

## JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200755

# FCC RF Test Report

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

**Equipment Under Test (EUT)** 

Product Name: Mobile Phone

Model No.: X668C

Trade Mark: Infinix

FCC ID: 2AIZN-X668C

**Applicable Standards:** FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 13 Apr., 2022

**Date of Test:** 14 Apr., to 10 May, 2022

Date of Report Issued: 12 May, 2022

Test Result: PASS

Tested by: \_\_\_\_\_ Date: \_\_\_\_ 12 May, 2022

Reviewed by: \_\_\_\_\_\_ Date: \_\_\_\_\_ 12 May, 2022

Approved by: Date: 12 May, 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





## 2 Version

| Version No. | Date         | Description |
|-------------|--------------|-------------|
| 00          | 12 May, 2022 | Original    |
|             |              |             |
|             |              |             |
|             |              |             |
|             |              |             |





## 3 Contents

|   |     |                                                         | Page |
|---|-----|---------------------------------------------------------|------|
| 1 | Cov | ver Page                                                | 1    |
| 2 | Ver | rsion                                                   | 2    |
| 3 | Coi | ntents                                                  | 3    |
| 4 |     | neral Information                                       |      |
|   | 4.1 | Client Information                                      |      |
|   | 4.2 | General Description of E.U.T.                           |      |
|   | 4.3 | Test Mode and Test Environment                          |      |
|   | 4.4 | Description of Support Units                            |      |
|   | 4.5 | Measurement Uncertainty                                 |      |
|   | 4.6 | Additions to, Deviations, or Exclusions from the Method | 5    |
|   | 4.7 | Laboratory Facility                                     | 5    |
|   | 4.8 | Laboratory Location                                     |      |
|   | 4.9 | Test Instruments List                                   | 6    |
| 5 | Mea | easurement Setup and Procedure                          | 7    |
|   | 5.1 | Test Channel                                            | 7    |
|   | 5.2 | Test Setup                                              |      |
|   | 5.3 | Test Procedure                                          |      |
| 6 | Tes | st Results                                              | 10   |
|   | 6.1 | Summary                                                 | 10   |
|   | 6.2 | Antenna requirement                                     |      |
|   | 6.3 | AC Power Line Conducted Emission                        |      |
|   | 6.4 | Emissions in Restricted Frequency Bands                 |      |
|   | 6.5 | Emissions in Non-restricted Frequency Bands             |      |



## 4 General Information

## 4.1 Client Information

| Applicant:    | INFINIX MOBILITY LIMITED                                                                                               |
|---------------|------------------------------------------------------------------------------------------------------------------------|
| Address:      | FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI<br>STREET FOTAN NT                                        |
| Manufacturer: | INFINIX MOBILITY LIMITED                                                                                               |
| Address:      | FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI<br>STREET FOTAN NT                                        |
| Factory:      | SHENZHEN TECNO TECHNOLOGY CO., LTD.                                                                                    |
| Address:      | 101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China |

4.2 General Description of E.U.T.

| 4.2 General Descrip    | don or E.o. r.                                                                                     |
|------------------------|----------------------------------------------------------------------------------------------------|
| Product Name:          | Mobile Phone                                                                                       |
| Model No.:             | X668C                                                                                              |
| Operation Frequency:   | 2402 MHz - 2480 MHz                                                                                |
| Channel Numbers:       | 40                                                                                                 |
| Channel Separation:    | 2MHz                                                                                               |
| Modulation Technology: | GFSK                                                                                               |
| Data Speed:            | 1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY), 125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2) |
| Antenna Type:          | Internal Antenna                                                                                   |
| Antenna Gain:          | 1.0dBi (declare by applicant)                                                                      |
| Antenna transmit mode: | SISO (1TX, 1RX)                                                                                    |
| Power Supply:          | Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh                                               |
| AC Adapter:            | Model: U180XSA                                                                                     |
|                        | Input: AC100-240V, 50/60Hz, 0.6A                                                                   |
|                        | Output: DC 5.0V, 2.4A or DC 7.5V, 2.4A, 18W Max                                                    |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects.                      |

Report No.: JYTSZ-R12-2200755

#### 4.3 Test Mode and Test Environment

| Test Mode:                                   |                                                                                       |  |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Transmitting mode                            | Keep the EUT in continuous transmitting with modulation                               |  |  |  |  |
| Remark: For AC power line con-               | ducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, |  |  |  |  |
| found 1 Mbps (LE 1M PHY) was                 | worse case mode. The report only reflects the test data of worst mode.                |  |  |  |  |
| Operating Environment:                       | Operating Environment:                                                                |  |  |  |  |
| Temperature: $15^{\circ}$ C ~ $35^{\circ}$ C |                                                                                       |  |  |  |  |
| Humidity: 20 % ~ 75 % RH                     |                                                                                       |  |  |  |  |
| Atmospheric Pressure:                        | 1010 mbar                                                                             |  |  |  |  |

## 4.4 Description of Support Units

The EUT has been tested as an independent unit.

## 4.5 Measurement Uncertainty

| Parameter                                    | Expanded Uncertainty (Confidence of 95%(U = 2Uc(y))) |
|----------------------------------------------|------------------------------------------------------|
| Conducted Emission for LISN (9kHz ~ 150kHz)  | ±3.11 dB                                             |
| Conducted Emission for LISN (150kHz ~ 30MHz) | ±2.62 dB                                             |
| Radiated Emission (30MHz ~ 1GHz) (3m SAC)    | ±4.45 dB                                             |
| Radiated Emission (1GHz ~ 18GHz) (3m SAC)    | ±5.34 dB                                             |
| Radiated Emission (18GHz ~ 40GHz) (3m SAC)   | ±5.34 dB                                             |

**Note:** All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

## 4.6 Additions to, Deviations, or Exclusions from the Method

No

## 4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

#### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

## 4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366





## 4.9 Test Instruments List

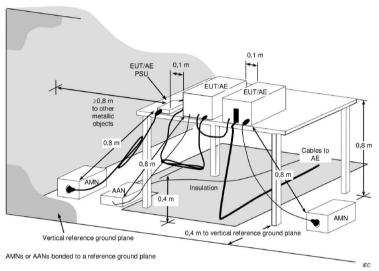
| Radiated Emission(3m SAC):       |                 |                     |            |                         |                             |  |
|----------------------------------|-----------------|---------------------|------------|-------------------------|-----------------------------|--|
| Test Equipment                   | Manufacturer    | Model No.           | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 3m SAC                           | ETS             | 9m*6m*6m            | WXJ001-1   | 01-19-2021              | 01-18-2024                  |  |
| BiConiLog Antenna                | Schwarzbeck     | VULB9163            | WXJ002     | 02-17-2022              | 02-16-2023                  |  |
| Biconical Antenna                | Schwarzbeck     | VUBA9117            | WXJ002-1   | 06-20-2021              | 06-19-2022                  |  |
| Horn Antenna                     | Schwarzbeck     | BBHA9120D           | WXJ002-2   | 02-17-2022              | 02-16-2023                  |  |
| Horn Antenna                     | Schwarzbeck     | BBHA9120D           | WXJ002-3   | 06-18-2021              | 06-17-2022                  |  |
| Broadband Horn<br>Antenna        | Schwarzbeck     | BBHA9170            | WXJ002-5   | 04-07-2022              | 04-06-2023                  |  |
| Pre-amplifier<br>(30MHz ~ 1GHz)  | Schwarzbeck     | BBV9743B            | WXG001-7   | 02-17-2022              | 02-16-2023                  |  |
| Pre-amplifier<br>(1GHz ~ 18GHz)  | SKET            | LNPA_0118G-50       | WXG001-3   | 02-17-2022              | 02-16-2023                  |  |
| Pre-amplifier<br>(18GHz ~ 40GHz) | RF System       | TRLA-<br>180400G45B | WXG001-9   | 02-17-2022              | 02-16-2023                  |  |
| EMI Test Receiver                | Rohde & Schwarz | ESRP7               | WXJ003-1   | 02-17-2022              | 02-16-2023                  |  |
| Spectrum Analyzer                | KEYSIGHT        | N9010B              | WXJ004-2   | 11-27-2021              | 11-26-2022                  |  |
| Coaxial Cable<br>(30MHz ~ 1GHz)  | JYTSZ           | JYT3M-1G-NN-8M      | WXG001-4   | 02-17-2022              | 02-16-2023                  |  |
| Coaxial Cable<br>(1GHz ~ 18GHz)  | JYTSZ           | JYT3M-18G-NN-<br>8M | WXG001-5   | 02-17-2022              | 02-16-2023                  |  |
| Coaxial Cable<br>(18GHz ~ 40GHz) | JYTSZ           | JYT3M-40G-SS-<br>8M | WXG001-7   | 02-17-2022              | 02-16-2023                  |  |
| Band Reject Filter Group         | Tonscend        | JS0806-F            | WXJ089     | N                       | I/A                         |  |
| Test Software                    | Tonscend        | TS+                 |            | Version: 3.0.0.1        |                             |  |

