

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200954

FCC RF Test Report

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X676B

Trade Mark: Infinix

FCC ID: 2AIZN-X676B

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 29 Apr., 2022

Date of Test: 30 Apr., to 31 May, 2022

Date of Report Issued: 31 May, 2022

Test Result: PASS

Tested by: _____ Date: ____ 31 May, 2022

Reviewed by: Date: 31 May, 2022

Approved by: Date: 31 May, 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 May, 2022	Original

3 Contents

			Page
1	Cov	over Page	1
2	Ver	rsion	2
3	Coi	ontents	3
4		eneral Information	
	4.1 4.2 4.3	Client InformationGeneral Description of E.U.T	4
	4.4 4.5	Description of Support UnitsMeasurement Uncertainty	5 5
	4.6 4.7 4.8	Additions to, Deviations, or Exclusions from the Method Laboratory Facility Laboratory Location	5 5
5	4.9 Me a	Test Instruments Listeasurement Setup and Procedure	
	5.1 5.2 5.3	Test Channel	7
6	Tes	st Results	10
	6.1 6.2 6.3	Summary Antenna requirement AC Power Line Conducted Emission	12 13
	6.4 6.5	Emissions in Restricted Frequency Bands	

4 General Information

4.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

4.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	X676B
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY), 125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2)
Antenna Type:	Internal Antenna
Antenna Gain:	1.2dBi (declare by applicant)
Antenna transmit mode:	SISO (TX with Main antenna(ANT2) and AUX antenna(ANT1), RX with Main antenna(ANT2) and AUX antenna(ANT1))
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh
AC Adapter:	Model: U330XSA
no naapioi.	Wodel. Goodkerk
πο πααριοι.	Input: AC100-240V, 50/60Hz, 1.5A
πο πααριοι.	

Report No.: JYTSZ-R12-2200954

4.3 Test Mode and Test Environment

Test Mode:						
Transmitting mode	Keep the EUT in continuous transmitting with modulation					
Remark: For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed and ANT1&2, found 1 Mbps (LE 1M PHY) and ANT1was worse case mode. The report only reflects the test data of worst mode.						
Operating Environment:						
Temperature: $15^{\circ}\text{C} \sim 35^{\circ}\text{C}$						
Humidity:	20 % ~ 75 % RH					

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Atmospheric Pressure: 1010 mbar

in an					
Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))				
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB				
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB				
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB				
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB				
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB				

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions from the Method

Nο

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

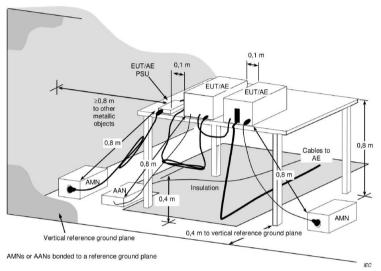
4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	02-17-2022	02-16-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA- 180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN- 8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS- 8M	WXG001-7	02-17-2022	02-16-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	I/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Model No. Manage No.		Cal. Due date	
			_	(mm-dd-yy)	(mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023	
LISN	LISN Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	N	I/A	
Test Software	AUDIX	E3	V	Version: 6.110919b		

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0	

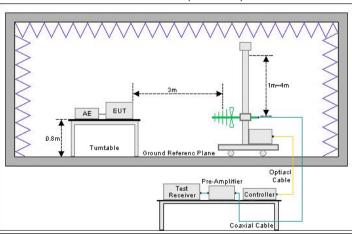
5 Measurement Setup and Procedure

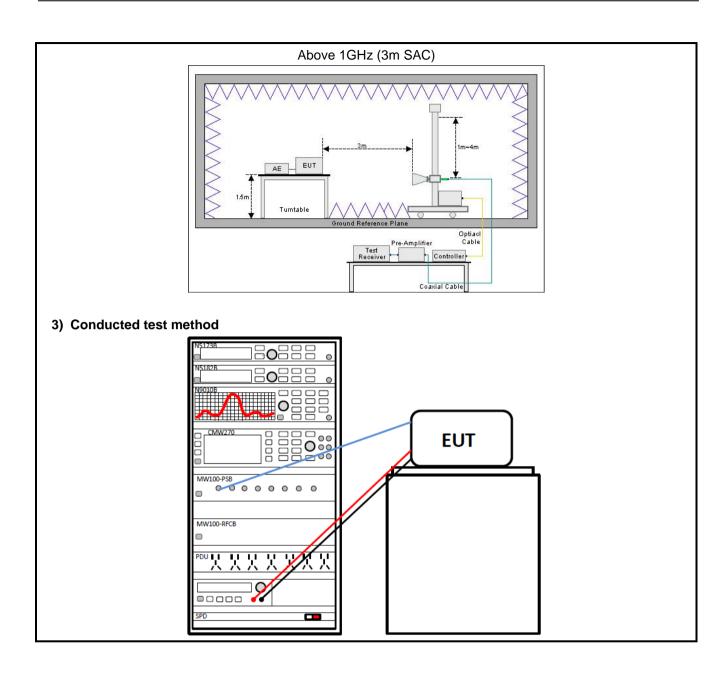

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highe	st channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

5.2 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz: 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Test items			Lin	nit		
	Frequency Limit (dBµV)					
		(MHz)	Quas	si-Peak	Average	
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1	
Emission		0.5 – 5		56	46	
21111001011		5 – 30		60	50	
		Note 1: The limit level in dBµ Note 2: The more stringent li		-	of frequency.	
Conducted Output Power		systems using digital I I 5725-5850 MHz band		the 902-928 M	MHz, 2400-2483.5 MHz	<u>z</u> ,
6dB Emission Bandwidth	The	e minimum 6 dB bandw	idth shall be a	at least 500 kH	łz.	
99% Occupied Bandwidth	N/A	1				
Power Spectral Density	inte	digitally modulated synthemic entional radiator to the and during any time inter	antenna shall	not be greater	than 8 dBm in any 3 k	
Band-edge Emission Conduction Spurious Emission	spe fred dB high rad the pow per this limi whi	any 100 kHz bandwidth actrum or digitally modu quency power that is probelow that in the 100 kenest level of the desire itated measurement, propeak conducted power limits based on the mitted under paragraph paragraph shall be 30 ts specified in §15.209 ch fall in the restricted in the radiated emission	alated intention roduced by the characteristic and width display provided the training of RMS at (b)(3) of this decimal and the characteristic and the character	nal radiator is a intentional radiator is a within the bar d on either an ansmitter demonstrate ansmitter converaging over section, the a 20 dB. Attenuired. In additioned in §15.20	operating, the radio idiator shall be at least and that contains the RF conducted or a constrates compliance with the conduct a time interval, as attenuation required unuation below the generon, radiated emissions 15(a), must also comply	vith ted der al
		Frequency (MHz)	Limit (d @ 3m	BμV/m) @ 10m	Detector	
	l	30 – 88	40.0	30.0	Quasi-peak	
Emissions in Restricted		88 – 216	43.5	33.5	Quasi-peak Quasi-peak	
Frequency Bands		216 – 960	46.0	36.0	Quasi-peak Quasi-peak	
. requeries Barras		960 – 1000	54.0	44.0	Quasi-peak	
Emissions in New restricts of	Notes Till 18 18 18 18 18 18 18 18					
Emissions in Non-restricted	Limit (dBµV/m) @ 3m					1
Frequency Bands		Frequency	Ave	rage	Peake	
		Above 1 GHz		1.0	74.0	
		Note: The measurement band	dwidth shall be 1 M	Hz or greater.	ı	
	Note: The measurement bandwidth shall be 1 MHz or greater.					1

