

Test Data

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Duty Factor	Total Power	Limit	Verdict
		(MHz)		(dBm)	(dB)	(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	-2.982	0	-2.982	30	Pass
NVNT	BLE	2442	Ant1	-2.812	0	-2.812	30	Pass
NVNT	BLE	2480	Ant1	-4.421	0	-4.421	30	Pass

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2203044 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 2 of 19

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant1	0.657	0.5	Pass
NVNT	BLE	2442	Ant1	0.686	0.5	Pass
NVNT	BLE	2480	Ant1	0.661	0.5	Pass

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2203044 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 5 of 19

Occupi				• +	-							
R R	SIGHT ⊶⊷	Input: Rf Coupling Align: Au	J: DC	Input Z: 5 Corr CCo Freq Ref:	orr	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:				
1 Grapt	ı		•				Ref Lvl Offset 2	.81 dB		Mk	r3 2.48032	27000 GHz
	Div 10.0	dB					Ref Value 22.81				-*	10.39 dBm
Log 12.8												
2.81						2^{2}			3			
-7.19												
-17.2 - -27.2 -												
-37.2			North Contraction of the Contrac								· · · · · · · · · · · · · · · · · · ·	
-47.2												
-57.2 -67.2												
	2.48000 W 100.0						#Video BW 300	00 kHz			Sween 1 33 r	Span 2 MHz ns (10001 pts)
2 Metric			•								encep neer	
	.5											
		Occu	upied Band									
				1.0557					Total Power		1.80 dBm	
			smit Freq Bandwidtl			-3.206 kHz 660.7 kHz			% of OBW Power x dB		99.00 % -6.00 dB	
		x aB	Danuwidti			000.7 KHZ			X UD		-0.00 aB	
	5]?	Mar 11, 8:04:3	2022 2 PM							

Occupied Channel Bandwidth

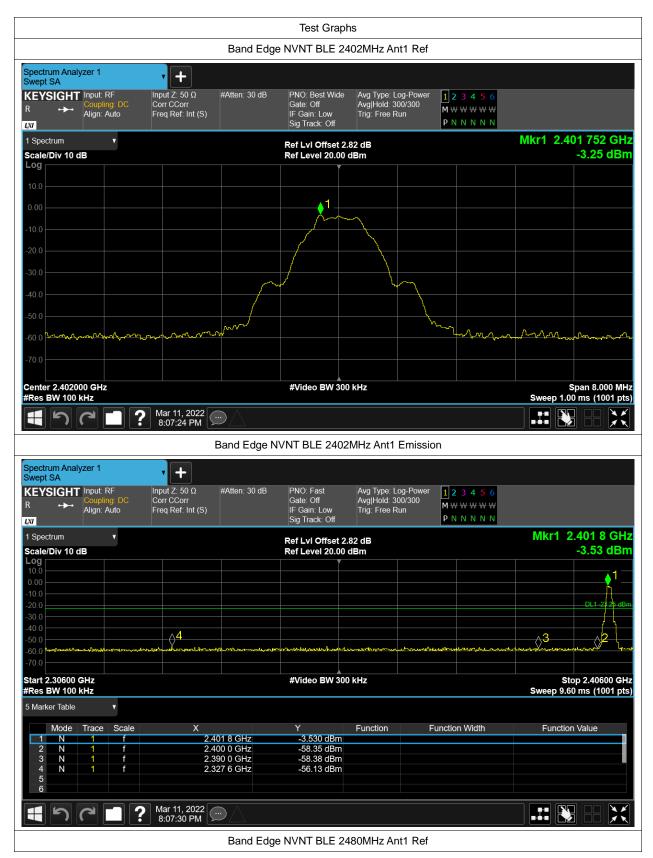
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.028583035
NVNT	BLE	2442	Ant1	1.022579589
NVNT	BLE	2480	Ant1	1.030133879

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2203044 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 8 of 19

Occu	trum Analy pied BW			• +										
KEY R	/SIGHT ↔	Input: I Couplii Align: <i>I</i>	ng: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten	: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Avg	er Freq: Hold: 10 b Std: N		100 GI	Hz		
1 Gra			•				Ref LvI Offset							
	e/Div 10.0	dB					Ref Value 22.8	31 dBm						
Log 12.8											1			
2.81														
-7.19							A							
-17.2						2 month		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	man A				
-27.2					and the					V		<u>^</u>		
-37.2			~~	man of								- m	\sim	
-47.2			And a									hunne	- marine	
-57.2		~~~												man
-67.2											l			
	er 2.48000						#Video BW 10	0.00 kHz						Span 3 MHz
#Res	BW 30.00)0 kHz											Sweep 3.33	ms (10001 pts)
2 Me	trics		v											
		Oc	cupied Band											
				1.0301 MHz						Total Powe	er		2.14 dBm	
		Tra	ansmit Freq	Error	-5.715	i kHz				% of OBW	/ Po <u>w</u>	ver	99.00 %	
			B Bandwidtl		1.281	MHz				x dB			-26.00 dB	
	5	2	2	Mar 11, 2022 8:04:23 PM										


Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-9.445	8	Pass
NVNT	BLE	2442	Ant1	-9.247	8	Pass
NVNT	BLE	2480	Ant1	-10.883	8	Pass



Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Antenna Max Value (dBc)		Verdict
NVNT	BLE	2402	Ant1	-52.88	-20	Pass
NVNT	BLE	2480	Ant1	-51.71	-20	Pass

Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-46.53	-20	Pass
NVNT	BLE	2442	Ant1	-47.4	-20	Pass
NVNT	BLE	2480	Ant1	-44.42	-20	Pass

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2203044 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 17 of 19

