

Report No.: JYTSZ-R01-2200283

FCC EMC Test Report

Applicant:	INFINIX MOBILITY LIMITED
Address of Applicant:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31- 35 SHAN MEI STREET FOTAN NT HONGKONG
Equipment Under Test (E	UT)
Product Name:	Mobile Phone
Model No.:	X665E
Trade Mark:	Infinix
FCC ID:	2AIZN-X665E
Applicable Standards:	FCC CFR Title 47 Part 15B
Date of Sample Receipt:	26 May, 2022
Date of Test:	27 May, to 13 Jun., 2022
Date of report Issued:	14 Jun., 2022
Test Result:	PASS

Tested by:	Test Engineer	Date:	14 Jun., 2022
Reviewed by:	Resject Engineer	Date:	14 Jun., 2022
Approved by:	在验检测专用章 Manager	Date:	14 Jun., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	14 Jun., 2022	Original

3 Contents

			Page
1	Cov	er Page	1
2	Vers	sion	2
3	Con	tents	
4		eral Information	
-	4.1	Client Information	
	4.2	General Description of E.U.T.	
	4.3	Test Mode	
	4.4	Description of Support Units	
	4.5	Description of Cable Used	
	4.6	Measurement Uncertainty	
	4.7	Additions to, Deviations, or Exclusions from the Method	
	4.8	Laboratory Facility	
	4.9	Laboratory Location	
	4.10	Test Instruments List	6
5	Mea	surement Setup and Procedure	7
	5.1	Test Setup	7
	5.2	Test Procedure	
6	Test	Results	9
	6.1	Summary	
	6.2	Conducted Emission	
	6.3	Radiated Emission	

4 General Information

4.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

4.2 General Description of E.U.T.

Product Name:	Mobile Phone			
Model No.:	X665E			
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh			
AC Adapter:	Model: U100XSA			
	Input: AC100-240V, 50/60Hz, 0.3A			
	Output: DC 5.0V, 2.0A			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

4.3 Test Mode

Operating Mode	Detail Description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
Lenovo	Laptop	ThinkPad T14 Gen 1	SL10Z47277	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

4.5 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

4.6 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))		
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB		
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB		
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB		
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB		

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.7 Additions to, Deviations, or Exclusions from the Method

No

4.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

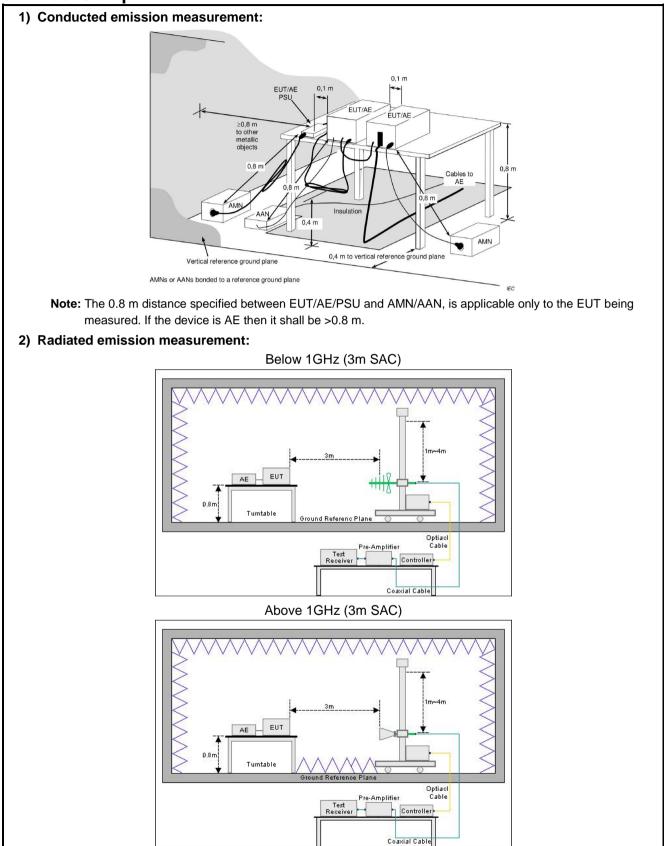
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

4.9 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: <u>http://jyt.lets.com</u>

