

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200415

FCC RF Test Report

(Bluetooth)

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X663D

Trade Mark: Infinix

FCC ID: 2AIZN-X663D

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 10 Mar., 2022

Date of Test: 11 Mar., to 25 Mar., 2022

Date of Report Issued: 25 Mar., 2022

Test Result: PASS

Reviewed by: Date: 25 Mar., 2022

Approved by: Date: 25 Mar., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

_		
Version No.	Date	Description
00	25 Mar., 2022	Original

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	GENERAL INFORMATION	4
4	4.1 CLIENT INFORMATION	4
4	4.2 GENERAL DESCRIPTION OF E.U.T.	4
4	4.3 TEST MODE AND TEST ENVIRONMENT	5
4	4.4 DESCRIPTION OF SUPPORT UNITS	5
4	4.5 Measurement Uncertainty	
4	4.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
4	4.7 LABORATORY FACILITY	
	4.8 LABORATORY LOCATION	
4	4.9 TEST INSTRUMENTS LIST	6
5	MEASUREMENT SETUP AND PROCEDURE	7
5	5.1 Test Channel	7
5	5.2 Test Setup	7
5	5.3 Test Procedure	9
6	TEST RESULTS	10
6	6.1 SUMMARY	
	6.1.1 Clause and data summary	10
	6.1.2 Test Limit	
_	6.2 ANTENNA REQUIREMENT	
_	6.3 AC Power Line Conducted Emission	
_	6.4 EMISSIONS IN RESTRICTED FREQUENCY BANDS	
6	6.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	27

4 General Information

4.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

4.2 General Description of E.U.T.

4.2 General Descrip	11011 01 2:0:1:
Product Name:	Mobile Phone
Model No.:	X663D
Operation Frequency:	2402 MHz - 2480 MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	2.03 dBi (declare by applicant)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 4900mAh
AC Adapter:	Model: U330XSA
	Input: AC100-240V, 50/60Hz, 1.5A
	Output: DC 5.0V-3.0A, 10.0V-3.3A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2200415

4.3 Test Mode and Test Environment

Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π/4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:				
Temperature: 15° C ~ 35° C				
Humidity: 20 % ~ 75 % RH				
Atmospheric Pressure: 1010 mbar				

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

Nο

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

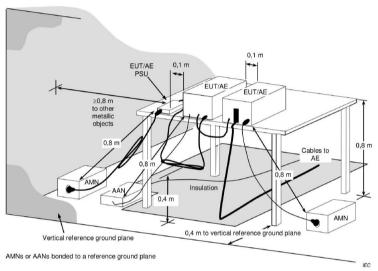
4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA- 180400G45B	WXG001-9	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN- 8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS- 8M	WXG001-7	02-17-2022	02-16-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	I/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	02-17-2022	02-16-2023		
RF Switch	TOP PRECISION	RSU0301	WXG003	02-17-2022	02-16-2023		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022		
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023		
Test Software	AUDIX	E3	Version: 6.110919b				

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022	
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022	
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022	
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	HONG ZHI	CZ-A-80D	WXJ032-3	02-19-2022	02-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	/A	
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		

