	nannel: Middle ch	nannel		
		De	tector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.72	-9.04	46.68	74.00	27.32	Vertical
4884.00	55.43	-9.04	46.39	74.00	27.61	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	48.06	-9.04	39.02	54.00	14.98	Vertical
4884.00	49.39	-9.04	40.35	54.00	13.65	Horizontal

Test channel: Highest channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4960.00	55.75	-8.45	47.30	74.00	26.70	Vertical		
4960.00	55.04	-8.45	46.59	74.00	27.41	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4960.00	47.58	-8.45	39.13	54.00	14.87	Vertical		
4960.00	49.54	-8.45	41.09	54.00	12.91	Horizontal		

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.