Report No.: JYTSZ-R12-2200954

6.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

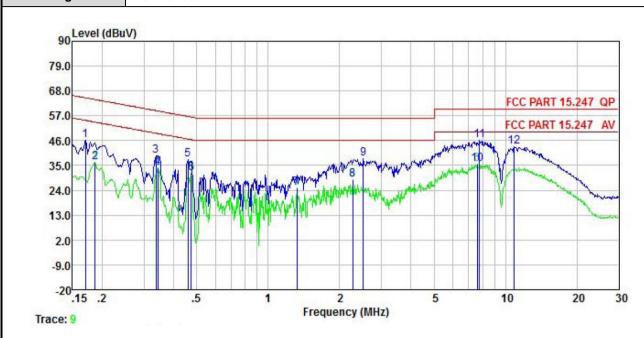
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

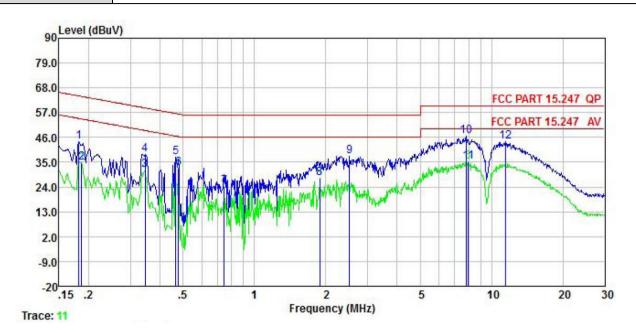
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.2 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

Product name:	Mobile Phone	Product model:	X676B
Test by:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

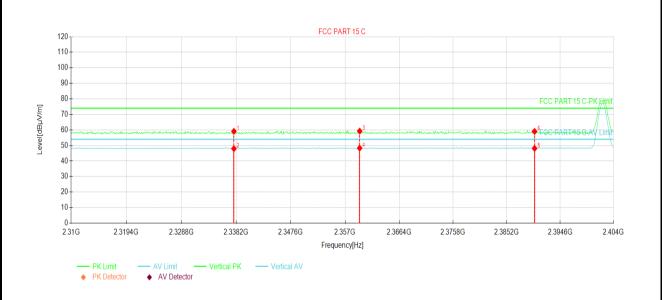

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.170	46.07	0.04	0.01	46.12	64.94	-18.82	QP
2	0.186	36.41	0.04	0.02	36.47	54.20	-17.73	Average
1 2 3 4 5 6 7 8 9	0.337	39.16	0.04	0.02	39.22	59.27	-20.05	QP
4	0.343	33.77	0.04	0.02	33.83	49.13	-15.30	Average
5	0.459	37.50	0.04	0.03	37.57	56.71	-19.14	QP
6	0.474	31.65	0.04	0.03	31.72	46.45	-14.73	Average
7	1.324	24.69	0.06	0.11	24.86	46.00	-21.14	Average
8	2.273	28.33	0.08	0.17	28.58	46.00	-17.42	Average
9	2.513	37.81	0.08	0.13	38.02	56.00	-17.98	QP
10	7.606	35.40	0.16	0.10	35.66	50.00	-14.34	Average
11	7.769	46.01	0.17	0.10	46.28	60.00	-13.72	QP
12	10.905	42.88	0.22	0.12	43.22	60.00	-16.78	QP

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	X676B
Test by:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.182	44.03	0.04	0.01	44.08	64.42	-20.34	QP
2	0.186	34.86	0.04	0.02	34.92	54.20	-19.28	Average
3	0.346	31.59	0.04	0.02	31.65	49.05	-17.40	Average
4	0.346	38.36	0.04	0.02	38.42	59.05	-20.63	QP
1 2 3 4 5 6 7 8 9	0.466	37.02	0.04	0.03	37.09	56.58	-19.49	QP
6	0.479	32.24	0.04	0.03	32.31	46.36	-14.05	Average
7	0.747	24.10	0.04	0.03	24.17	46.00	-21.83	Average
8	1.888	27.57	0.06	0.20	27.83	46.00	-18.17	Average
9	2.513	37.51	0.07	0.13	37.71		-18.29	
10	7.852	46.16	0.16	0.10	46.42	60.00	-13.58	QP
11	7.977	35.00	0.16	0.10	35.26	50.00	-14.74	Average
12	11.438	43.64	0.21	0.11	43.96		-16.04	


1. Level = Read level + LISN Factor + Cable Loss.

6.4 Emissions in Restricted Frequency Bands

ANT1:

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2337.82	23.65	59.12	35.47	74.00	14.88	PK	Vertical
2	2337.82	12.48	47.95	35.47	54.00	6.05	AV	Vertical
3	2359.53	23.64	59.26	35.62	74.00	14.74	PK	Vertical
4	2359.53	12.68	48.30	35.62	54.00	5.70	AV	Vertical
5	2390.08	12.30	48.14	35.84	54.00	5.86	AV	Vertical
6	2390.08	23.20	59.04	35.84	74.00	14.96	PK	Vertical

Remark:

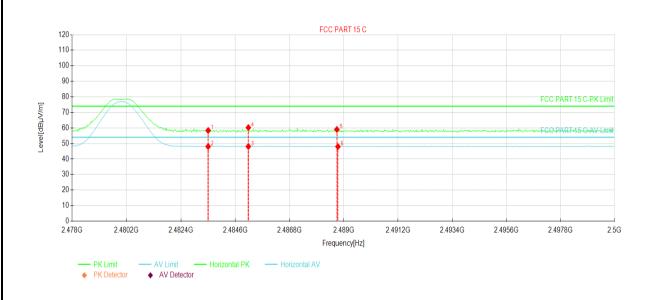
1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delevity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2352.67	24.07	59.64	35.57	74.00	14.36	PK	Horizontal
2	2352.77	12.69	48.26	35.57	54.00	5.74	AV	Horizontal
3	2373.16	24.04	59.76	35.72	74.00	14.24	PK	Horizontal
4	2373.26	12.72	48.44	35.72	54.00	5.56	AV	Horizontal
5	2390.08	22.60	58.44	35.84	74.00	15.56	PK	Horizontal
6	2390.08	12.37	48.21	35.84	54.00	5.79	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

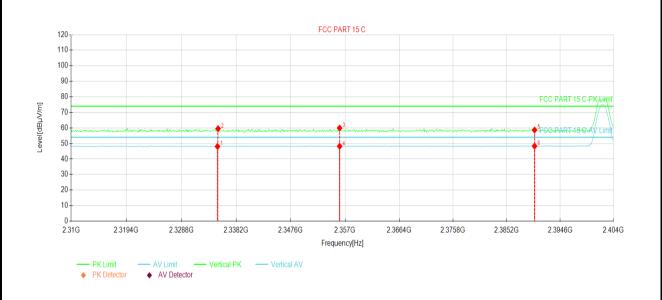
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	21.66	57.38	35.72	74.00	16.62	PK	Vertical
2	2483.50	12.44	48.16	35.72	54.00	5.84	AV	Vertical
3	2487.63	23.33	59.04	35.71	74.00	14.96	PK	Vertical
4	2487.65	12.27	47.98	35.71	54.00	6.02	AV	Vertical
5	2492.25	23.13	58.83	35.70	74.00	15.17	PK	Vertical
6	2492.27	12.35	48.05	35.70	54.00	5.95	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