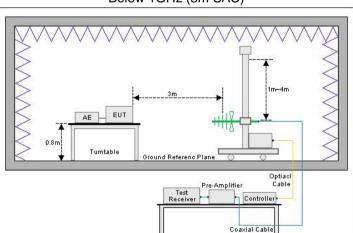
5 Measurement Setup and Procedure

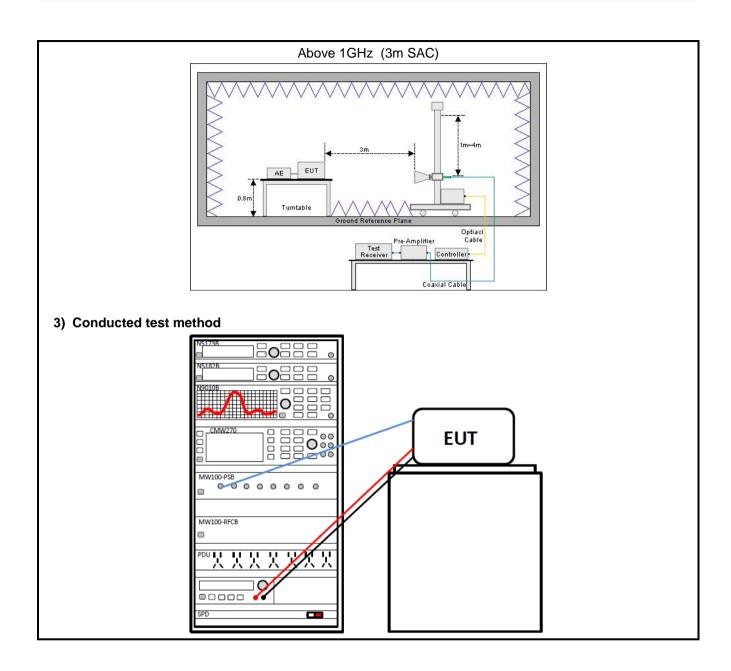

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

5.2 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix – BT	Pass
Band-edge Emission Conduction Spurious	15.247 (d)	Appendix – BT	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Test items	Limit							
	Frequency Limit (dΒμV)							
		(MHz)	Quas	i-Peak	Average			
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1			
Emission		0.5 – 5	_	56	46			
		5 – 30		60	50			
	Note 1: The limit level in dBμV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.							
Conducted Peak Output Power	em	frequency hopping syste oloying at least 75 non-o quency hopping systems	verlapping h	opping chanr	nels: 1 watt. For all oth	er		
20dB Occupied Bandwidth	Witl	hin authorization band						
Carrier Frequencies	,	0.025MHz or the 20dB ba	•	_	,			
Separation		0.025MHz or two-thirds of	of the 20dB i	pandwidth (wi	nichever is greater).			
Hopping Channel Number		east 15 channels.						
Dwell Time	Not	be greater than 0.4 second	onds.					
Band-edge Emission Conduction Spurious Emission	fred dB high radi the pow peri this limit	ctrum or digitally modula quency power that is procupellow that in the 100 kHz below that in the 100 kHz hest level of the desired plated measurement, provupeak conducted power linguisted under paragraph (paragraph shall be 30 duts specified in §15.209(and the radiated emission linguisted power linguisted by the radiated emission linguisted power linguisted by the radiated emission linguisted power linguiste	duced by the bower, base wided the tra mits. If the test of RMS a b)(3) of this B instead of is not requands, as def	e intentional ra within the ba d on either ar nsmitter demo ransmitter coveraging ove section, the a 20 dB. Atten ired. In additioned in §15.20	adiator shall be at leas nd that contains the n RF conducted or a constrates compliance of mplies with the conduct r a time interval, as attenuation required ur uation below the gene on, radiated emissions 05(a), must also complete	with cted nder ral		
		Frequency	Limit (d	BμV/m)	Detector			
		(MHz)	@ 3m	@ 10m		-		
Facinations in Destricted	-	30 – 88	40.0	30.0	Quasi-peak	-		
Emissions in Restricted		88 – 216	43.5	33.5	Quasi-peak	-		
Frequency Bands	-	216 – 960 960 – 1000	46.0 54.0	36.0 44.0	Quasi-peak Quasi-peak	+		
Emissions in New restricts	Market The control of							
Emissions in Non-restricted Frequency Bands			,	Limit (dBµV/n	n) @ 3m			
1 requestey Barras		Frequency	Ave	rage	Peake			
		Above 1 GHz	54	.0	74.0			
	L	Note: The measurement bandwi	dth shall be 1 M	Hz or greater.		┙		

Report No.: JYTSZ-R12-2200415

6.2 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

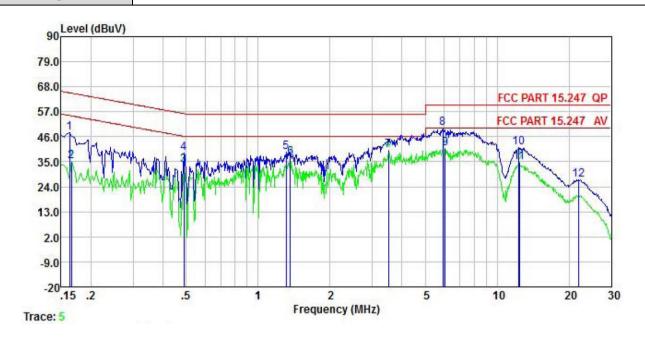
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