| Conducted Emission:                  |                 |                |            |                         |                             |  |
|--------------------------------------|-----------------|----------------|------------|-------------------------|-----------------------------|--|
| Test Equipment                       | Manufacturer    | Model No.      | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| EMI Test Receiver                    | Rohde & Schwarz | ESR3           | WXJ003-2   | 10-21-2021              | 10-20-2022                  |  |
| LISN                                 | Schwarzbeck     | NSLK 8127      | QCJ001-13  | 02-17-2022              | 02-16-2023                  |  |
| LISN                                 | Rohde & Schwarz | ESH3-Z5        | WXJ005-1   | 06-18-2021              | 06-17-2022                  |  |
| LISN Coaxial Cable<br>(9kHz ~ 30MHz) | JYTSZ           | JYTCE-1G-NN-2M | WXG003-1   | 02-17-2022              | 02-16-2023                  |  |
| RF Switch                            | TOP PRECISION   | RSU0301        | WXG003     | N                       | I/A                         |  |
| Test Software                        | AUDIX           | E3             | V          | Version: 6.110919b      |                             |  |

| Conducted Method:               |                 |            |            |                         |                             |
|---------------------------------|-----------------|------------|------------|-------------------------|-----------------------------|
| Test Equipment                  | Manufacturer    | Model No.  | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| Spectrum Analyzer               | Keysight        | N9010B     | WXJ004-3   | 10-25-2021              | 10-24-2022                  |
| Vector Signal Generator         | Keysight        | N5182B     | WXJ006-6   | 10-25-2021              | 10-24-2022                  |
| Signal Generator                | Keysight        | N5173B     | WXJ006-4   | 10-25-2021              | 10-24-2022                  |
| Wireless Connectivity<br>Tester | Rohde & Schwarz | CMW270     | WXJ008-7   | 10-25-2021              | 10-24-2022                  |
| DC Power Supply                 | Keysight        | E3642A     | WXJ025-2   | 10-25-2021              | 10-24-2022                  |
| Temperature Humidity<br>Chamber | ZHONG ZHI       | CZ-A-80D   | WXJ032-3   | 03-19-2021              | 03-18-2023                  |
| Power Detector Box              | MWRFTEST        | MW100-PSB  | WXJ007-4   | 10-25-2021              | 10-24-2022                  |
| RF Control Unit                 | MWRFTEST        | MW100-RFCB | WXG006     | N                       | I/A                         |
| Test Software                   | MWRFTEST        | MTS 8310   |            | Version: 2.0.0.0        |                             |



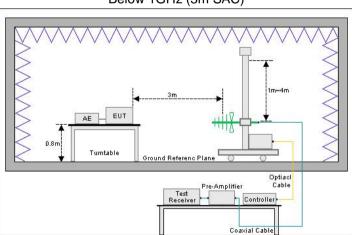
## 5 Measurement Setup and Procedure


#### 5.1 Test Channel

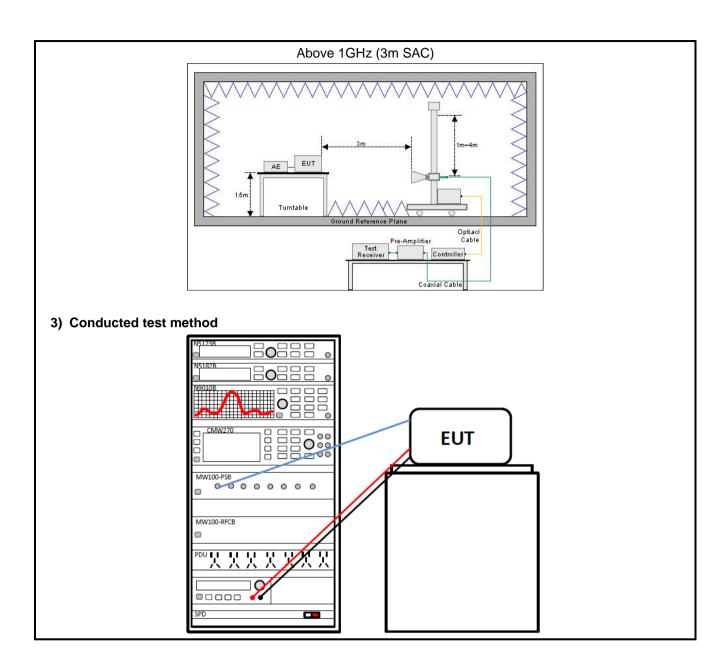
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

| Lowest channel |                    | Midd        | le channel         | Highe       | st channel         |
|----------------|--------------------|-------------|--------------------|-------------|--------------------|
| Channel No.    | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) |
| 0              | 2402               | 20          | 2442               | 39          | 2480               |

## 5.2 Test Setup


#### 1) Conducted emission measurement:




**Note:** The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

#### 2) Radiated emission measurement:

Below 1GHz (3m SAC)











## 5.3 Test Procedure

| 5.3 Test Procedure    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test method           | Test step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conducted emission    | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.</li> </ol> |
| Radiated emission     | For below 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | 2. EUT works in each mode of operation that needs to be tested, and having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.  3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.                                                                                                                                                                                                                 |
|                       | For above 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 2. EUT works in each mode of operation that needs to be tested, and having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.  3. Open the test software to control the test antenna and test turntable. Perform                                                                                                                                                                                                                                                                            |
| <u> </u>              | the test, save the test results, and export the test data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conducted test method | <ol> <li>The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.</li> <li>The EUT is keeping in continuous transmission mode and tested in all</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | modulation modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | 3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | the test software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



## 6 Test Results

## 6.1 Summary

## 6.1.1 Clause and Data Summary

| Test items                                      | Standard clause         | Test data                                                                                                       | Result |
|-------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
| Antenna Requirement                             | 15.203<br>15.247 (b)(4) | See Section 6.2                                                                                                 | Pass   |
| AC Power Line Conducted Emission                | 15.207                  | See Section 6.3                                                                                                 | Pass   |
| Duty Cycle                                      | ANSI C63.10-2013        | Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8 | Pass   |
| Conducted Output Power                          | 15.247 (b)(3)           | Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8 | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth   | 15.247 (a)(2)           | Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8 | Pass   |
| Power Spectral Density                          | 15.247 (e)              | Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8 | Pass   |
| Band-edge Emission Conduction Spurious Emission | 15.247 (d)              | Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8 | Pass   |
| Emissions in Restricted Frequency Bands         | 15.205<br>15.247 (d)    | See Section 6.4                                                                                                 | Pass   |
| Emissions in Non-restricted Frequency Bands     | 15.209<br>15.247(d)     | See Section 6.5                                                                                                 | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02



#### 6.1.2 Test Limit

| Test items                                       |                                                                     |                                                                                                                                                                                                                                                                                               | Lin                                                                                                                                    | nit                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
|--------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
|                                                  | Frequency Limit (dBµV)                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
|                                                  |                                                                     | (MHz)                                                                                                                                                                                                                                                                                         | Quas                                                                                                                                   | si-Peak                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |  |
| AC Power Line Conducted                          |                                                                     | 0.15 – 0.5                                                                                                                                                                                                                                                                                    | 66 to                                                                                                                                  | 56 Note 1                                                                                                                               | 56 to 46 Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
| Emission                                         |                                                                     | 0.5 – 5                                                                                                                                                                                                                                                                                       |                                                                                                                                        | 56                                                                                                                                      | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |  |
|                                                  |                                                                     | 5 – 30                                                                                                                                                                                                                                                                                        |                                                                                                                                        | 60                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |  |
|                                                  |                                                                     | Note 1: The limit level in dBµV Note 2: The more stringent lim                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                                         | m of frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
| Conducted Output Power                           |                                                                     | systems using digital m<br>5725-5850 MHz bands                                                                                                                                                                                                                                                |                                                                                                                                        | the 902-928                                                                                                                             | MHz, 2400-2483.5 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ηz,                                |  |
| 6dB Emission Bandwidth                           | The                                                                 | minimum 6 dB bandwi                                                                                                                                                                                                                                                                           | dth shall be a                                                                                                                         | at least 500 k                                                                                                                          | Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |  |
| 99% Occupied Bandwidth                           | N/A                                                                 |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
| Power Spectral Density                           | inte                                                                | digitally modulated sys<br>ntional radiator to the a<br>d during any time interv                                                                                                                                                                                                              | ntenna shall                                                                                                                           | not be greate                                                                                                                           | er than 8 dBm in any 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |  |
| Band-edge Emission  Conduction Spurious Emission | freq<br>dB I<br>high<br>radi<br>the<br>pow<br>peri<br>this<br>limit | ctrum or digitally modul guency power that is probelow that in the 100 khnest level of the desired ated measurement, propeak conducted power ver limits based on the unitted under paragraph paragraph shall be 30 ts specified in §15.209(ch fall in the restricted be the radiated emission | oduced by the dz bandwidth power, base ovided the trace limits. If the tase of RMS a (b)(3) of this dB instead of a) is not requested. | e intentional rewithin the bar don either ansmitter dem ransmitter coveraging over section, the 20 dB. Atterired. In additined in §15.2 | radiator shall be at least and that contains the an RF conducted or a monstrates compliance omplies with the conducter a time interval, as attenuation required unuation below the generion, radiated emission 205(a), must also compared to the contains the contains at the | with<br>acted<br>nder<br>eral<br>s |  |
|                                                  |                                                                     | Frequency<br>(MHz)                                                                                                                                                                                                                                                                            | Limit (d<br>@ 3m                                                                                                                       | BμV/m)<br>@ 10m                                                                                                                         | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |  |
|                                                  |                                                                     | 30 – 88                                                                                                                                                                                                                                                                                       | 40.0                                                                                                                                   | 30.0                                                                                                                                    | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |  |
| Emissions in Restricted                          |                                                                     | 88 – 216                                                                                                                                                                                                                                                                                      | 43.5                                                                                                                                   | 33.5                                                                                                                                    | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                  |  |
| Frequency Bands                                  | 216 – 960 46.0 36.0 Quasi-pe                                        |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                  |  |
|                                                  | 960 – 1000 54.0 44.0 Quasi-peak                                     |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
| Emissions in Non-restricted                      | Note: The more stringent limit applies at transition frequencies.   |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
| Frequency Bands                                  |                                                                     | _                                                                                                                                                                                                                                                                                             |                                                                                                                                        | Limit (dBµV/                                                                                                                            | m) @ 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |  |
| Trequency Bands                                  | Frequency                                                           |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         | Peake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |  |
|                                                  |                                                                     | Above 1 GHz                                                                                                                                                                                                                                                                                   |                                                                                                                                        | 1.0                                                                                                                                     | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |  |
|                                                  |                                                                     | Note: The measurement bandy                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                  |  |
|                                                  | Hotel The measurement bandward shall be 1 mile of greater.          |                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                  |  |