4.10 Test Instruments List


Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	02-17-2022	02-16-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	Ν	I/A	
Test Software	Tonscend	TS+	Version: 3.0.0.1			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A		
Test Software	AUDIX	E3	V	Version: 6.110919b		

5 Measurement Setup and Procedure

5.1 Test Setup

Project No.: JYTSZR2205049

5.2 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement.
Radiated emission	For below 1GHz:
	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test aptenna and test turntable. Berform
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Once the test active to active to active the test actions and test turntable. Defarm
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

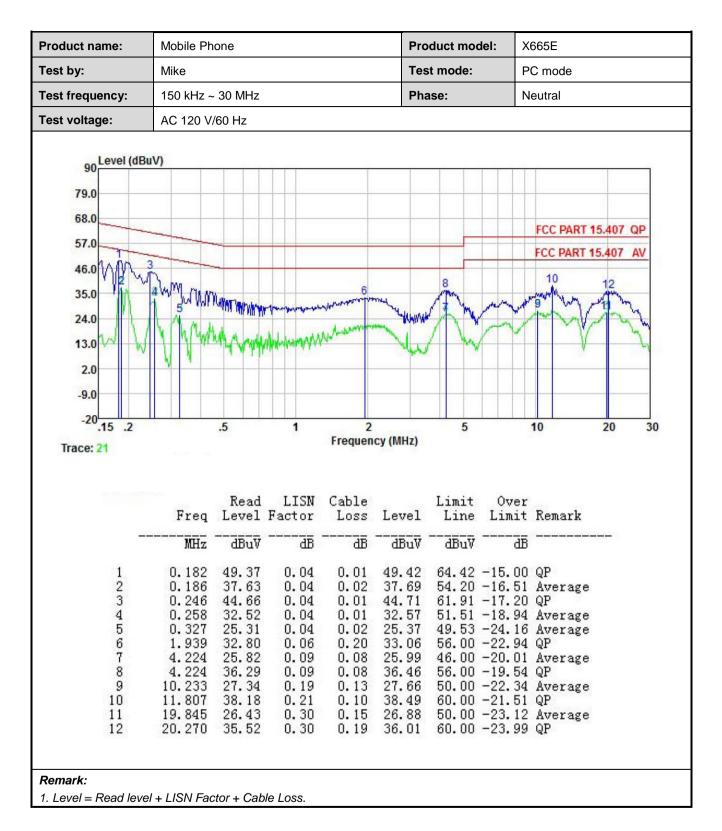
Test items	Standard clause	Test data	Result
Conducted Emission	Part 15.107	See Section 6.2	Pass
Radiated Emission	Part 15.109	See Section 6.3	Pass
Remark: 1. The EUT is a Class B digital de	vice.		

2. Pass: The EUT complies with the essential requirements in the standard.

3. N/A: Not Applicable.

Test Method: ANSI C63.4:2014

6.1.2 Test Limit


Frequency (MHz) 0.15 – 0.5 0.5 – 5 5 – 30 Note 1: The limit leve	Class A Li Quasi-Peak 79 73 73	mit (dBµV) Average 66 60	Class B Lin Quasi-Peak 66 to 56 Note 1	mit (dBµV) Average 56 to 46 Note 1
0.15 - 0.5 0.5 - 5 5 - 30 Note 1: The limit leve	79 73	66 60	66 to 56 Note 1	9
0.5 – 5 5 – 30 Note 1: The limit leve	73	60		EC to AC Note 1
5 – 30 Note 1: The limit leve			50	50 10 40 1010 1
Note 1: The limit leve	73		56	46
		60	60	50
Note 2: The more str	el in dBµV decrease ringent limit applies	•		icy.
_	Class A Lin	nit (dBµV/m)	Class B Lim	it (dBµV/m)
(MHz)	Quasi-Peak @ 3m	Quasi-Peak @ 10m	Quasi-Peak @ 3m	Quasi-Peak @ 10m
30 – 88	49.0	39.0	40.0	30.0
88 – 216	53.5	43.5	43.5	33.5
216 – 960	56.0	46.0	46.0	36.0
960 – 1000	60.0	50.0	54.0	44.0
Note: The more strin	gent limit applies at	transition frequenc	ies.	
Frequency	Class A Limit (dBµV/m) @ 3m	Class B Limit (dBµV/m) @ 3	
Frequency	Average	Peake	Average	Peake
Above 1 GHz	60.0	80.0	54.0	74.0
	30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more strin Frequency Above 1 GHz	Frequency (MHz) Quasi-Peak @ 3m 30 - 88 49.0 88 - 216 53.5 216 - 960 56.0 960 - 1000 60.0 Note: The more stringent limit applies at Frequency Class A Limit (Average Above 1 GHz 60.0	(MHz) Quasi-Peak @ 3m Quasi-Peak @ 10m 30 - 88 49.0 39.0 88 - 216 53.5 43.5 216 - 960 56.0 46.0 960 - 1000 60.0 50.0 Note: The more stringent limit applies at transition frequence Class A Limit (dBµV/m) @ 3m Frequency Average Peake	Frequency (MHz) Quasi-Peak @ 3m Quasi-Peak @ 10m Quasi-Peak @ 3m 30 - 88 49.0 39.0 40.0 88 - 216 53.5 43.5 43.5 216 - 960 56.0 46.0 46.0 960 - 1000 60.0 50.0 54.0 Note: The more stringent limit applies at transition frequencies. Frequency Class A Limit (dBµV/m) @ 3m Class B Limit (model) Above 1 GHz 60.0 80.0 54.0