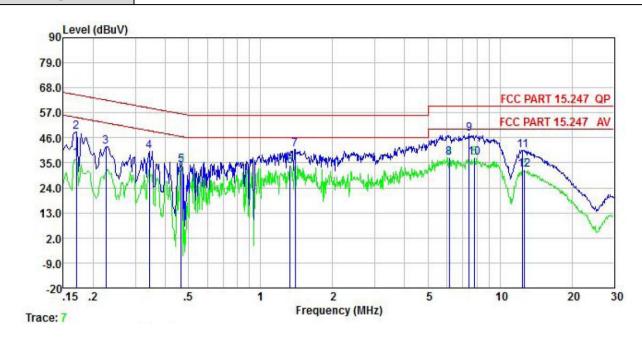
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 2.03 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

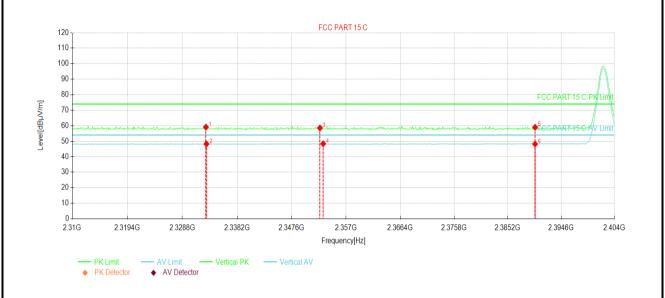
Product name:	Mobile Phone	Product model:	X663D
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	₫B	
1 2 3 4 5 6 7 8 9	0.162	47.70	0.04	0.01	47.75		-17.59	
2	0.166	35.25	0.04	0.01	35.30	55.16	-19.86	Average
3	0.489	33.35	0.04	0.03	33.42	46.19	-12.77	Average
4	0.489	38.59	0.04	0.03	38.66	56.19	-17.53	QP
5	1.310	39.18	0.06	0.11	39.35	56.00	-16.65	QP
6	1.367	36.70	0.06	0.12	36.88	46.00	-9.12	Average
7	3.509	40.00	0.10	0.08	40.18	46.00	-5.82	Average
8	5.929	49.55	0.14	0.09	49.78	60.00	-10.22	QP
9	6.056	40.54	0.14	0.09	40.77	50.00	-9.23	Average
10	12.318	40.78	0.24	0.10	41.12	60.00	-18.88	QP
11	12.384	34.47	0.24	0.10	34.81	50.00	-15.19	Average
12	21.946	26.64	0.34	0.16	27.14	60.00	-32.86	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

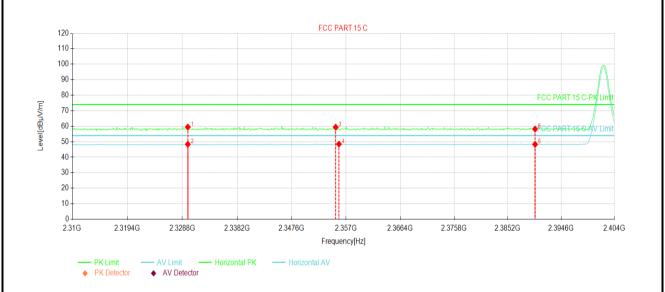
Product name:	Mobile Phone	Product model:	X663D
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu∇	dBu∇	<u>d</u> B	
1 2 3 4 5 6 7 8 9	0.170	36.64	0.05	0.01	36.70			Average
2	0.170	48.62	0.05	0.01	48.68	64.94	-16.26	QP
3	0.226	42.19	0.04	0.02	42.25	62.61	-20.36	QP
4	0.343	40.07	0.04	0.02	40.13	59.13	-19.00	QP
5	0.466	33.79	0.04	0.03	33.86	46.58	-12.72	Average
6	1.331	33.41	0.05	0.12	33.58	46.00	-12.42	Average
7	1.396	40.69	0.05	0.13	40.87		-15.13	
8	6.153	36.85	0.12	0.09	37.06	50.00	-12.94	Average
9	7.446	47.39	0.15	0.10	47.64	60.00	-12.36	QP
10	7.852	36.88	0.16	0.10	37.14	50.00	-12.86	Average
11	12.449	40.27	0.22	0.11	40.60		-19.40	
12	12.649	31.63	0.22	0.11	31.96			Äverage