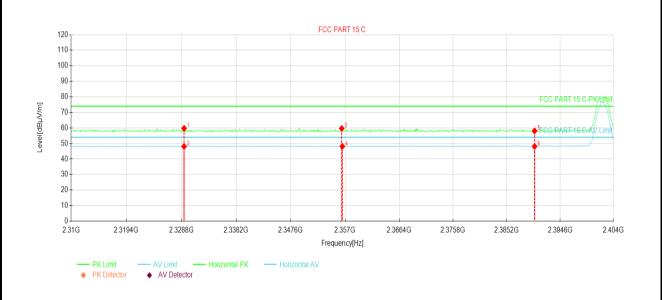
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolositu
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.64	58.36	35.72	74.00	15.64	PK	Horizontal
2	2483.50	12.29	48.01	35.72	54.00	5.99	AV	Horizontal
3	2485.12	12.36	48.07	35.71	54.00	5.93	AV	Horizontal
4	2485.12	24.51	60.22	35.71	74.00	13.78	PK	Horizontal
5	2488.71	23.29	59.00	35.71	74.00	15.00	PK	Horizontal
6	2488.75	12.27	47.98	35.71	54.00	6.02	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

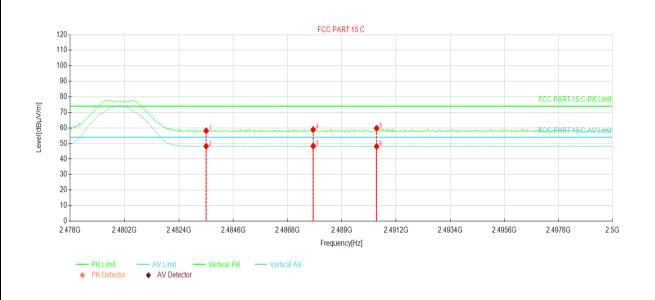
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	T	Delevity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2335.00	12.61	48.06	35.45	54.00	5.94	AV	Vertical
2	2335.09	24.08	59.53	35.45	74.00	14.47	PK	Vertical
3	2356.06	24.33	59.93	35.60	74.00	14.07	PK	Vertical
4	2356.06	12.61	48.21	35.60	54.00	5.79	AV	Vertical
5	2390.08	22.83	58.67	35.84	74.00	15.33	PK	Vertical
6	2390.08	12.47	48.31	35.84	54.00	5.69	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

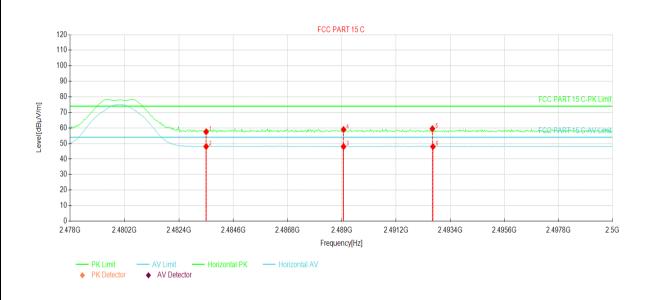
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2329.27	24.36	59.77	35.41	74.00	14.23	PK	Horizontal
2	2329.27	12.66	48.07	35.41	54.00	5.93	AV	Horizontal
3	2356.43	24.06	59.66	35.60	74.00	14.34	PK	Horizontal
4	2356.53	12.51	48.11	35.60	54.00	5.89	AV	Horizontal
5	2390.08	22.25	58.09	35.84	74.00	15.91	PK	Horizontal
6	2390.08	12.23	48.07	35.84	54.00	5.93	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Tropo	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	22.43	58.15	35.72	74.00	15.85	PK	Vertical	
2	2483.50	12.49	48.21	35.72	54.00	5.79	AV	Vertical	
3	2487.83	12.60	48.31	35.71	54.00	5.69	AV	Vertical	
4	2487.83	23.24	58.95	35.71	74.00	15.05	PK	Vertical	
5	2490.40	24.07	59.77	35.70	74.00	14.23	PK	Vertical	
6	2490.40	12.40	48.10	35.70	54.00	5.90	AV	Vertical	

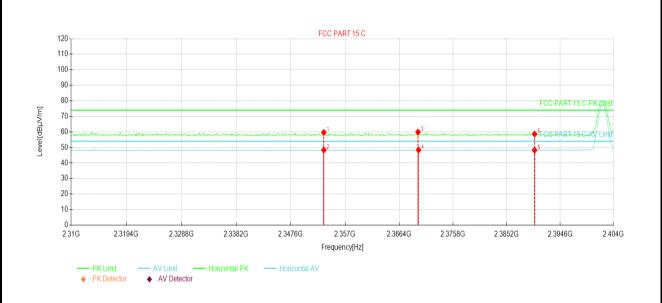
1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Troop	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	21.82	57.54	35.72	74.00	16.46	PK	Horizontal
2	2483.50	12.32	48.04	35.72	54.00	5.96	AV	Horizontal
3	2489.06	12.26	47.97	35.71	54.00	6.03	AV	Horizontal
4	2489.06	23.26	58.97	35.71	74.00	15.03	PK	Horizontal
5	2492.67	23.81	59.51	35.70	74.00	14.49	PK	Horizontal
6	2492.69	12.28	47.98	35.70	54.00	6.02	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

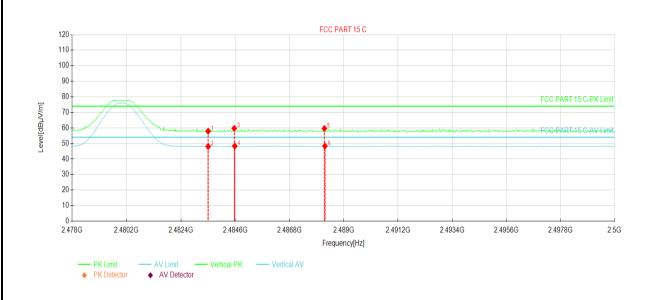
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2335.56	24.04	59.49	35.45	74.00	14.51	PK	Vertical
2	2335.56	12.66	48.11	35.45	54.00	5.89	AV	Vertical
3	2360.29	23.73	59.36	35.63	74.00	14.64	PK	Vertical
4	2360.38	12.47	48.10	35.63	54.00	5.90	AV	Vertical
5	2390.08	22.91	58.75	35.84	74.00	15.25	PK	Vertical
6	2390.08	12.41	48.25	35.84	54.00	5.75	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