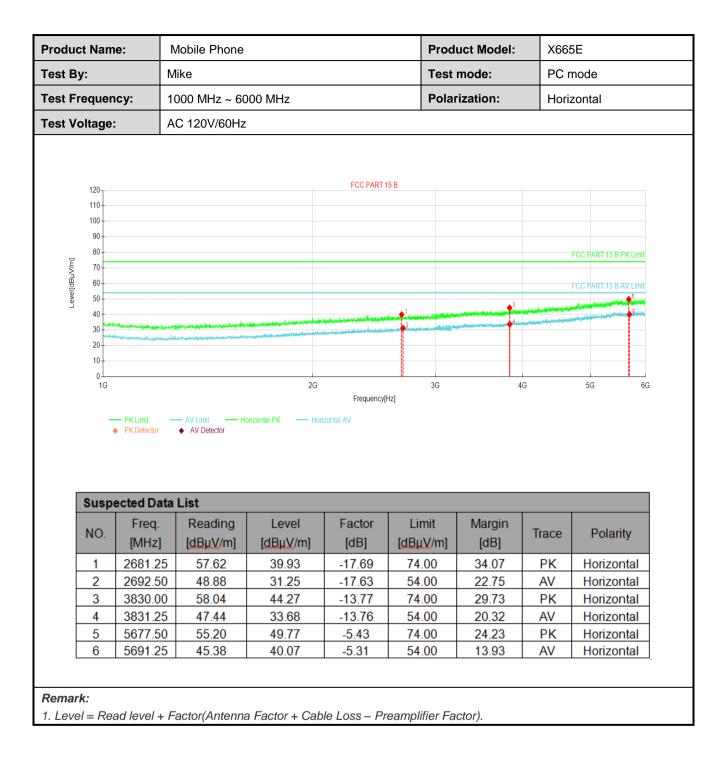
6.2 Conducted Emission

Product name:	Mobile Pho	one			Pro	duct mod	el: X	665E	
Гest by:	Mike				Tes	t mode:	Р	C mode	
Test frequency:	150 kHz ~	30 MHz			Pha	ise:	Li	ine	
Fest voltage:	AC 120 V/	60 Hz							
90 Level (dB 79.0 68.0 57.0 46.0 35.0 24.0 13.0 -9.0 -20 .15 .2 Trace: 23	3 1 1 1 1 1 1 1 1	.5	httemstrumment httemstrumment 1	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Cy (MHz)	9		FCC PART 1	
	Freq MHz		LISN Factor dB		Level 	Limit Line 	Over Limit dB	Remark	
1 2 3 4	0.182 0.194 0.249	49.14 37.07 43.73	0.04 0.04 0.04	0.01 0.03 0.01	49.19 37.14 43.78	53.84	-15.23 -16.70 -18.00	Average	

6.3 Radiated Emission

Below 1GHz:

					FIU	duct Model:	X66	5L
By:	1	Vike			Tes	t mode:	PC r	mode
Frequer	ncy:	30 MHz ~ 1 GH	Ηz		Pola	arization:	Vert	ical
Voltage	: /	AC 120V/60Hz						
60 50 40 [W]\7fgp] [ava] 20		2		FCC PART 15 F	4		FCC PAR	F S S S S S S S S S S S S S S S S S S S
10 0 30M	QP Limit	Word And Ministration of the Ministratio of the Ministration of the Ministration of th	100M	Frequenc				1G
10-10 0 30M	← QP Limit ◆ QP Detector	Vertical PK	100M	Frequenc				16
10-110-110 0 30M	- QP Limit	Vertical PK	100M	Frequenc		Margin	Angle	
10-10 0 30M	QP Limit QP Detector	- Vertical PK			y[Hz]		Angle [°]	Polarity
10-110-110 0 30M	QP Limit ← QP Detector ected Data Freq.	Vertical PK	Level	Factor	y[Hz]	Margin	-	
Suspe	QP Limit QP Detector QP Detector Cred Data Freq. [MHz]		Level [dBµV/m]	Factor [dB]	y(Hz) Limit [dBuV/m]	Margin [dB]	[°]	Polarity
10-11 0 30M	QP Limit ♦ QP Detector ected Data Freq. [MHz] 31.3581		Level [dBµV/m] 14.49	Factor [dB] -15.85	y(Hz] Limit [dBuV/m] 40.00	Margin [dB] 25.51	[°] 264	Polarity Vertical
10-11 0 0 30M	QP Limit QP Detector QP Detector Freq. [MHz] 31.3581 65.7966		Level [dBµV/m] 14.49 26.60	Factor [dB] -15.85 -15.84	y[Hz] Limit [dBµV/m] 40.00 40.00	Margin [dB] 25.51 13.40	[°] 264 234	Polarity Vertical Vertical
10- 30M NO. 1 2 3	 → QP Limit → QP Detector → QP Detector → CP Detec		Level [dBµV/m] 14.49 26.60 24.40	Factor [dB] -15.85 -15.84 -15.94	v[Hz] Limit [dBuV/m] 40.00 40.00 43.50	Margin [dB] 25.51 13.40 19.10	[°] 264 234 76	Polarity Vertical Vertical Vertical


					110	duct Model:	X66	
By:	N	like			Tes	t mode:	PC r	mode
Frequer	cy: 3	0 MHz ~ 1 GH	Ηz		Pola	arization:	Hori	zontal
Voltage	: A	C 120V/60Hz	<u>.</u>					
				FCC PART 15 B				
60				FUC PART 15 B	OCLASS B		FCC PAR	RT 15 B CLASS B-QP Limit
50								
					4			
40- E					+		•	6
Level[dBµV/m] 30								والفعار براير
_evel[2					A. L. Market	
20		1	3			M. Muhuhak	ling systems	
20						a salah ang		
	well-	white he was		st. Addinghall	Note and Party of the			
	~WMMM-whatmanda	monthemated Warm	holdentyttytevillingen andersteller hele	Wontenald High M	New House Street			
10 - m/	rddydaddyn yn eddaedd yn	noriteriologi Were		Herminian Manghall				
10±~W	nthater and a second	namiliana Waray	100M					16
10 - m/				Frequency				16
10 - m/		- Horizontal PK						16
10 - m/	— QP Limit ·							1G
10 - m/	— QP Limit ·							1G
10 ±10 0 30M	— QP Limit ·	Horizontal PK						1G
10-11/ 0 30M	QP Limit QP Detector	Horizontal PK				Margin	Angle	
10 ±10 0 30M	QP Limit ↓ QP Detector	Horizontal PK	100M	Frequency	y[Hz]			Polarity
10-11/ 0 30M	QP Limit QP Detector	Horizontal PK	100M	Frequenc	y[Hz]	Margin	Angle	
Suspe	QP Limit ↓ QP Detector ected Data Freq. [MHz]	Horizontal PK	100M	Frequency Factor [dB]	y[Hz]	Margin [dB]	Angle [°]	Polarity
10-10 30M Suspe NO. 1	QP Limit ↓ QP Detector ected Data Freq. [MHz] 53.6704	Horizontal PK List Reading[d BuV/m] 29.41	100M	Frequency Factor [dB] -14.64	y[Hz] Limit [dBuV/m] 40.00	Margin [dB] 25.23	Angle [°] 59	Polarity Horizontal
10-4 0 30M	 QP Limit QP Detector QP Detector Freq. [MHz] 53.6704 65.8936 	Horizontal PK List Reading[d BuV/m] 29.41 38.56	Level [dBuV/m] 14.77 22.70	Frequency Factor [dB] -14.64 -15.86	y[Hz] Limit [dBµV/m] 40.00 40.00	Margin [dB] 25.23 17.30	Angle [°] 59 188	Polarity Horizontal Horizontal
10-11/ 0 30M NO. 1 2 3	 → QP Limit → QP Detector → QP Detector → CP Detec	- Horizontal PK List Reading[d BuV/m] 29.41 38.56 30.71	Level [dBµV/m] 14.77 22.70 14.77	Frequency Factor [dB] -14.64 -15.86 -15.94	y[Hz] Limit [dBuV/m] 40.00 40.00 43.50	Margin [dB] 25.23 17.30 28.73	Angle [°] 59 188 90	Polarity Horizontal Horizontal Horizontal