1. Level = Read level + LISN Factor + Cable Loss.

6.4 Emissions in Restricted Frequency Bands

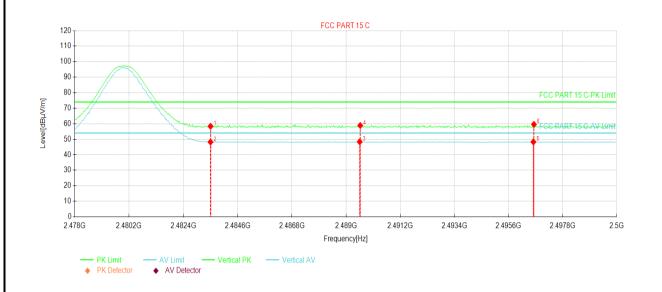
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2332.84	23.67	59.10	35.43	74.00	14.90	PK	Vertical	
2	2332.93	12.80	48.23	35.43	54.00	5.77	AV	Vertical	
3	2352.48	23.00	58.57	35.57	74.00	15.43	PK	Vertical	
4	2353.05	12.80	48.38	35.58	54.00	5.62	AV	Vertical	
5	2390.00	23.15	58.99	35.84	74.00	15.01	PK	Vertical	
6	2390.00	12.34	48.18	35.84	54.00	5.82	AV	Vertical	

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

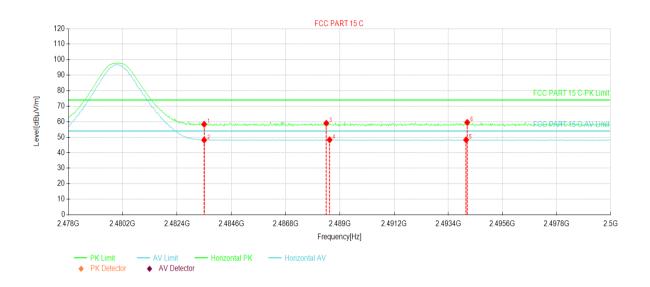
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Delerity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2329.74	24.06	59.47	35.41	74.00	14.53	PK	Horizontal	
2	2329.74	12.94	48.35	35.41	54.00	5.65	AV	Horizontal	
3	2355.21	23.79	59.38	35.59	74.00	14.62	PK	Horizontal	
4	2355.77	12.88	48.48	35.60	54.00	5.52	AV	Horizontal	
5	2390.00	22.31	58.15	35.84	74.00	15.85	PK	Horizontal	
6	2390.00	12.46	48.30	35.84	54.00	5.70	AV	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

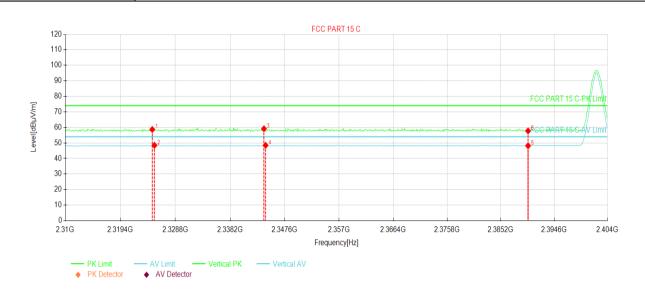
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	_	



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.64	58.36	35.72	74.00	15.64	PK	Vertical
2	2483.50	12.48	48.20	35.72	54.00	5.80	AV	Vertical
3	2489.55	12.64	48.34	35.70	54.00	5.66	AV	Vertical
4	2489.57	23.17	58.87	35.70	74.00	15.13	PK	Vertical
5	2496.61	12.57	48.26	35.69	54.00	5.74	AV	Vertical
6	2496.63	23.89	59.58	35.69	74.00	14.42	PK	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

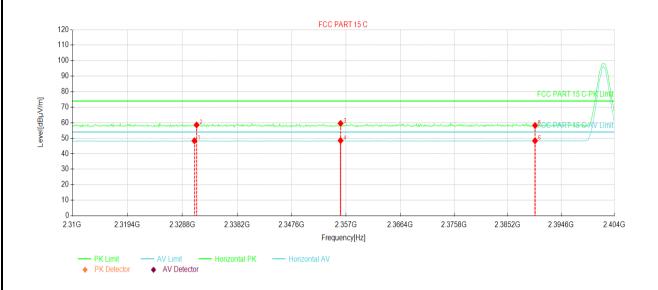
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.61	58.33	35.72	74.00	15.67	PK	Horizontal
2	2483.50	12.46	48.18	35.72	54.00	5.82	AV	Horizontal
3	2488.45	23.29	59.00	35.71	74.00	15.00	PK	Horizontal
4	2488.58	12.63	48.34	35.71	54.00	5.66	AV	Horizontal
5	2494.12	12.60	48.29	35.69	54.00	5.71	AV	Horizontal
6	2494.17	23.86	59.55	35.69	74.00	14.45	PK	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