Report No.: JYTSZ-R12-2200755

## 6.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

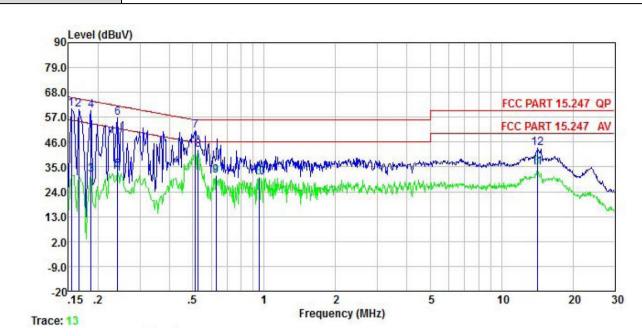
#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi. See product internal photos for details.

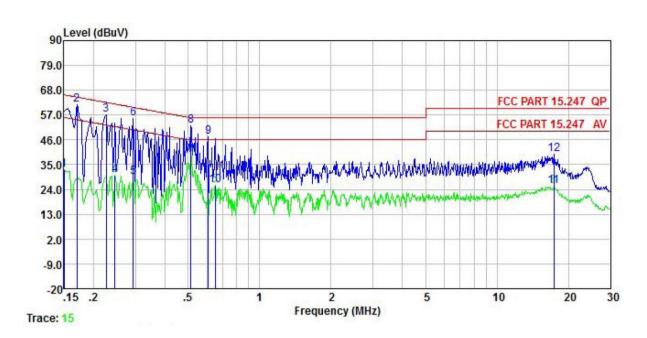




## 6.3 AC Power Line Conducted Emission

| Product name:   | Mobile Phone     | Product model: | X668C              |
|-----------------|------------------|----------------|--------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line               |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |




|                                           | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                           | MHz    | dBu∜          | <u>d</u> B     | dB            | dBu₹  | dBu∜          | <u>dB</u>     |         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.154  | 60.53         | 0.04           | 0.01          | 60.58 | 65.78         |               |         |
| 2                                         | 0.166  | 60.32         | 0.04           | 0.01          | 60.37 | 65.16         | -4.79         | QP      |
| 3                                         | 0.186  | 31.59         | 0.04           | 0.02          | 31.65 | 54.20         | -22.55        | Average |
| 4                                         | 0.186  | 59.85         | 0.04           | 0.02          | 59.91 | 64.20         | -4.29         | QP      |
| 5                                         | 0.242  | 33.40         | 0.04           | 0.01          | 33.45 | 52.04         |               | Average |
| 6                                         | 0.242  | 56.76         | 0.04           | 0.01          | 56.81 | 62.04         |               |         |
| 7                                         | 0.513  | 50.78         | 0.04           | 0.03          | 50.85 | 56.00         | -5.15         | QP      |
| 8                                         | 0.527  | 42.39         | 0.04           | 0.03          | 42.46 | 46.00         |               | Average |
| 9                                         | 0.627  | 31.07         | 0.04           | 0.02          | 31.13 |               |               | Average |
| 10                                        | 0.953  | 30.30         | 0.05           | 0.05          | 30.40 |               |               | Average |
| 11                                        | 14.138 | 34.42         | 0.26           | 0.12          | 34.80 |               |               | Average |
| 12                                        | 14.213 | 42.74         | 0.26           | 0.12          | 43.12 |               | -16.88        |         |

#### Remark:

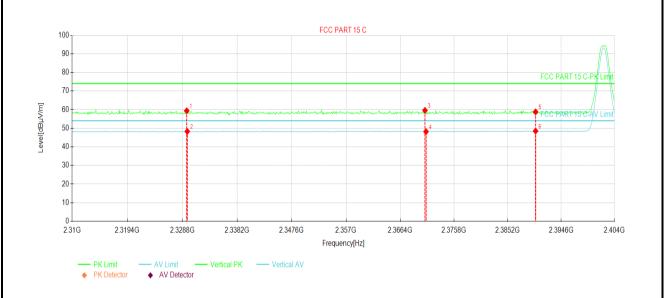
1. Level = Read level + LISN Factor + Cable Loss.



| Product name:   | Mobile Phone     | Product model: | X668C              |
|-----------------|------------------|----------------|--------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral            |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |



|                                           | Freq             | Read<br>Level  | LISN<br>Factor | Cable<br>Loss | Level          | Limit<br>Line  | Over<br>Limit   | Remark             |
|-------------------------------------------|------------------|----------------|----------------|---------------|----------------|----------------|-----------------|--------------------|
| -                                         | MHz              | dBu₹           | <u>dB</u>      | dB            | dBu∀           | dBu₹           | <u>dB</u>       |                    |
| 1                                         | 0.150<br>0.170   | 32.80<br>61.50 | 0.05<br>0.05   | 0.01<br>0.01  | 32.86<br>61.56 | 56.00<br>64.94 | -23.14<br>-3.38 | Average            |
| 3                                         | 0. 226<br>0. 246 | 57.14<br>30.16 | 0.04           | 0.02          | 57.20          | 62.61          | -5.41           | QP                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.294            | 29.57          | 0.04           | 0.01          | 30.21<br>29.64 | 50.41          |                 | Average<br>Average |
| 7                                         | 0.294<br>0.513   | 55.44<br>39.09 | 0.04<br>0.04   | 0.03          | 55.51<br>39.16 | 60.41<br>46.00 |                 | Average            |
|                                           | 0.513<br>0.608   | 52.29<br>47.33 | 0.04<br>0.04   | 0.03<br>0.02  | 52.36<br>47.39 | 56.00<br>56.00 | -8.61           | QP                 |
| 10<br>11                                  | 0.651<br>17.383  | 25.95<br>25.17 | 0.04<br>0.28   | 0.03          | 26.02<br>25.60 |                | -19.98 $-24.40$ | Average<br>Average |
| 12                                        | 17.383           | 39.43          | 0.28           | 0.15          | 39.86          |                | -20.14          |                    |


1. Level = Read level + LISN Factor + Cable Loss.

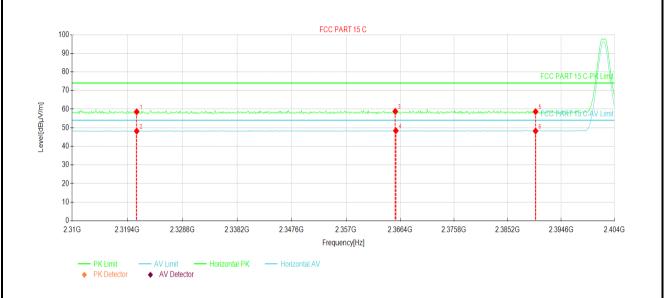




6.4 Emissions in Restricted Frequency Bands

| Product Name: | Mobile Phone   | Product Model: | X668C              |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 3.85V       |                |                    |