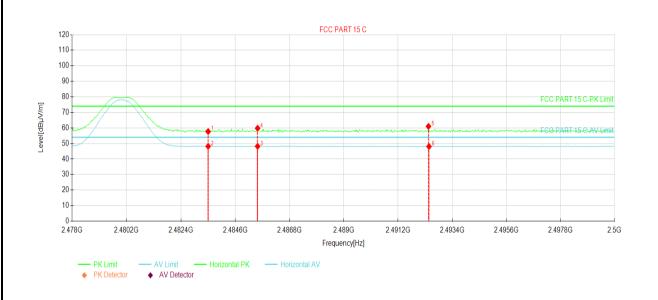
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Tropo	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2353.33	24.06	59.64	35.58	74.00	14.36	PK	Horizontal
2	2353.33	12.80	48.38	35.58	54.00	5.62	AV	Horizontal
3	2369.69	24.20	59.89	35.69	74.00	14.11	PK	Horizontal
4	2369.78	12.70	48.40	35.70	54.00	5.60	AV	Horizontal
5	2390.08	12.39	48.23	35.84	54.00	5.77	AV	Horizontal
6	2390.08	22.78	58.62	35.84	74.00	15.38	PK	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

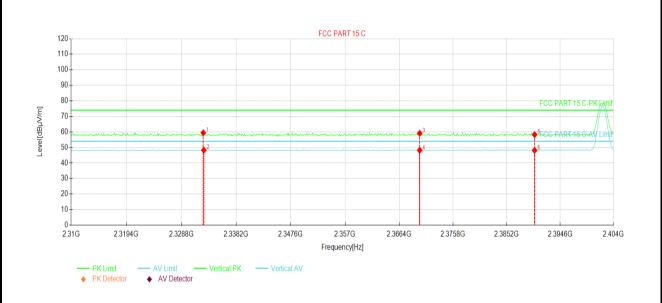
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Tropo	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.18	57.90	35.72	74.00	16.10	PK	Vertical
2	2483.50	12.33	48.05	35.72	54.00	5.95	AV	Vertical
3	2484.55	23.99	59.71	35.72	74.00	14.29	PK	Vertical
4	2484.57	12.59	48.31	35.72	54.00	5.69	AV	Vertical
5	2488.20	23.92	59.63	35.71	74.00	14.37	PK	Vertical
6	2488.23	12.63	48.34	35.71	54.00	5.66	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

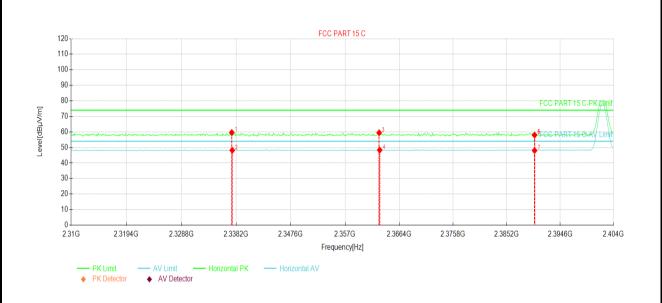
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolosity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	21.97	57.69	35.72	74.00	16.31	PK	Horizontal	
2	2483.50	12.44	48.16	35.72	54.00	5.84	AV	Horizontal	
3	2485.50	12.46	48.17	35.71	54.00	5.83	AV	Horizontal	
4	2485.50	24.09	59.80	35.71	74.00	14.20	PK	Horizontal	
5	2492.43	25.31	61.01	35.70	74.00	12.99	PK	Horizontal	
6	2492.45	12.36	48.06	35.70	54.00	5.94	AV	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

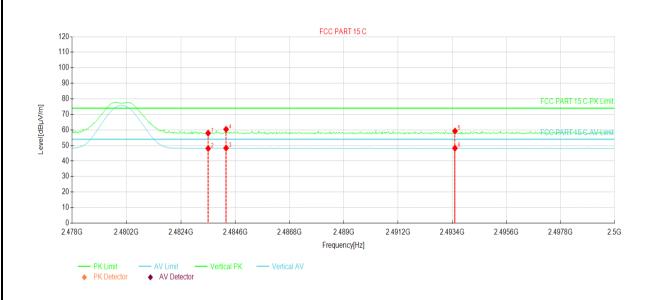
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delevity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2332.56	24.01	59.44	35.43	74.00	14.56	PK	Vertical
2	2332.65	12.85	48.28	35.43	54.00	5.72	AV	Vertical
3	2369.97	23.43	59.13	35.70	74.00	14.87	PK	Vertical
4	2369.97	12.53	48.23	35.70	54.00	5.77	AV	Vertical
5	2390.08	22.44	58.28	35.84	74.00	15.72	PK	Vertical
6	2390.08	12.30	48.14	35.84	54.00	5.86	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

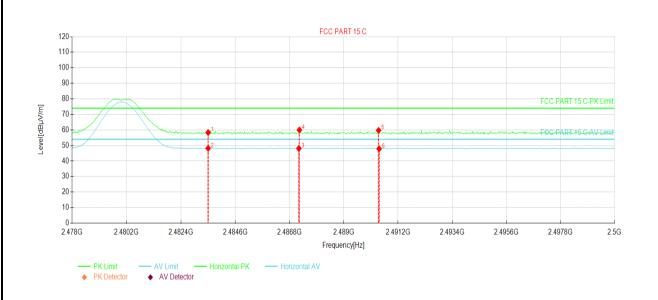
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		


Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2337.44	24.15	59.62	35.47	74.00	14.38	PK	Horizontal
2	2337.54	12.71	48.18	35.47	54.00	5.82	AV	Horizontal
3	2362.92	23.81	59.46	35.65	74.00	14.54	PK	Horizontal
4	2363.01	12.68	48.33	35.65	54.00	5.67	AV	Horizontal
5	2390.08	22.14	57.98	35.84	74.00	16.02	PK	Horizontal
6	2390.08	22.14	57.98	35.84	74.00	16.02	PK	Horizontal
7	2390.08	12.22	48.06	35.84	54.00	5.94	AV	Horizontal

Remark.

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

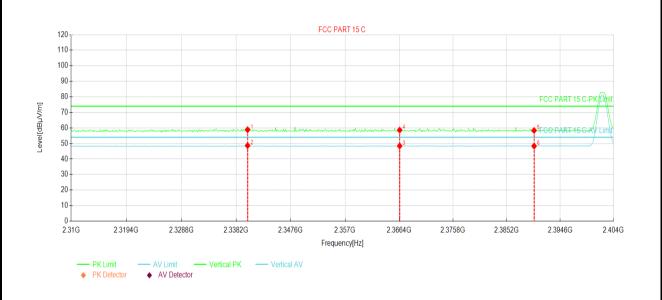
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Troop	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.22	57.94	35.72	74.00	16.06	PK	Vertical
2	2483.50	12.34	48.06	35.72	54.00	5.94	AV	Vertical
3	2484.22	12.62	48.34	35.72	54.00	5.66	AV	Vertical
4	2484.22	24.69	60.41	35.72	74.00	13.59	PK	Vertical
5	2493.51	23.58	59.27	35.69	74.00	14.73	PK	Vertical
6	2493.51	12.58	48.27	35.69	54.00	5.73	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