π/4-DQPSK mode

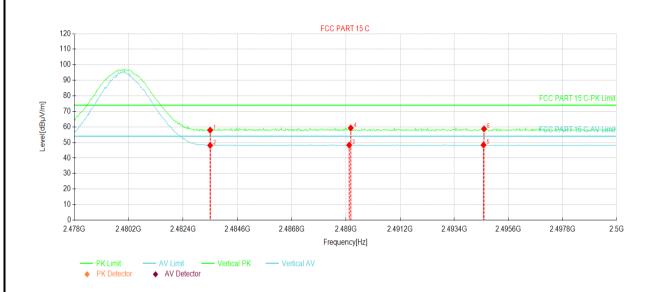
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2324.85	23.28	58.66	35.38	74.00	15.34	PK	Vertical
2	2325.22	13.10	48.48	35.38	54.00	5.52	AV	Vertical
3	2344.02	23.63	59.14	35.51	74.00	14.86	PK	Vertical
4	2344.31	12.97	48.48	35.51	54.00	5.52	AV	Vertical
5	2390.00	12.35	48.19	35.84	54.00	5.81	AV	Vertical
6	2390.00	21.91	57.75	35.84	74.00	16.25	PK	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

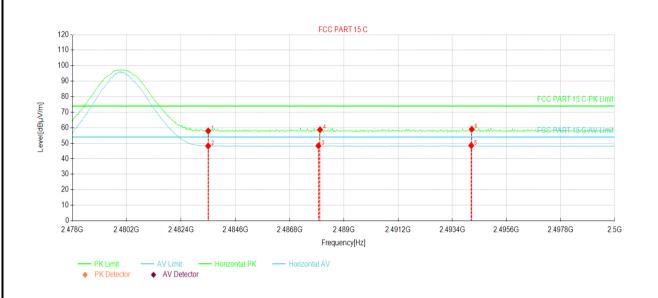
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2330.86	12.94	48.36	35.42	54.00	5.64	AV	Horizontal
2	2331.24	23.15	58.57	35.42	74.00	15.43	PK	Horizontal
3	2356.06	23.94	59.54	35.60	74.00	14.46	PK	Horizontal
4	2356.06	12.91	48.51	35.60	54.00	5.49	AV	Horizontal
5	2390.00	22.35	58.19	35.84	74.00	15.81	PK	Horizontal
6	2390.00	12.48	48.32	35.84	54.00	5.68	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

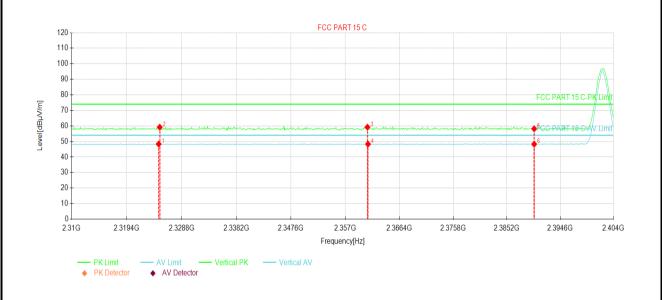
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.20	57.92	35.72	74.00	16.08	PK	Vertical
2	2483.50	12.42	48.14	35.72	54.00	5.86	AV	Vertical
3	2489.13	12.59	48.29	35.70	54.00	5.71	AV	Vertical
4	2489.19	23.62	59.32	35.70	74.00	14.68	PK	Vertical
5	2494.58	12.71	48.40	35.69	54.00	5.60	AV	Vertical
6	2494.61	23.06	58.75	35.69	74.00	15.25	PK	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