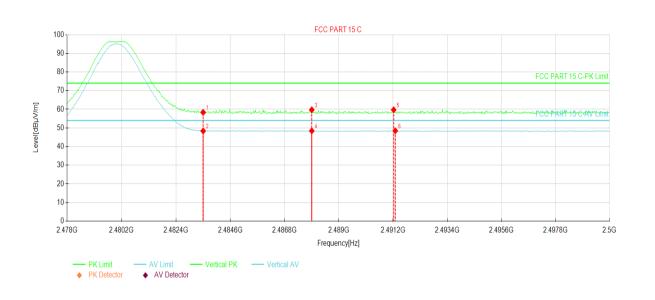

| Suspe | Suspected Data List |          |          |        |          |        |       |          |
|-------|---------------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trace | Delerity |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2329.55             | 23.94    | 59.35    | 35.41  | 74.00    | 14.65  | PK    | Vertical |
| 2     | 2329.64             | 12.87    | 48.28    | 35.41  | 54.00    | 5.72   | AV    | Vertical |
| 3     | 2370.72             | 23.88    | 59.58    | 35.70  | 74.00    | 14.42  | PK    | Vertical |
| 4     | 2370.91             | 12.47    | 48.17    | 35.70  | 54.00    | 5.83   | AV    | Vertical |
| 5     | 2390.08             | 22.96    | 58.80    | 35.84  | 74.00    | 15.20  | PK    | Vertical |
| 6     | 2390.08             | 12.66    | 48.50    | 35.84  | 54.00    | 5.50   | AV    | Vertical |

#### Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C              |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Horizontal         |
| Test Voltage: | DC 3.85V       |                |                    |

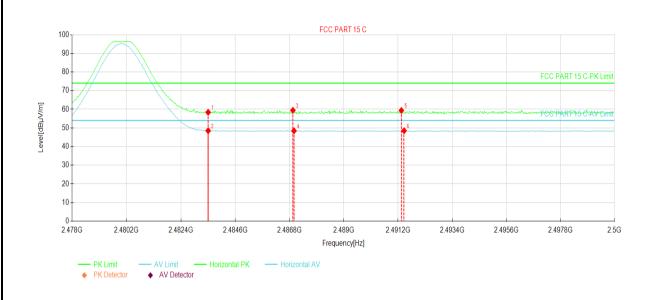



| Suspe | Suspected Data List |          |          |        |          |        |       |            |
|-------|---------------------|----------|----------|--------|----------|--------|-------|------------|
| NO    | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trans | Delerity   |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1     | 2320.99             | 23.19    | 58.54    | 35.35  | 74.00    | 15.46  | PK    | Horizontal |
| 2     | 2320.99             | 12.84    | 48.19    | 35.35  | 54.00    | 5.81   | AV    | Horizontal |
| 3     | 2365.55             | 23.14    | 58.81    | 35.67  | 74.00    | 15.19  | PK    | Horizontal |
| 4     | 2365.64             | 12.74    | 48.41    | 35.67  | 54.00    | 5.59   | AV    | Horizontal |
| 5     | 2390.08             | 22.80    | 58.64    | 35.84  | 74.00    | 15.36  | PK    | Horizontal |
| 6     | 2390.08             | 12.40    | 48.24    | 35.84  | 54.00    | 5.76   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C              |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Highest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 3.85V        |                |                    |

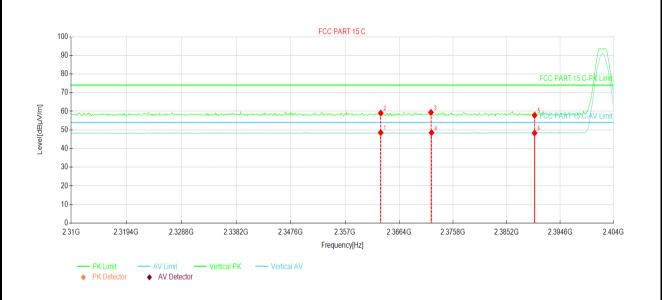



| Suspe | ected Data | List     |          |        |          |        |       |          |
|-------|------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.      | Reading  | Level    | Factor | Limit    | Margin | Trans | Dolority |
| NO.   | [MHz]      | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2483.50    | 22.64    | 58.36    | 35.72  | 74.00    | 15.64  | PK    | Vertical |
| 2     | 2483.50    | 12.63    | 48.35    | 35.72  | 54.00    | 5.65   | AV    | Vertical |
| 3     | 2487.90    | 24.02    | 59.73    | 35.71  | 74.00    | 14.27  | PK    | Vertical |
| 4     | 2487.90    | 12.72    | 48.43    | 35.71  | 54.00    | 5.57   | AV    | Vertical |
| 5     | 2491.22    | 24.03    | 59.73    | 35.70  | 74.00    | 14.27  | PK    | Vertical |
| 6     | 2491.28    | 12.79    | 48.49    | 35.70  | 54.00    | 5.51   | AV    | Vertical |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C              |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Highest channel | Polarization:  | Horizontal         |
| Test Voltage: | DC 3.85V        |                |                    |

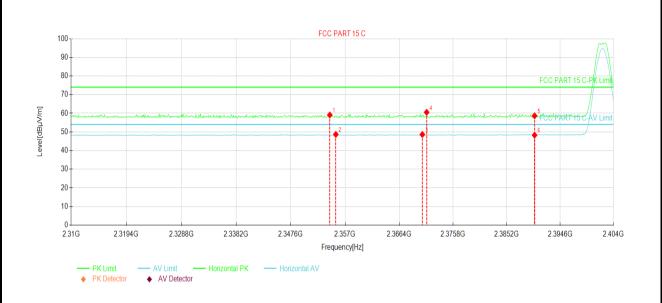



| Suspe | Suspected Data List |          |          |        |          |        |       |            |
|-------|---------------------|----------|----------|--------|----------|--------|-------|------------|
| NO    | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trans | Dolority   |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1     | 2483.50             | 22.67    | 58.39    | 35.72  | 74.00    | 15.61  | PK    | Horizontal |
| 2     | 2483.50             | 12.78    | 48.50    | 35.72  | 54.00    | 5.50   | AV    | Horizontal |
| 3     | 2486.93             | 23.73    | 59.44    | 35.71  | 74.00    | 14.56  | PK    | Horizontal |
| 4     | 2486.97             | 12.74    | 48.45    | 35.71  | 54.00    | 5.55   | AV    | Horizontal |
| 5     | 2491.33             | 23.65    | 59.35    | 35.70  | 74.00    | 14.65  | PK    | Horizontal |
| 6     | 2491.44             | 12.80    | 48.50    | 35.70  | 54.00    | 5.50   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C              |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 2M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 3.85V       |                |                    |

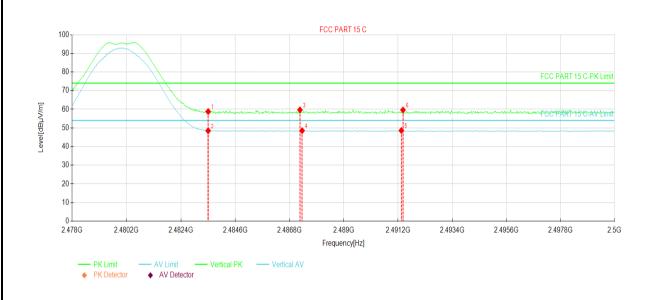



| Suspe | Suspected Data List |          |          |        |          |        |       |          |
|-------|---------------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trace | Dolority |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2363.20             | 12.90    | 48.55    | 35.65  | 54.00    | 5.45   | AV    | Vertical |
| 2     | 2363.20             | 23.40    | 59.05    | 35.65  | 74.00    | 14.95  | PK    | Vertical |
| 3     | 2371.94             | 23.68    | 59.39    | 35.71  | 74.00    | 14.61  | PK    | Vertical |
| 4     | 2372.04             | 12.81    | 48.52    | 35.71  | 54.00    | 5.48   | AV    | Vertical |
| 5     | 2390.08             | 22.01    | 57.85    | 35.84  | 74.00    | 16.15  | PK    | Vertical |
| 6     | 2390.08             | 12.48    | 48.32    | 35.84  | 54.00    | 5.68   | AV    | Vertical |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C              |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 2M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Horizontal         |
| Test Voltage: | DC 3.85V       |                |                    |