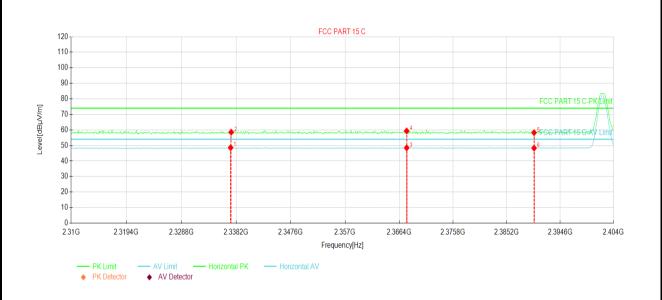
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.58	58.30	35.72	74.00	15.70	PK	Horizontal
2	2483.50	12.45	48.17	35.72	54.00	5.83	AV	Horizontal
3	2487.17	12.38	48.09	35.71	54.00	5.91	AV	Horizontal
4	2487.19	24.26	59.97	35.71	74.00	14.03	PK	Horizontal
5	2490.40	24.00	59.70	35.70	74.00	14.30	PK	Horizontal
6	2490.43	12.16	47.86	35.70	54.00	6.14	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

ANT2:

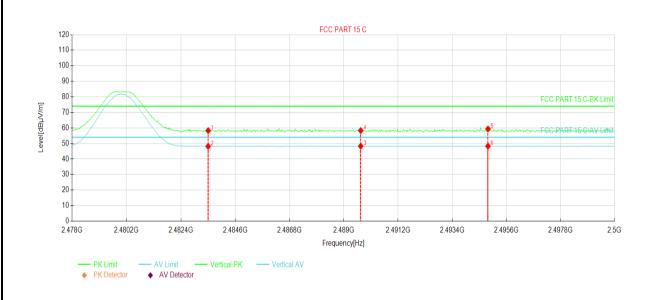
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		


Suspected Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2340.17	23.36	58.85	35.49	74.00	15.15	PK	Vertical
2	2340.17	13.16	48.65	35.49	54.00	5.35	AV	Vertical
3	2366.49	12.70	48.37	35.67	54.00	5.63	AV	Vertical
4	2366.49	22.94	58.61	35.67	74.00	15.39	PK	Vertical
5	2390.00	22.51	58.35	35.84	74.00	15.65	PK	Vertical
6	2390.00	12.48	48.32	35.84	54.00	5.68	AV	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

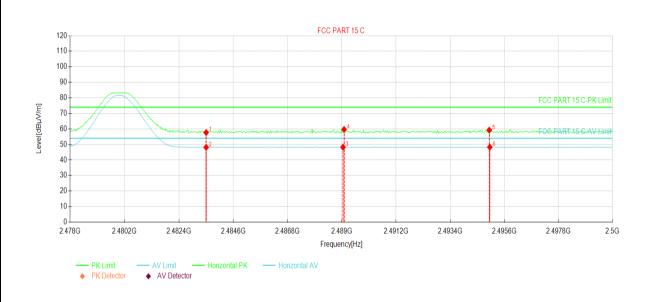
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Susp	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2337.26	13.12	48.58	35.46	54.00	5.42	AV	Horizontal
2	2337.35	23.09	58.56	35.47	74.00	15.44	PK	Horizontal
3	2367.71	12.82	48.50	35.68	54.00	5.50	AV	Horizontal
4	2367.71	23.66	59.34	35.68	74.00	14.66	PK	Horizontal
5	2390.00	22.39	58.23	35.84	74.00	15.77	PK	Horizontal
6	2390.00	12.47	48.31	35.84	54.00	5.69	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

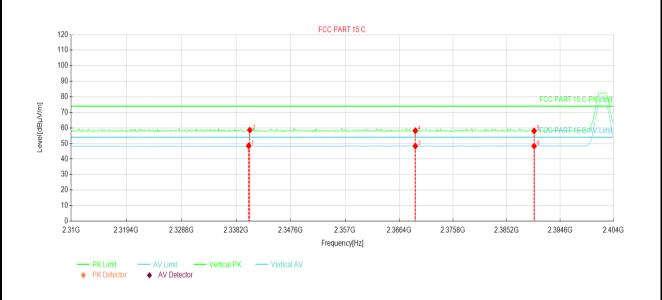
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.54	58.26	35.72	74.00	15.74	PK	Vertical
2	2483.50	12.41	48.13	35.72	54.00	5.87	AV	Vertical
3	2489.68	12.58	48.28	35.70	54.00	5.72	AV	Vertical
4	2489.68	22.61	58.31	35.70	74.00	15.69	PK	Vertical
5	2494.85	23.68	59.37	35.69	74.00	14.63	PK	Vertical
6	2494.85	12.62	48.31	35.69	54.00	5.69	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

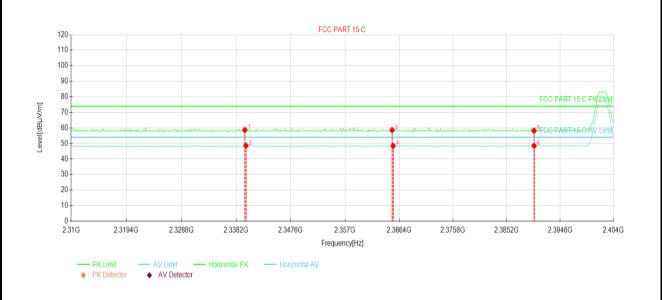
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	21.97	57.69	35.72	74.00	16.31	PK	Horizontal
2	2483.50	12.46	48.18	35.72	54.00	5.82	AV	Horizontal
3	2489.04	12.56	48.27	35.71	54.00	5.73	AV	Horizontal
4	2489.08	23.97	59.68	35.71	74.00	14.32	PK	Horizontal
5	2494.98	23.54	59.23	35.69	74.00	14.77	PK	Horizontal
6	2495.00	12.61	48.30	35.69	54.00	5.70	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

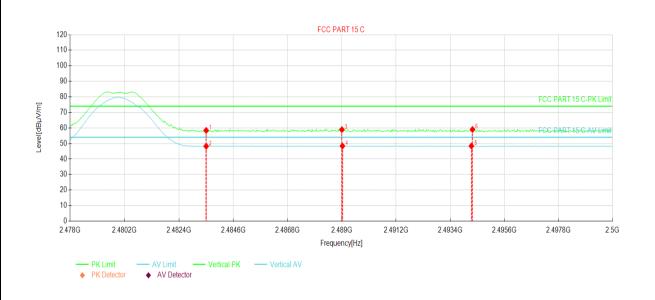
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspected Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolovitu
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2340.36	12.99	48.48	35.49	54.00	5.52	AV	Vertical
2	2340.55	23.09	58.58	35.49	74.00	15.42	PK	Vertical
3	2369.22	12.63	48.32	35.69	54.00	5.68	AV	Vertical
4	2369.22	22.53	58.22	35.69	74.00	15.78	PK	Vertical
5	2390.00	22.21	58.05	35.84	74.00	15.95	PK	Vertical
6	2390.00	12.46	48.30	35.84	54.00	5.70	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