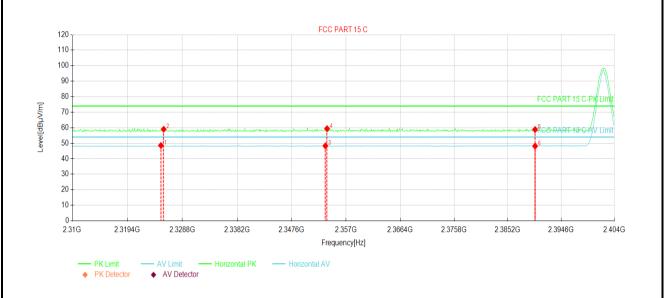
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delesitu	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2483.50	22.21	57.93	35.72	74.00	16.07	PK	Horizontal	
2	2483.50	12.50	48.22	35.72	54.00	5.78	AV	Horizontal	
3	2487.96	12.64	48.35	35.71	54.00	5.65	AV	Horizontal	
4	2488.03	22.99	58.70	35.71	74.00	15.30	PK	Horizontal	
5	2494.17	12.84	48.53	35.69	54.00	5.47	AV	Horizontal	
6	2494.19	23.33	59.02	35.69	74.00	14.98	PK	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

8DPSK mode

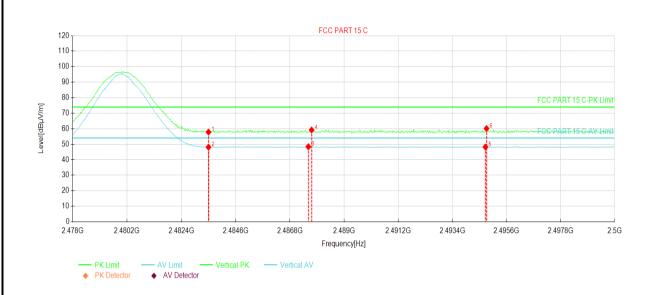
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2324.85	12.96	48.34	35.38	54.00	5.66	AV	Vertical
2	2325.04	23.80	59.18	35.38	74.00	14.82	PK	Vertical
3	2360.85	23.59	59.22	35.63	74.00	14.78	PK	Vertical
4	2360.94	12.68	48.31	35.63	54.00	5.69	AV	Vertical
5	2390.00	22.33	58.17	35.84	74.00	15.83	PK	Vertical
6	2390.00	12.42	48.26	35.84	54.00	5.74	AV	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

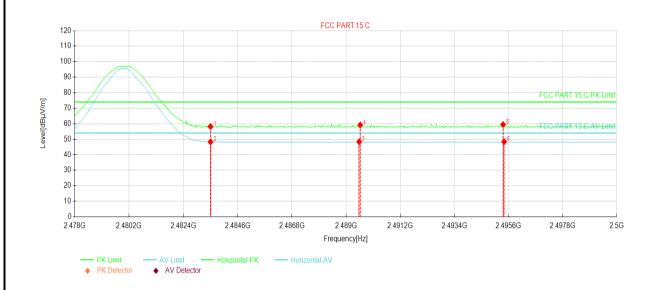
Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Т	Polarity		
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace			
1	2325.13	13.15	48.53	35.38	54.00	5.47	AV	Horizontal		
2	2325.60	23.63	59.01	35.38	74.00	14.99	PK	Horizontal		
3	2353.42	12.72	48.30	35.58	54.00	5.70	AV	Horizontal		
4	2353.71	23.83	59.41	35.58	74.00	14.59	PK	Horizontal		
5	2390.00	22.98	58.82	35.84	74.00	15.18	PK	Horizontal		
6	2390.00	12.32	48.16	35.84	54.00	5.84	AV	Horizontal		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

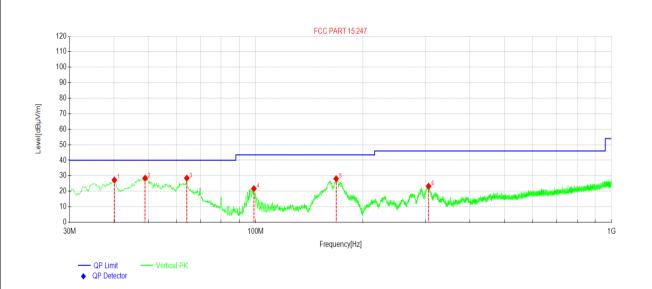


Suspected Data List									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]			
1	2483.50	22.13	57.85	35.72	74.00	16.15	PK	Vertical	
2	2483.50	12.38	48.10	35.72	54.00	5.90	AV	Vertical	
3	2487.54	12.67	48.38	35.71	54.00	5.62	AV	Vertical	
4	2487.68	23.47	59.18	35.71	74.00	14.82	PK	Vertical	
5	2494.74	12.54	48.23	35.69	54.00	5.77	AV	Vertical	
6	2494.78	24.43	60.12	35.69	74.00	13.88	PK	Vertical	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