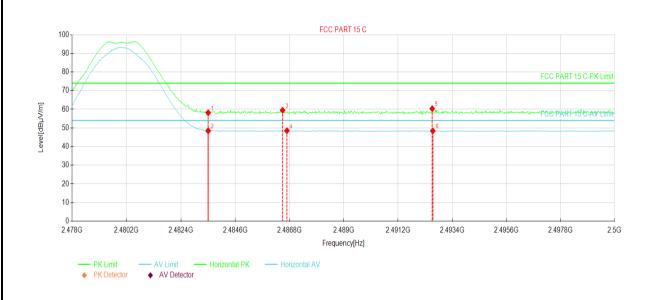



| Suspected Data List |         |          |          |        |          |        |       |            |
|---------------------|---------|----------|----------|--------|----------|--------|-------|------------|
| NO.                 | Freq.   | Reading  | Level    | Factor | Limit    | Margin | Tropo | Dolority   |
| NO.                 | [MHz]   | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1                   | 2354.36 | 23.51    | 59.10    | 35.59  | 74.00    | 14.90  | PK    | Horizontal |
| 2                   | 2355.40 | 13.06    | 48.65    | 35.59  | 54.00    | 5.35   | AV    | Horizontal |
| 3                   | 2370.44 | 12.92    | 48.62    | 35.70  | 54.00    | 5.38   | AV    | Horizontal |
| 4                   | 2371.19 | 24.83    | 60.54    | 35.71  | 74.00    | 13.46  | PK    | Horizontal |
| 5                   | 2390.08 | 22.81    | 58.65    | 35.84  | 74.00    | 15.35  | PK    | Horizontal |
| 6                   | 2390.08 | 12.43    | 48.27    | 35.84  | 54.00    | 5.73   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C              |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 2M PHY) |
| Test Channel: | Highest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 3.85V        |                |                    |

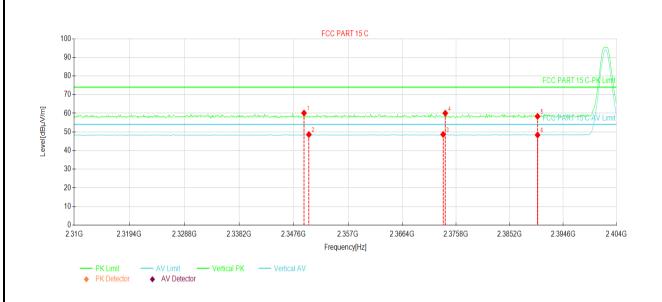



| Suspected Data List |         |          |          |        |          |        |       |          |
|---------------------|---------|----------|----------|--------|----------|--------|-------|----------|
| NO.                 | Freq.   | Reading  | Level    | Factor | Limit    | Margin | Troop | Dolority |
| NO.                 | [MHz]   | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1                   | 2483.50 | 23.07    | 58.79    | 35.72  | 74.00    | 15.21  | PK    | Vertical |
| 2                   | 2483.50 | 12.76    | 48.48    | 35.72  | 54.00    | 5.52   | AV    | Vertical |
| 3                   | 2487.21 | 23.97    | 59.68    | 35.71  | 74.00    | 14.32  | PK    | Vertical |
| 4                   | 2487.30 | 12.84    | 48.55    | 35.71  | 54.00    | 5.45   | AV    | Vertical |
| 5                   | 2491.33 | 12.92    | 48.62    | 35.70  | 54.00    | 5.38   | AV    | Vertical |
| 6                   | 2491.39 | 23.95    | 59.65    | 35.70  | 74.00    | 14.35  | PK    | Vertical |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C              |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 2M PHY) |
| Test Channel: | Highest channel | Polarization:  | Horizontal         |
| Test Voltage: | DC 3.85V        |                |                    |

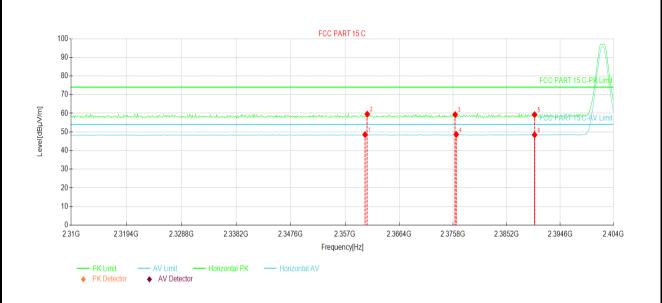



| Suspe | Suspected Data List |          |          |        |          |        |       |            |
|-------|---------------------|----------|----------|--------|----------|--------|-------|------------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trans | Dolority   |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1     | 2483.50             | 22.43    | 58.15    | 35.72  | 74.00    | 15.85  | PK    | Horizontal |
| 2     | 2483.50             | 12.74    | 48.46    | 35.72  | 54.00    | 5.54   | AV    | Horizontal |
| 3     | 2486.51             | 23.78    | 59.49    | 35.71  | 74.00    | 14.51  | PK    | Horizontal |
| 4     | 2486.69             | 12.81    | 48.52    | 35.71  | 54.00    | 5.48   | AV    | Horizontal |
| 5     | 2492.58             | 24.65    | 60.35    | 35.70  | 74.00    | 13.65  | PK    | Horizontal |
| 6     | 2492.60             | 12.71    | 48.41    | 35.70  | 54.00    | 5.59   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C                      |
|---------------|----------------|----------------|----------------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE Coded PHY, S=2) |
| Test Channel: | Lowest channel | Polarization:  | Vertical                   |
| Test Voltage: | DC 3.85V       |                |                            |

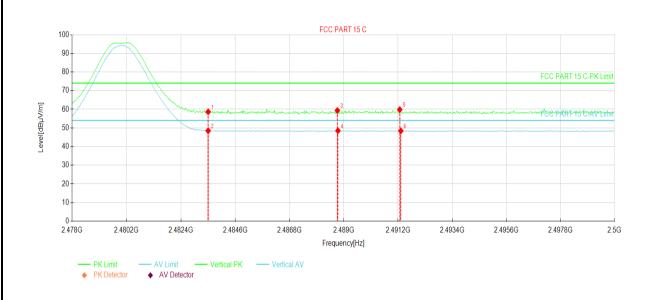



| Suspe | Suspected Data List |          |          |        |          |        |       |          |
|-------|---------------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trace | Dolority |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2349.38             | 24.57    | 60.12    | 35.55  | 74.00    | 13.88  | PK    | Vertical |
| 2     | 2350.23             | 13.03    | 48.59    | 35.56  | 54.00    | 5.41   | AV    | Vertical |
| 3     | 2373.54             | 12.93    | 48.65    | 35.72  | 54.00    | 5.35   | AV    | Vertical |
| 4     | 2373.92             | 24.31    | 60.03    | 35.72  | 74.00    | 13.97  | PK    | Vertical |
| 5     | 2390.08             | 22.50    | 58.34    | 35.84  | 74.00    | 15.66  | PK    | Vertical |
| 6     | 2390.08             | 12.51    | 48.35    | 35.84  | 54.00    | 5.65   | AV    | Vertical |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C                      |
|---------------|----------------|----------------|----------------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE Coded PHY, S=2) |
| Test Channel: | Lowest channel | Polarization:  | Horizontal                 |
| Test Voltage: | DC 3.85V       |                |                            |

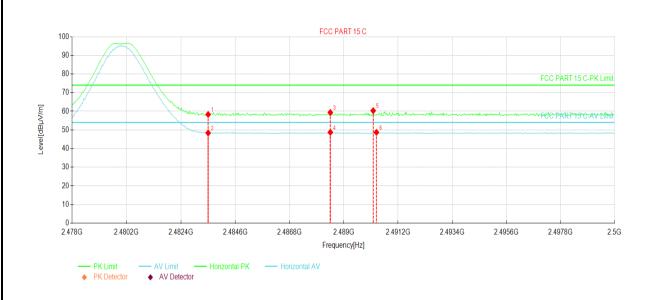



| Suspe | Suspected Data List |          |          |        |          |        |       |            |
|-------|---------------------|----------|----------|--------|----------|--------|-------|------------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Tropo | Doloritu   |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1     | 2360.47             | 12.91    | 48.54    | 35.63  | 54.00    | 5.46   | AV    | Horizontal |
| 2     | 2360.85             | 23.91    | 59.54    | 35.63  | 74.00    | 14.46  | PK    | Horizontal |
| 3     | 2376.17             | 23.56    | 59.30    | 35.74  | 74.00    | 14.70  | PK    | Horizontal |
| 4     | 2376.36             | 12.88    | 48.62    | 35.74  | 54.00    | 5.38   | AV    | Horizontal |
| 5     | 2390.08             | 23.43    | 59.27    | 35.84  | 74.00    | 14.73  | PK    | Horizontal |
| 6     | 2390.08             | 12.59    | 48.43    | 35.84  | 54.00    | 5.57   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C                      |
|---------------|-----------------|----------------|----------------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE Coded PHY, S=2) |
| Test Channel: | Highest channel | Polarization:  | Vertical                   |
| Test Voltage: | DC 3.85V        |                |                            |