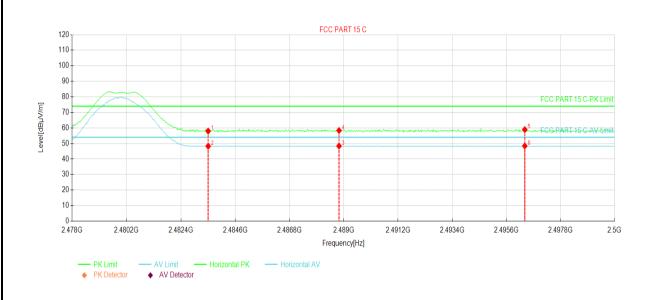
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]		
1	2339.70	23.18	58.66	35.48	74.00	15.34	PK	Horizontal
2	2339.89	13.05	48.53	35.48	54.00	5.47	AV	Horizontal
3	2365.17	22.94	58.60	35.66	74.00	15.40	PK	Horizontal
4	2365.36	12.75	48.41	35.66	54.00	5.59	AV	Horizontal
5	2390.00	22.37	58.21	35.84	74.00	15.79	PK	Horizontal
6	2390.00	12.67	48.51	35.84	54.00	5.49	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.68	58.40	35.72	74.00	15.60	PK	Vertical
2	2483.50	12.51	48.23	35.72	54.00	5.77	AV	Vertical
3	2489.00	23.18	58.89	35.71	74.00	15.11	PK	Vertical
4	2489.02	12.65	48.36	35.71	54.00	5.64	AV	Vertical
5	2494.25	12.67	48.36	35.69	54.00	5.64	AV	Vertical
6	2494.30	23.31	59.00	35.69	74.00	15.00	PK	Vertical

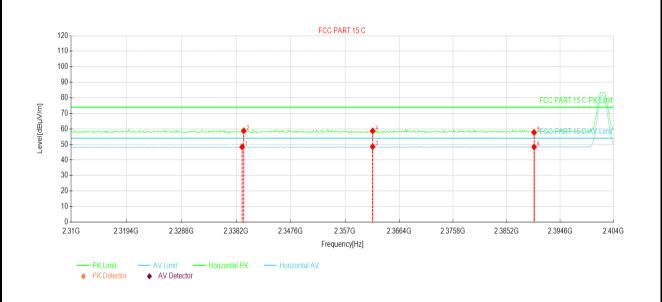
1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

Susp	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]			
1	2483.50	22.26	57.98	35.72	74.00	16.02	PK	Horizontal	
2	2483.50	12.55	48.27	35.72	54.00	5.73	AV	Horizontal	
3	2488.80	12.65	48.36	35.71	54.00	5.64	AV	Horizontal	
4	2488.80	22.63	58.34	35.71	74.00	15.66	PK	Horizontal	
5	2496.34	23.23	58.92	35.69	74.00	15.08	PK	Horizontal	
6	2496.34	12.70	48.39	35.69	54.00	5.61	AV	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

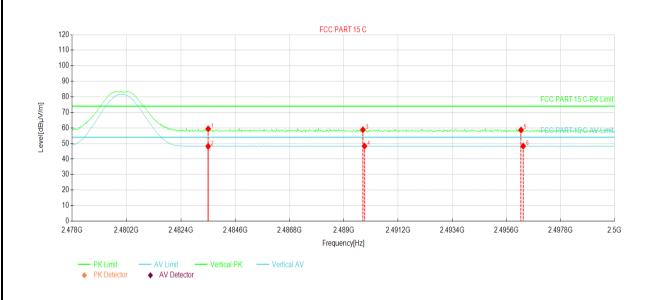
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2341.49	23.64	59.13	35.49	74.00	14.87	PK	Vertical
2	2341.58	12.78	48.28	35.50	54.00	5.72	AV	Vertical
3	2365.64	12.79	48.46	35.67	54.00	5.54	AV	Vertical
4	2365.64	23.31	58.98	35.67	74.00	15.02	PK	Vertical
5	2390.00	22.39	58.23	35.84	74.00	15.77	PK	Vertical
6	2390.27	12.63	48.47	35.84	54.00	5.53	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

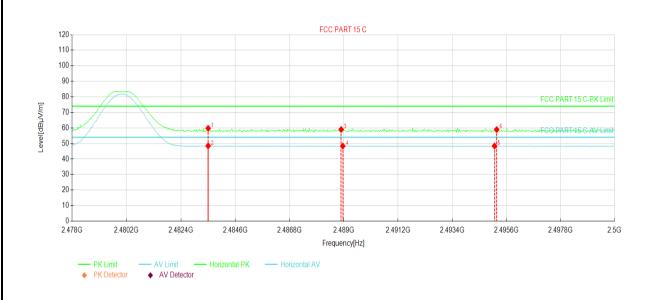
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		



Susp	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]			
1	2339.23	12.96	48.44	35.48	54.00	5.56	AV	Horizontal	
2	2339.51	23.29	58.77	35.48	74.00	15.23	PK	Horizontal	
3	2361.79	12.94	48.58	35.64	54.00	5.42	AV	Horizontal	
4	2361.79	23.08	58.72	35.64	74.00	15.28	PK	Horizontal	
5	2390.00	21.90	57.74	35.84	74.00	16.26	PK	Horizontal	
6	2390.00	12.53	48.37	35.84	54.00	5.63	AV	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Susp	Suspected Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Hace	lolanty	
1	2483.50	23.68	59.40	35.72	74.00	14.60	PK	Vertical	
2	2483.50	12.44	48.16	35.72	54.00	5.84	AV	Vertical	
3	2489.77	23.12	58.82	35.70	74.00	15.18	PK	Vertical	
4	2489.83	12.63	48.33	35.70	54.00	5.67	AV	Vertical	
5	2496.19	22.96	58.65	35.69	74.00	15.35	PK	Vertical	
6	2496.28	12.64	48.33	35.69	54.00	5.67	AV	Vertical	

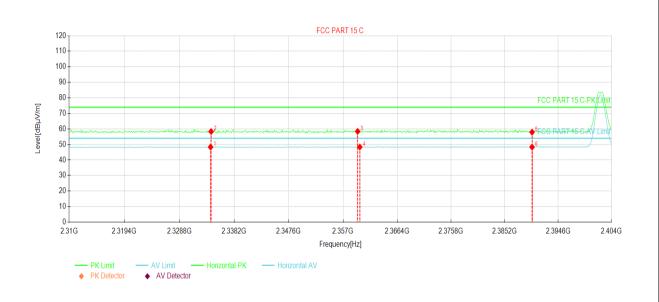
1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

Susp	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity
	[MHz]	[dBuV/m]	[dBµV/m]	[dB]	[dBuV/m]	[dB]	Hacc	1 Oldiny
1	2483.50	24.04	59.76	35.72	74.00	14.24	PK	Horizontal
2	2483.50	12.76	48.48	35.72	54.00	5.52	AV	Horizontal
3	2488.89	23.30	59.01	35.71	74.00	14.99	PK	Horizontal
4	2488.95	12.65	48.36	35.71	54.00	5.64	AV	Horizontal
5	2495.11	12.68	48.37	35.69	54.00	5.63	AV	Horizontal
6	2495.20	23.26	58.95	35.69	74.00	15.05	PK	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

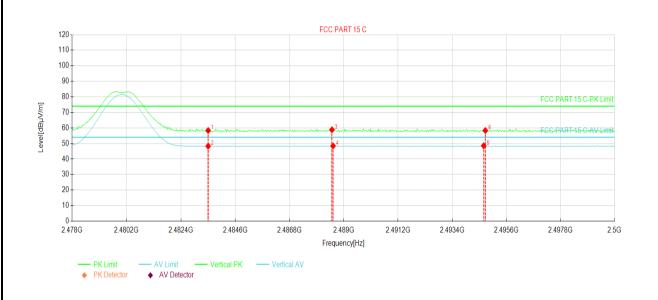
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		



Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2340.73	23.00	58.49	35.49	74.00	15.51	PK	Vertical
2	2341.02	12.85	48.34	35.49	54.00	5.66	AV	Vertical
3	2368.93	24.23	59.92	35.69	74.00	14.08	PK	Vertical
4	2369.03	12.75	48.44	35.69	54.00	5.56	AV	Vertical
5	2390.00	22.38	58.22	35.84	74.00	15.78	PK	Vertical
6	2390.00	12.45	48.29	35.84	54.00	5.71	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

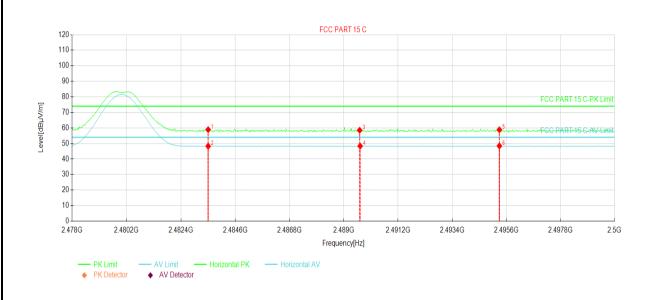
Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3 87V		



Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2334.15	12.90	48.34	35.44	54.00	5.66	AV	Horizontal
2	2334.25	22.89	58.33	35.44	74.00	15.67	PK	Horizontal
3	2359.53	22.80	58.42	35.62	74.00	15.58	PK	Horizontal
4	2359.91	12.73	48.36	35.63	54.00	5.64	AV	Horizontal
5	2390.00	22.10	57.94	35.84	74.00	16.06	PK	Horizontal
6	2390.00	12.48	48.32	35.84	54.00	5.68	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.87V		

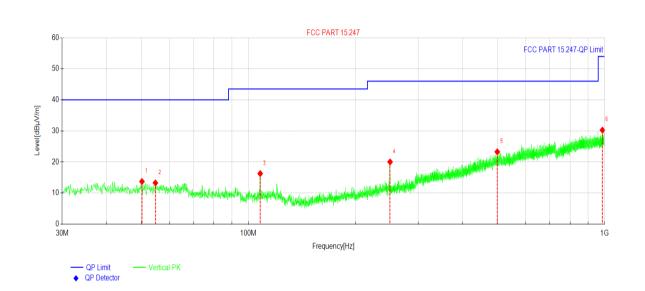


Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.61	58.33	35.72	74.00	15.67	PK	Vertical
2	2483.50	12.57	48.29	35.72	54.00	5.71	AV	Vertical
3	2488.51	23.12	58.83	35.71	74.00	15.17	PK	Vertical
4	2488.56	12.69	48.40	35.71	54.00	5.60	AV	Vertical
5	2494.67	12.85	48.54	35.69	54.00	5.46	AV	Vertical
6	2494.74	22.65	58.34	35.69	74.00	15.66	PK	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

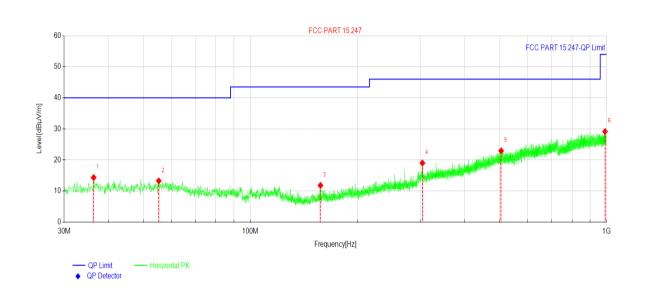
Susp	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	
1	2483.50	23.17	58.89	35.72	74.00	15.11	PK	Horizontal
2	2483.50	12.55	48.27	35.72	54.00	5.73	AV	Horizontal
3	2489.63	22.81	58.51	35.70	74.00	15.49	PK	Horizontal
4	2489.66	12.63	48.33	35.70	54.00	5.67	AV	Horizontal
5	2495.31	23.14	58.83	35.69	74.00	15.17	PK	Horizontal
6	2495.31	12.71	48.40	35.69	54.00	5.60	AV	Horizontal


1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3.87V		


Suspe	Suspected Data List								
NO.	Freq.	Reading[d	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	BµV/m]	[dBµV/m]	[dB]	[dBµV/m] [dB]		loidity		
1	50.2750	28.42	13.72	-14.70	40.00	26.28	PK	Vertical	
2	54.8345	27.90	13.28	-14.62	40.00	26.72	PK	Vertical	
3	107.995	32.22	16.28	-15.94	43.50	27.22	PK	Vertical	
4	250.018	33.83	20.04	-13.79	46.00	25.96	PK	Vertical	
5	500.012	30.24	23.28	-6.96	46.00	22.72	PK	Vertical	
6	986.806	31.03	30.27	-0.76	54.00	23.73	PK	Vertical	

Remark

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X676B
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.87V		

Suspe	Suspected Data List								
NO	Freq. R	Reading[d	Level	Factor	Limit	Margin	Т	Polarity	
NO.	[MHz]	BµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace		
1	36.3056	29.22	14.35	-14.87	40.00	25.65	PK	Horizontal	
2	55.3195	27.90	13.26	-14.64	40.00	26.74	PK	Horizontal	
3	157.373	29.28	11.82	-17.46	43.50	31.68	PK	Horizontal	
4	304.149	31.62	19.03	-12.59	46.00	26.97	PK	Horizontal	
5	506.026	29.86	22.96	-6.90	46.00	23.04	PK	Horizontal	
6	991.172	29.82	29.16	-0.66	54.00	24.84	PK	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz:

ANT1:

		E	BLE Tx (LE 1M PH	Y)		
		Test	channel: Lowest ch	nannel		
		[Detector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	53.14	-9.60	43.54	74.00	30.46	Vertical
4804.00	53.23	-9.60	43.63	74.00	30.37	Horizontal
		De	etector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.86	-9.60	37.26	54.00	16.74	Vertical
4804.00	46.20	-9.60	36.60	54.00	17.40	Horizontal
		Test	channel: Middle ch	nannel		
		[Detector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	53.48	-9.04	44.44	74.00	29.56	Vertical
4884.00	53.22	-9.04	44.18	74.00	29.82	Horizontal
		De	etector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	47.24	-9.04	38.20	54.00	15.80	Vertical
4884.00	46.24	-9.04	37.20	54.00	16.80	Horizontal
		Toot	channel: Highest cl	hannal		
			Detector: Peak Valu			
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4960.00	53.79	-8.45	45.34	74.00	28.66	Vertical
4960.00	53.26	-8.45	44.81	74.00	29.19	Horizontal
	T		etector: Average Va			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	47.36	-8.45	38.91	54.00	15.09	Vertical
4960.00	46.04	-8.45	37.59	54.00	16.41	Horizontal