Above 1GHz:

					Prod		X665	2
t By:	Ν	like			Test	mode:	PC r	node
t Frequer	n cy: 1	000 MHz ~ 60	00 MHz		Polar	ization:	Verti	ical
t Voltage	: A	C 120V/60Hz						
120 110 100 90 80 70 60 60 50 40	· · · · · · · · · · · · · · · · · · ·			FCC PART 1	5 B			FCC PART 15 B-PK Lim
30 104 20 10 10 10 16	PK Limit	 AV Limit → Ve AV Detector 	2G	Frequency	3G Hz]		6	56
20 10 10 10		AV Detector					16	56
20 10 10 10	PK Detector	AV Detector				Margin [dB]	G	5G Polarity
20 10 10 13 Susp NO.	 PK Detector ected Data Freq. [MHz] 2739.37 	 AV Detector List Reading [dBµV/m] 57.39 	rtical PK — Vertical Level [dBµV/m] 39.81	AV Factor [dB] -17.58	Limit [dΒμV/m] 74.00	Margin [dB] 34.19	Trace	Polarity Vertical
20 10 10 16 Susp NO. 1 2	 PK Detector ected Data Freq. [MHz] 2739.37 2762.50 	 AV Detector List Reading [dBµV/m] 57.39 49.02 	ntical PK — Vertical Level [dBµV/m] 39.81 31.46	AV Factor [dB] -17.58 -17.56	Limit [dBµV/m] 74.00 54.00	Margin [dB] 34.19 22.54	Trace PK AV	Polarity Vertical Vertical
20 10 10 16 Susp NO. 1 2 3	 PK Detector Pected Data Freq. [MHz] 2739.37 2762.50 3568.75 	 AV Detector List Reading [dBµV/m] 57.39 49.02 47.13 	Level [dBµV/m] 39.81 31.46 32.24	AV Factor [dB] -17.58 -17.56 -14.89	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 34.19 22.54 21.76	Trace PK AV AV	Polarity Vertical Vertical Vertical
20 10 10 16 Susp NO. 1 2 3 4	 PK Detector Pected Data Freq. [MHz] 2739.37 2762.50 3568.75 3570.00 	 AV Detector List Reading [dBµV/m] 57.39 49.02 47.13 57.62 	Level [dBµV/m] 39.81 31.46 32.24 42.73	AV Factor [dB] -17.58 -17.56 -14.89 -14.89	Limit [dBµV/m] 74.00 54.00 54.00 74.00	Margin [dB] 34.19 22.54 21.76 31.27	Trace PK AV AV PK	Polarity Vertical Vertical Vertical Vertical
20 10 10 16 Susp NO. 1 2 3	 PK Detector Pected Data Freq. [MHz] 2739.37 2762.50 3568.75 	 AV Detector List Reading [dBµV/m] 57.39 49.02 47.13 	Level [dBµV/m] 39.81 31.46 32.24	AV Factor [dB] -17.58 -17.56 -14.89	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 34.19 22.54 21.76	Trace PK AV AV	Polarity Vertical Vertical Vertical

-----End of report-----