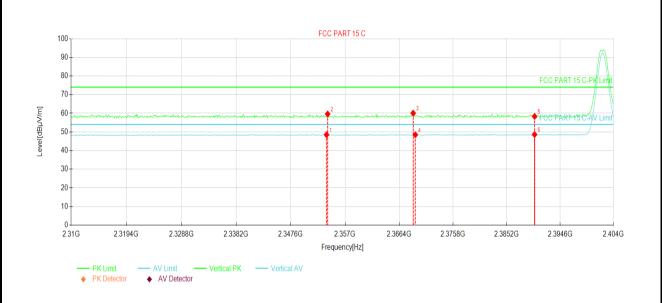



| Suspe | Suspected Data List |          |          |        |          |        |       |          |
|-------|---------------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trans | Dolority |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2483.50             | 22.92    | 58.64    | 35.72  | 74.00    | 15.36  | PK    | Vertical |
| 2     | 2483.50             | 12.76    | 48.48    | 35.72  | 54.00    | 5.52   | AV    | Vertical |
| 3     | 2488.73             | 23.63    | 59.34    | 35.71  | 74.00    | 14.66  | PK    | Vertical |
| 4     | 2488.75             | 12.80    | 48.51    | 35.71  | 54.00    | 5.49   | AV    | Vertical |
| 5     | 2491.26             | 24.13    | 59.83    | 35.70  | 74.00    | 14.17  | PK    | Vertical |
| 6     | 2491.31             | 12.73    | 48.43    | 35.70  | 54.00    | 5.57   | AV    | Vertical |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C                      |
|---------------|-----------------|----------------|----------------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE Coded PHY, S=2) |
| Test Channel: | Highest channel | Polarization:  | Horizontal                 |
| Test Voltage: | DC 3.85V        |                |                            |




| Suspe | Suspected Data List |          |          |        |          |        |       |            |
|-------|---------------------|----------|----------|--------|----------|--------|-------|------------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Tropo | Dolority   |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1     | 2483.50             | 22.57    | 58.29    | 35.72  | 74.00    | 15.71  | PK    | Horizontal |
| 2     | 2483.50             | 12.66    | 48.38    | 35.72  | 54.00    | 5.62   | AV    | Horizontal |
| 3     | 2488.45             | 23.65    | 59.36    | 35.71  | 74.00    | 14.64  | PK    | Horizontal |
| 4     | 2488.45             | 13.00    | 48.71    | 35.71  | 54.00    | 5.29   | AV    | Horizontal |
| 5     | 2490.18             | 24.63    | 60.33    | 35.70  | 74.00    | 13.67  | PK    | Horizontal |
| 6     | 2490.32             | 13.00    | 48.70    | 35.70  | 54.00    | 5.30   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C                      |
|---------------|----------------|----------------|----------------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE Coded PHY, S=8) |
| Test Channel: | Lowest channel | Polarization:  | Vertical                   |
| Test Voltage: | DC 3.85V       |                |                            |

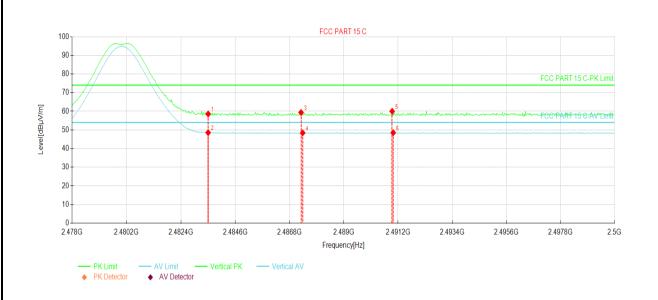


| Suspe | Suspected Data List |          |          |        |          |        |       |          |
|-------|---------------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trans | Doloritu |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2353.80             | 12.91    | 48.49    | 35.58  | 54.00    | 5.51   | AV    | Vertical |
| 2     | 2353.99             | 24.03    | 59.61    | 35.58  | 74.00    | 14.39  | PK    | Vertical |
| 3     | 2368.84             | 24.40    | 60.09    | 35.69  | 74.00    | 13.91  | PK    | Vertical |
| 4     | 2369.22             | 12.79    | 48.48    | 35.69  | 54.00    | 5.52   | AV    | Vertical |
| 5     | 2390.08             | 22.49    | 58.33    | 35.84  | 74.00    | 15.67  | PK    | Vertical |
| 6     | 2390.08             | 12.75    | 48.59    | 35.84  | 54.00    | 5.41   | AV    | Vertical |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone   | Product Model: | X668C                      |
|---------------|----------------|----------------|----------------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE Coded PHY, S=8) |
| Test Channel: | Lowest channel | Polarization:  | Horizontal                 |
| Test Voltage: | DC 3.85V       |                |                            |

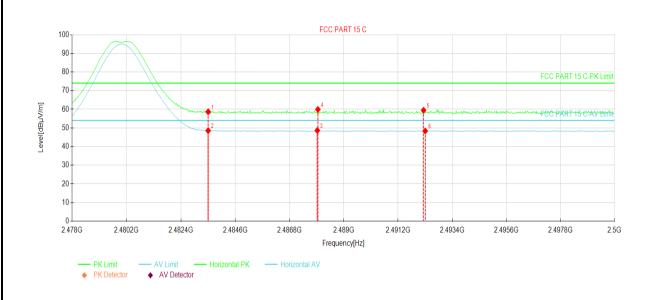



| Suspe | Suspected Data List |          |          |        |          |        |       |            |
|-------|---------------------|----------|----------|--------|----------|--------|-------|------------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trans | Dolority   |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |
| 1     | 2369.31             | 12.78    | 48.47    | 35.69  | 54.00    | 5.53   | AV    | Horizontal |
| 2     | 2369.31             | 24.17    | 59.86    | 35.69  | 74.00    | 14.14  | PK    | Horizontal |
| 3     | 2380.59             | 12.82    | 48.59    | 35.77  | 54.00    | 5.41   | AV    | Horizontal |
| 4     | 2380.78             | 24.12    | 59.89    | 35.77  | 74.00    | 14.11  | PK    | Horizontal |
| 5     | 2390.08             | 22.84    | 58.68    | 35.84  | 74.00    | 15.32  | PK    | Horizontal |
| 6     | 2390.08             | 12.44    | 48.28    | 35.84  | 54.00    | 5.72   | AV    | Horizontal |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C                      |
|---------------|-----------------|----------------|----------------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE Coded PHY, S=8) |
| Test Channel: | Highest channel | Polarization:  | Vertical                   |
| Test Voltage: | DC 3.85V        |                |                            |




| Suspe | Suspected Data List |          |          |        |          |        |       |          |
|-------|---------------------|----------|----------|--------|----------|--------|-------|----------|
| NO.   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Trace | Dolority |
| NO.   | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity |
| 1     | 2483.50             | 22.83    | 58.55    | 35.72  | 74.00    | 15.45  | PK    | Vertical |
| 2     | 2483.50             | 12.83    | 48.55    | 35.72  | 54.00    | 5.45   | AV    | Vertical |
| 3     | 2487.26             | 23.65    | 59.36    | 35.71  | 74.00    | 14.64  | PK    | Vertical |
| 4     | 2487.32             | 12.70    | 48.41    | 35.71  | 54.00    | 5.59   | AV    | Vertical |
| 5     | 2490.95             | 24.31    | 60.01    | 35.70  | 74.00    | 13.99  | PK    | Vertical |
| 6     | 2491.00             | 12.81    | 48.51    | 35.70  | 54.00    | 5.49   | AV    | Vertical |

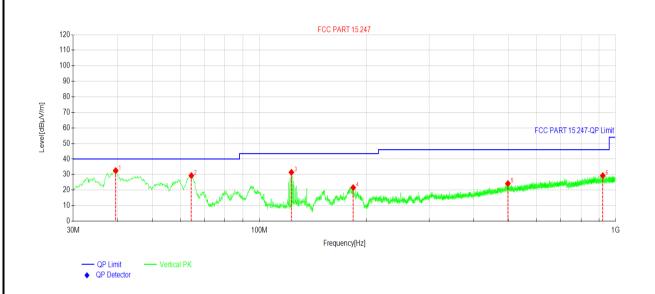
1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name: | Mobile Phone    | Product Model: | X668C                      |
|---------------|-----------------|----------------|----------------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE Coded PHY, S=8) |
| Test Channel: | Highest channel | Polarization:  | Horizontal                 |
| Test Voltage: | DC 3.85V        |                |                            |



| Suspected Data List |         |          |          |        |          |        |       |            |  |  |
|---------------------|---------|----------|----------|--------|----------|--------|-------|------------|--|--|
| NO.                 | Freq.   | Reading  | Level    | Factor | Limit    | Margin | Tropo | Dolority   |  |  |
| NO.                 | [MHz]   | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Trace | Polarity   |  |  |
| 1                   | 2483.50 | 22.94    | 58.66    | 35.72  | 74.00    | 15.34  | PK    | Horizontal |  |  |
| 2                   | 2483.50 | 12.81    | 48.53    | 35.72  | 54.00    | 5.47   | AV    | Horizontal |  |  |
| 3                   | 2487.92 | 12.93    | 48.64    | 35.71  | 54.00    | 5.36   | AV    | Horizontal |  |  |
| 4                   | 2487.94 | 24.20    | 59.91    | 35.71  | 74.00    | 14.09  | PK    | Horizontal |  |  |
| 5                   | 2492.23 | 23.79    | 59.49    | 35.70  | 74.00    | 14.51  | PK    | Horizontal |  |  |
| 6                   | 2492.30 | 12.66    | 48.36    | 35.70  | 54.00    | 5.64   | AV    | Horizontal |  |  |