			BLE Tx (LE 2M PH	Y)		
		Test	channel: Lowest ch	nannel		
		l	Detector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	53.50	-9.60	43.90	74.00	30.10	Vertical
4804.00	53.60	-9.60	44.00	74.00	30.00	Horizontal
		De	etector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.41	-9.60	36.81	54.00	17.19	Vertical
4804.00	46.09	-9.60	36.49	54.00	17.51	Horizontal
		Test	channel: Middle ch	nannel		
			Detector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	53.22	-9.04	44.18	74.00	29.82	Vertical
4884.00	53.24	-9.04	44.20	74.00	29.80	Horizontal
		De	etector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.92	-9.04	37.88	54.00	16.12	Vertical
4884.00	46.67	-9.04	37.63	54.00	16.37	Horizontal
			channel: Highest c			
			Detector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	53.41	-8.45	44.96	74.00	29.04	Vertical
4960.00	53.26	-8.45	44.81	74.00	29.19	Horizontal
			etector: Average Va			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.47	-8.45	38.02	54.00	15.98	Vertical
4960.00	46.70	-8.45	38.25	54.00	15.75	Horizontal

			x (LE Coded PH)	-		
			channel: Lowest ch			
	T		Detector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	53.64	-9.60	44.04	74.00	29.96	Vertical
4804.00	53.73	-9.60	44.13	74.00	29.87	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.84	-9.60	37.24	54.00	16.76	Vertical
4804.00	46.25	-9.60	36.65	54.00	17.35	Horizontal
		Test	channel: Middle ch	nannel		
		С	etector: Peak Value	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	53.44	-9.04	44.40	74.00	29.60	Vertical
4884.00	53.23	-9.04	44.19	74.00	29.81	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.85	-9.04	37.81	54.00	16.19	Vertical
4884.00	46.07	-9.04	37.03	54.00	16.97	Horizontal
			channel: Highest c			
_			etector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	53.66	-8.45	45.21	74.00	28.79	Vertical
4960.00	54.08	-8.45	45.63	74.00	28.37	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	47.20	-8.45	38.75	54.00	15.25	Vertical
4960.00	46.69	-8.45	38.24	54.00	15.76	Horizontal
emark:						

		BEL.	Tx (LE Coded PH)	r, S=8)		
		Test	channel: Lowest ch	nannel		
		[Detector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	52.87	-9.60	43.27	74.00	30.73	Vertical
4804.00	53.72	-9.60	44.12	74.00	29.88	Horizontal
		De	etector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.59	-9.60	36.99	54.00	17.01	Vertical
4804.00	46.07	-9.60	36.47	54.00	17.53	Horizontal
		Test	channel: Middle ch	nannel		
		[Detector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	52.49	-9.04	43.45	74.00	30.55	Vertical
4884.00	54.00	-9.04	44.96	74.00	29.04	Horizontal
		De	etector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.64	-9.04	37.60	54.00	16.40	Vertical
4884.00	46.54	-9.04	37.50	54.00	16.50	Horizontal
		Test	channel: Highest cl	hannel		
			Detector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	52.15	-8.45	43.70	74.00	30.30	Vertical
4960.00	53.78	-8.45	45.33	74.00	28.67	Horizontal
		De	etector: Average Va	alue		•
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.89	-8.45	38.44	54.00	15.56	Vertical
4960.00	46.54	-8.45	38.09	54.00	15.91	Horizontal
emark:	•					

ANT2:

		В	LE Tx (LE 1M PH	Y)		
		Test	channel: Lowest ch	nannel		
		С	Detector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	53.58	-9.60	43.98	74.00	30.02	Vertical
4804.00	55.24	-9.60	45.64	74.00	28.36	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.62	-9.60	37.02	54.00	16.98	Vertical
4804.00	47.80	-9.60	38.20	54.00	15.80	Horizontal
		Test	channel: Middle ch	nannel		
			etector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	53.46	-9.04	44.42	74.00	29.58	Vertical
4884.00	55.24	-9.04	46.20	74.00	27.80	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.85	-9.04	37.81	54.00	16.19	Vertical
4884.00	48.19	-9.04	39.15	54.00	14.85	Horizontal
		T	de en er els I Bale e et el	h l		
			channel: Highest cl Detector: Peak Valu			
Гиоличанан	Donal Lavel		1		Manain	
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	53.60	-8.45	45.15	74.00	28.85	Vertical
4960.00	54.86	-8.45	46.41	74.00	27.59	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.14	-8.45	37.69	54.00	16.31	Vertical
4900.00			38.85	54.00	15.15	Horizontal

		В	LE Tx (LE 2M PH	Y)		
		Test	channel: Lowest ch	nannel		
			etector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	53.61	-9.60	44.01	74.00	29.99	Vertical
4804.00	54.97	-9.60	45.37	74.00	28.63	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.55	-9.60	36.95	54.00	17.05	Vertical
4804.00	48.23	-9.60	38.63	54.00	15.37	Horizontal
		Test	channel: Middle ch	nannel		
		С	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	53.78	-9.04	44.74	74.00	29.26	Vertical
4884.00	54.95	-9.04	45.91	74.00	28.09	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.99	-9.04	37.95	54.00	16.05	Vertical
4884.00	48.37	-9.04	39.33	54.00	14.67	Horizontal
			channel: Highest cl			
Frequency	Read Level	Factor	Level	Limit	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4960.00	53.62	-8.45	45.17	74.00	28.83	Vertical
4960.00	54.68	-8.45	46.23	74.00	27.77	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.13	-8.45	37.68	54.00	16.32	Vertical
	47.34	-8.45	38.89	54.00	15.11	Horizontal

		BEL T	x (LE Coded PH)	r, S=2)		
		Test	channel: Lowest ch	nannel		
			etector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	53.72	-9.60	44.12	74.00	29.88	Vertical
4804.00	54.97	-9.60	45.37	74.00	28.63	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.77	-9.60	37.17	54.00	16.83	Vertical
4804.00	48.61	-9.60	39.01	54.00	14.99	Horizontal
		Test	channel: Middle ch	nannel		
		D	etector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	54.13	-9.04	45.09	74.00	28.91	Vertical
4884.00	54.82	-9.04	45.78	74.00	28.22	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	47.37	-9.04	38.33	54.00	15.67	Vertical
4884.00	48.45	-9.04	39.41	54.00	14.59	Horizontal
		Test o	channel: Highest cl	hannel		
			etector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	53.90	-8.45	45.45	74.00	28.55	Vertical
4960.00	54.65	-8.45	46.20	74.00	27.80	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.30	-8.45	37.85	54.00	16.15	Vertical
4960.00	47.01	-8.45	38.56	54.00	15.44	Horizontal
emark:						

		BEL 1	Tx (LE Coded PH)	r, S=8)		
		Test	channel: Lowest ch	nannel		
		[Detector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	54.05	-9.60	44.45	74.00	29.55	Vertical
4804.00	55.43	-9.60	45.83	74.00	28.17	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	46.92	-9.60	37.32	54.00	16.68	Vertical
4804.00	48.80	-9.60	39.20	54.00	14.80	Horizontal
		Test	channel: Middle ch	nannel		
			Detector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	54.01	-9.04	44.97	74.00	29.03	Vertical
4884.00	55.02	-9.04	45.98	74.00	28.02	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.96	-9.04	37.92	54.00	16.08	Vertical
4884.00	48.90	-9.04	39.86	54.00	14.14	Horizontal
			channel: Highest cl			
	T		Detector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	53.89	-8.45	45.44	74.00	28.56	Vertical
4960.00	54.38	-8.45	45.93	74.00	28.07	Horizontal
	,	De	tector: Average Va	alue		_
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.03	-8.45	37.58	54.00	16.42	Vertical
4960.00	46.59	-8.45	38.14	54.00	15.86	Horizontal

-----End of report-----