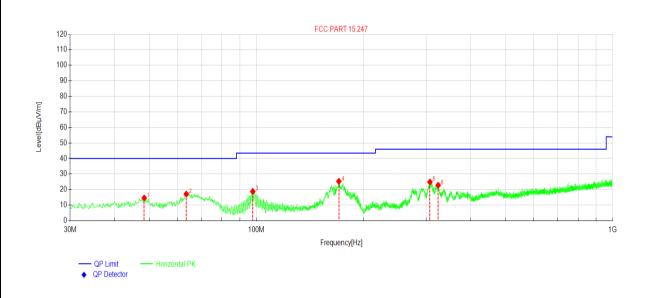
Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	rrace		
1	2483.50	22.43	58.15	35.72	74.00	15.85	PK	Horizontal	
2	2483.50	12.54	48.26	35.72	54.00	5.74	AV	Horizontal	
3	2489.52	12.65	48.35	35.70	54.00	5.65	AV	Horizontal	
4	2489.57	23.51	59.21	35.70	74.00	14.79	PK	Horizontal	
5	2495.38	23.76	59.45	35.69	74.00	14.55	PK	Horizontal	
6	2495.42	12.72	48.41	35.69	54.00	5.59	AV	Horizontal	


1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List									
NO.	Freq.	Reading[d	Level	Factor	Limit	Margin	Trace	Polarity		
NO.	[MHz]	<u>BμV</u> /m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace			
1	40.0890	40.93	27.27	-13.66	40.00	12.73	PK	Vertical		
2	48.9169	42.24	28.45	-13.79	40.00	11.55	PK	Vertical		
3	64.0504	44.26	28.46	-15.80	40.00	11.54	PK	Vertical		
4	98.8769	39.08	21.72	-17.36	43.50	21.78	PK	Vertical		
5	168.335	42.09	28.10	-13.99	43.50	15.40	PK	Vertical		
6	306.186	36.49	23.27	-13.22	46.00	22.73	PK	Vertical		

Remark

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X663D
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List									
NO.	Freq.	Freq. Reading[d Le	Level	Factor	Limit	Margin	Trace	Polarity		
NO.	[MHz]	BµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]				
1	48.4318	28.38	14.59	-13.79	40.00	25.41	PK	Horizontal		
2	63.5654	32.83	17.13	-15.70	40.00	22.87	PK	Horizontal		
3	97.7128	36.36	18.81	-17.55	43.50	24.69	PK	Horizontal		
4	170.470	39.50	25.31	-14.19	43.50	18.19	PK	Horizontal		
5	307.156	38.07	24.87	-13.20	46.00	21.13	PK	Horizontal		
6	324.036	35.54	22.81	-12.73	46.00	23.19	PK	Horizontal		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz:

			hannel: Lowest cl			
		D	etector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	57.83	-9.60	48.23	74.00	25.77	Vertical
4804.00	57.84	-9.60	48.24	74.00	25.76	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	52.21	-9.60	42.61	54.00	11.39	Vertical
4804.00	50.68	-9.60	41.08	54.00	12.92	Horizontal
		. .				
			channel: Middle ch			
	December 201	l	etector: Peak Val		Manain	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	57.84	-9.05	48.79	74.00	25.21	Vertical
4882.00	58.30	-9.05	49.25	74.00	24.75	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	52.60	-9.05	43.55	54.00	10.45	Vertical
4882.00	50.48	-9.05	41.43	54.00	12.57	Horizontal
			hannel: Highest c			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4960.00	58.05	-8.45	49.60	74.00	24.40	Vertical
4960.00	58.60	-8.45	50.15	74.00	23.85	Horizontal
		Det	ector: Average Va	alue		
Frequency	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
(MHz)	·	-8.45	44.41	54.00	9.59	Vertical
(MHz) 4960.00	52.86	-0.43				

-----End of report-----