1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

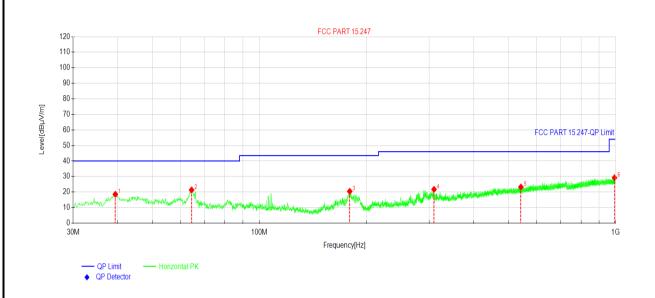


## 6.5 Emissions in Non-restricted Frequency Bands

#### **Below 1GHz:**

| Product Name:   | Mobile Phone   | Product Model: | X668C              |
|-----------------|----------------|----------------|--------------------|
| Test By:        | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical           |
| Test Voltage:   | DC 3.85V       |                |                    |




| Suspected Data List |        |           |          |        |               |        |       |          |  |  |
|---------------------|--------|-----------|----------|--------|---------------|--------|-------|----------|--|--|
| NO.                 | Freq.  | Reading[d | Level    | Factor | Limit         | Margin | Trace | Polarity |  |  |
|                     | [MHz]  | BµV/m]    | [dBµV/m] | [dB]   | [dBµV/m] [dB] |        |       |          |  |  |
| 1                   | 39.50  | 47.03     | 32.52    | -14.51 | 40.00         | 7.48   | PK    | Vertical |  |  |
| 2                   | 64.43  | 44.91     | 29.35    | -15.56 | 40.00         | 10.65  | PK    | Vertical |  |  |
| 3                   | 123.03 | 47.89     | 31.42    | -16.47 | 43.50         | 12.08  | PK    | Vertical |  |  |
| 4                   | 183.46 | 38.08     | 21.58    | -16.50 | 43.50         | 21.92  | PK    | Vertical |  |  |
| 5                   | 498.75 | 31.18     | 24.18    | -7.00  | 46.00         | 21.82  | PK    | Vertical |  |  |
| 6                   | 921.13 | 30.41     | 29.31    | -1.10  | 46.00         | 16.69  | PK    | Vertical |  |  |

#### Romark

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



| Product Name:   | Mobile Phone   | Product Model: | X668C              |
|-----------------|----------------|----------------|--------------------|
| Test By:        | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Horizontal         |
| Test Voltage:   | DC 3.85V       |                |                    |



| Suspe | Suspected Data List |           |          |        |          |        |       |            |  |  |  |
|-------|---------------------|-----------|----------|--------|----------|--------|-------|------------|--|--|--|
| NO.   | Freq.               | Reading[d | Level    | Factor | Limit    | Margin | Trace | Polarity   |  |  |  |
| MHz]  | [MHz]               | BµV/m]    | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | Hacc  | lolality   |  |  |  |
| 1     | 39.40               | 33.09     | 18.57    | -14.52 | 40.00    | 21.43  | PK    | Horizontal |  |  |  |
| 2     | 64.53               | 36.94     | 21.37    | -15.57 | 40.00    | 18.63  | PK    | Horizontal |  |  |  |
| 3     | 179.39              | 37.25     | 20.46    | -16.79 | 43.50    | 23.04  | PK    | Horizontal |  |  |  |
| 4     | 309.38              | 34.20     | 21.75    | -12.45 | 46.00    | 24.25  | PK    | Horizontal |  |  |  |
| 5     | 542.40              | 30.07     | 23.25    | -6.82  | 46.00    | 22.75  | PK    | Horizontal |  |  |  |
| 6     | 993.69              | 29.86     | 29.24    | -0.62  | 54.00    | 24.76  | PK    | Horizontal |  |  |  |

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.





#### Above 1GHz:

| (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dBμV/m)         (dB)         Polar 4804.00         48.04.00         54.15         -9.60         44.55         74.00         29.45         Veided A804.00         48.04.00         54.97         -9.60         45.57         74.00         29.45         Veided A804.00         48.00         Polar (BμV/m)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       | В     | LE Tx (LE 1M PH     | Y)     |       |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|---------------------|--------|-------|--------------|
| Frequency (MHz) (dBμV) (dB) (dBμV/m) |          |       | Test  | channel: Lowest ch  | nannel |       |              |
| (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dBμV/m)         (dB)         Polar           4804.00         54.15         -9.60         44.55         74.00         29.45         Vei           4804.00         54.97         -9.60         45.37         74.00         28.63         Hori:           Detector: Average Value           Frequency (MHz)         Read Level (ABpV)         (dB)         (dBpV/m)         (dBpV/m)         (dBpV/m)         (dB)         Polar           4804.00         46.60         -9.60         37.00         54.00         17.00         Vei         4804.00         15.92         Hori:         Hori:           Test channel: Middle channel           Detector: Peak Value           Frequency (MHz)         Read Level Factor Level Limit Margin (ABpV/m)         (dBpV/m)         (dBp         Polar           A884.00         53.82         -9.04         44.78         74.00         29.22         Vei           A884.00         54.86         -9.04         45.82         74.00         28.18         Hori:           Frequency (MHz)         (dBpV)         (dB)         (dBpV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |       | [     | Detector: Peak Valu | ıe     |       |              |
| A804.00   54.97   -9.60   45.37   74.00   28.63   Horizontal Ho | -        |       |       |                     |        | -     | Polarization |
| Detector: Average Value   Frequency (MHz) (dBμV) (dB) (dBμV/m)  | 4804.00  | 54.15 | -9.60 | 44.55               | 74.00  | 29.45 | Vertical     |
| Frequency (MHz) (dBμV) (dB) (dBμV/m) (dBμν/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμν/m) (dBμV/m) (dBμν/m) | 4804.00  | 54.97 | -9.60 | 45.37               | 74.00  | 28.63 | Horizontal   |
| (MHz)         (dBμV)         (dB)         (dBμV/m)         Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> |       | De    | tector: Average Va  | alue   |       |              |
| Test channel: Middle channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |                     |        | -     | Polarization |
| Test channel: Middle channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4804.00  | 46.60 | -9.60 | 37.00               | 54.00  | 17.00 | Vertical     |
| Detector: Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4804.00  | 47.68 | -9.60 | 38.08               | 54.00  | 15.92 | Horizontal   |
| Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |       |                     |        |       |              |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       | Test  | channel: Middle ch  | nannel |       |              |
| (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dB)         Polar           4884.00         53.82         -9.04         44.78         74.00         29.22         Ver           Betector: Average Value           Frequency (MHz)         Read Level (dBμV)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dBμV/m)         Polar           4884.00         47.06         -9.04         38.02         54.00         15.98         Ver           4884.00         47.84         -9.04         38.80         54.00         15.20         Horiz           Test channel: Highest channel           Detector: Peak Value           Frequency (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dB)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Ver           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dBμV/m)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | С     | Detector: Peak Valu | ie     |       |              |
| Section   Sec | -        |       |       |                     |        | -     | Polarization |
| Detector: Average Value   Frequency (MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dB)   Polar (MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) (dB)   Polar (MHz) (M | 4884.00  |       | -9.04 | 44.78               | 74.00  | 29.22 | Vertical     |
| Frequency (MHz)         Read Level (dBμV)         Factor (dB)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar (dBμV/m)           4884.00         47.06         -9.04         38.02         54.00         15.98         Vel           4884.00         47.84         -9.04         38.80         54.00         15.20         Horiz           Test channel: Highest channel           Detector: Peak Value           Frequency (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dB)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Vel           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dB)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4884.00  | 54.86 | -9.04 | 45.82               | 74.00  | 28.18 | Horizontal   |
| (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dB)         Polar           4884.00         47.06         -9.04         38.02         54.00         15.98         Ver           4884.00         47.84         -9.04         38.80         54.00         15.20         Horiz           Test channel: Highest channel           Detector: Peak Value           Frequency (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dB)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Ver           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dBμV/m)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |       | De    | tector: Average Va  | alue   |       |              |
| Test channel: Highest channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |       |       |                     |        | -     | Polarization |
| Test channel: Highest channel           Detector: Peak Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Ver           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4884.00  | 47.06 | -9.04 | 38.02               | 54.00  | 15.98 | Vertical     |
| Detector: Peak Value           Frequency (MHz)         Read Level (dBμV)         Factor (dB)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Vel           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4884.00  | 47.84 | -9.04 | 38.80               | 54.00  | 15.20 | Horizontal   |
| Detector: Peak Value           Frequency (MHz)         Read Level (dBμV)         Factor (dB)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Vel           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |       |                     |        |       |              |
| Frequency (MHz)         Read Level (dBμV)         Factor (dB)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar (dBμV/m)           4960.00         54.19         -8.45         45.74         74.00         28.26         Ver           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dBμV/m)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |       |                     |        |       |              |
| (MHz)         (dBμV)         (dB)         (dBμV/m)         (dBμV/m)         (dBμV/m)         Polar           4960.00         54.19         -8.45         45.74         74.00         28.26         Ver           4960.00         54.86         -8.45         46.41         74.00         27.59         Horiz           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dB)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |       |                     |        |       |              |
| 4960.00         54.86         -8.45         46.41         74.00         27.59         Horizon           Detector: Average Value           Frequency (MHz)         Read Level (dBμV)         Factor (dBμV/m)         Level (dBμV/m)         Limit (dBμV/m)         Margin (dBμV/m)         Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |       |                     |        | -     | Polarization |
| Detector: Average Value         Frequency (MHz)       Read Level (dBμV)       Factor (dBμV/m)       Level (dBμV/m)       Limit (dBμV/m)       Margin (dBμV/m)       Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4960.00  | 54.19 | -8.45 | 45.74               | 74.00  | 28.26 | Vertical     |
| Frequency (MHz)       Read Level (dBμV)       Factor (dBμV/m)       Level (dBμV/m)       Limit (dBμV/m)       Margin (dBμV/m)       Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4960.00  | 54.86 | -8.45 | 46.41               | 74.00  | 27.59 | Horizontal   |
| (MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       | De    | tector: Average Va  | alue   |       |              |
| 4960.00 46.14 -8.45 37.69 54.00 16.31 Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       |       |                     |        | •     | Polarization |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4960.00  | 46.14 | -8.45 | 37.69               | 54.00  | 16.31 | Vertical     |
| 4960.00 47.45 -8.45 39.00 54.00 15.00 Horiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4960.00  | 47.45 | -8.45 | 39.00               | 54.00  | 15.00 | Horizontal   |

Tel: +86-755-23118282, Fax: +86-755-23116366





|                    |                      | В              | LE Tx (LE 2M PH     | Y)                |                |              |
|--------------------|----------------------|----------------|---------------------|-------------------|----------------|--------------|
|                    |                      | Test           | channel: Lowest ch  | nannel            |                |              |
|                    |                      | С              | Detector: Peak Valu | ıe                |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 54.57                | -9.60          | 44.97               | 74.00             | 29.03          | Vertical     |
| 4804.00            | 54.61                | -9.60          | 45.01               | 74.00             | 28.99          | Horizontal   |
|                    |                      | De             | tector: Average Va  | alue              |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 46.57                | -9.60          | 36.97               | 54.00             | 17.03          | Vertical     |
| 4804.00            | 47.91                | -9.60          | 38.31               | 54.00             | 15.69          | Horizontal   |
|                    |                      |                |                     |                   |                |              |
|                    |                      | Test           | channel: Middle ch  | nannel            |                |              |
|                    |                      | С              | etector: Peak Valu  | ue                |                | 1            |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 54.07                | -9.04          | 45.03               | 74.00             | 28.97          | Vertical     |
| 4884.00            | 54.83                | -9.04          | 45.79               | 74.00             | 28.21          | Horizontal   |
|                    |                      | De             | tector: Average Va  | alue              |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 47.55                | -9.04          | 38.51               | 54.00             | 15.49          | Vertical     |
| 4884.00            | 47.90                | -9.04          | 38.86               | 54.00             | 15.14          | Horizontal   |
|                    |                      |                | channel: Highest c  |                   |                |              |
|                    | T                    |                | Detector: Peak Valu |                   |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4960.00            | 54.01                | -8.45          | 45.56               | 74.00             | 28.44          | Vertical     |
| 4960.00            | 55.25                | -8.45          | 46.80               | 74.00             | 27.20          | Horizontal   |
|                    |                      | De             | tector: Average Va  | alue              |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4960.00            | 46.09                | -8.45          | 37.64               | 54.00             | 16.36          | Vertical     |
| 4960.00            | 47.72                | -8.45          | 39.27               | 54.00             | 14.73          | Horizontal   |





|                    |                      |                | x (LE Coded PH)     | <del>-</del>      |                |              |
|--------------------|----------------------|----------------|---------------------|-------------------|----------------|--------------|
|                    |                      |                | channel: Lowest ch  |                   |                |              |
|                    | T                    |                | Detector: Peak Valu |                   |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 54.22                | -9.60          | 44.62               | 74.00             | 29.38          | Vertical     |
| 4804.00            | 54.28                | -9.60          | 44.68               | 74.00             | 29.32          | Horizontal   |
|                    |                      | De             | tector: Average Va  | alue              |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 46.25                | -9.60          | 36.65               | 54.00             | 17.35          | Vertical     |
| 4804.00            | 47.51                | -9.60          | 37.91               | 54.00             | 16.09          | Horizontal   |
|                    |                      |                |                     |                   |                |              |
|                    |                      | Test           | channel: Middle ch  | nannel            |                |              |
|                    |                      | С              | etector: Peak Valu  | ue                |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 54.29                | -9.04          | 45.25               | 74.00             | 28.75          | Vertical     |
| 4884.00            | 55.03                | -9.04          | 45.99               | 74.00             | 28.01          | Horizontal   |
|                    |                      |                | tector: Average Va  |                   |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 47.07                | -9.04          | 38.03               | 54.00             | 15.97          | Vertical     |
| 4884.00            | 47.87                | -9.04          | 38.83               | 54.00             | 15.17          | Horizontal   |
|                    |                      | Test           | channel: Highest c  | hannel            |                |              |
|                    |                      |                | etector: Peak Valu  |                   |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4960.00            | 54.35                | -8.45          | 45.90               | 74.00             | 28.10          | Vertical     |
| 4960.00            | 55.20                | -8.45          | 46.75               | 74.00             | 27.25          | Horizontal   |
|                    |                      |                | tector: Average Va  |                   |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor (dB)    | Level<br>(dBµV/m)   | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4960.00            | 46.54                | -8.45          | 38.09               | 54.00             | 15.91          | Vertical     |
| 4960.00            | 47.68                | -8.45          | 39.23               | 54.00             | 14.77          | Horizontal   |
| emark:             |                      |                | •                   |                   |                |              |





|                    |                                                | BEL T          | x (LE Coded PH)    | r, S=8)           |                |              |
|--------------------|------------------------------------------------|----------------|--------------------|-------------------|----------------|--------------|
|                    |                                                | Test o         | channel: Lowest ch | nannel            |                |              |
|                    | <u>,                                      </u> | D              | etector: Peak Valu | ıe                | ,              |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV)                           | Factor<br>(dB) | Level<br>(dBµV/m)  | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 54.21                                          | -9.60          | 44.61              | 74.00             | 29.39          | Vertical     |
| 4804.00            | 54.58                                          | -9.60          | 44.98              | 74.00             | 29.02          | Horizontal   |
|                    |                                                | De             | tector: Average Va | alue              |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV)                           | Factor<br>(dB) | Level<br>(dBµV/m)  | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 46.53                                          | -9.60          | 36.93              | 54.00             | 17.07          | Vertical     |
| 4804.00            | 47.12                                          | -9.60          | 37.52              | 54.00             | 16.48          | Horizontal   |
|                    |                                                | Took           | channel: Middle ch |                   |                |              |
|                    |                                                |                |                    |                   |                |              |
|                    | Donal Lavel                                    |                | etector: Peak Valu |                   | Manain         | T T          |
| Frequency<br>(MHz) | Read Level<br>(dBµV)                           | Factor<br>(dB) | Level<br>(dBµV/m)  | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 54.61                                          | -9.04          | 45.57              | 74.00             | 28.43          | Vertical     |
| 4884.00            | 54.23                                          | -9.04          | 45.19              | 74.00             | 28.81          | Horizontal   |
|                    |                                                | De             | tector: Average Va | alue              | 1              |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV)                           | Factor<br>(dB) | Level<br>(dBµV/m)  | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 46.69                                          | -9.04          | 37.65              | 54.00             | 16.35          | Vertical     |
| 4884.00            | 47.68                                          | -9.04          | 38.64              | 54.00             | 15.36          | Horizontal   |
|                    |                                                |                | hannel: Highest cl |                   |                |              |
| F                  | Decal Level                                    |                | etector: Peak Valu |                   | NA- marin      | T            |
| Frequency<br>(MHz) | Read Level<br>(dBµV)                           | Factor<br>(dB) | Level<br>(dBµV/m)  | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4960.00            | 53.94                                          | -8.45          | 45.49              | 74.00             | 28.51          | Vertical     |
| 4960.00            | 55.32                                          | -8.45          | 46.87              | 74.00             | 27.13          | Horizontal   |
|                    | 1                                              | De             | tector: Average Va |                   |                | _            |
| Frequency<br>(MHz) | Read Level<br>(dBµV)                           | Factor<br>(dB) | Level<br>(dBµV/m)  | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
|                    | 46.86                                          | -8.45          | 38.41              | 54.00             | 15.59          | Vertical     |
| 4960.00            |                                                |                |                    |                   |                |              |

-----End of report-----