

FCC SAR Measurement and Test Report

For

INFINIX MOBILITY LIMITED

ROOM 604 6/F SOUTH TOWER WORLD FINANCE CTR HARBOUR

CITY 17 CANTON ROAD TST KL, Hong Kong

FCC ID: 2AIZN-X655C

FCC Part 2.1093

ANSI / IEEE C95.1 :2005+A1:2010

ANSI / IEEE C95.3 : 2002(R2008)

Test Standards: <u>IEEE 1528 :2013</u>

Product Description: Mobile Phone

Tested Model: X655C

Report No.: <u>WTS19X12087643W</u>

Sample Received Date: 2019-12-17

Tested Date: <u>2019-12-17 to 2019-12-26</u>

Issued Date: <u>2019-12-27</u>

Tested By: Ruler Liu / Engineer

Reviewed By: Silin Chen / EMC Manager

Approved & Authorized By: <u>Jandy So / PSQ Manager</u>

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. General Information	3
1.1 Product Description for Equipment Under Test (EUT)	
1.2 Test Standards	
1.3 Test Methodology	
1.4 Test Facility	
2. Summary of Test Results	
3. Specific Absorption Rate (SAR)	
3.1 Introduction	
4. SAR Measurement System	
· · · · · · · · · · · · · · · · · · ·	
4.1 The Measurement System	
4.3 Probe Calibration Process	
4.4 Phantom	
4.5 Device Holder	
4.6 Test Equipment List	11
5. Tissue Simulating Liquids	12
5.1 Composition of Tissue Simulating Liquid	
5.2 Tissue Dielectric Parameters for Head and Body Phantoms	
5.3 Tissue Calibration Result	
6. SAR Measurement Evaluation	
6.1 Purpose of System Performance Check	
6.2 System Setup	
7. EUT Testing Position	
7.1 Define Two Imaginary Lines on The Handset	
7.1 Define Two imaginary Lines on The Handset	
7.3 Tilted Position	
7.4 Body Position	
7.5 EUT Antenna Position	
7.6 EUT Testing Position	
8. SAR Measurement Procedures	
8.1 Measurement Procedures	
8.2 Spatial Peak SAR Evaluation	
8.3 Area & Zoom Scan Procedures	
8.5 SAR Averaged Methods	
8.6 Power Drift Monitoring	
9. SAR Test Result	
9.1 Conducted RF Output Power	
9.2 Test Results for Standalone SAR Test	
10. Measurement Uncertainty	28
10.1 Uncertainty for EUT SAR Test	28
10.2 Uncertainty for System Performance Check	
Annex A. Plots of System Performance Check	31
Annex B. Plots of SAR Measurement	39
Annay C. Calibration Cartificate	10

1. General Information

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: INFINIX MOBILITY LIMITED

Address of applicant: ROOM 604 6/F SOUTH TOWER WORLD FINANCE CTR

HARBOUR CITY 17 CANTON ROAD TST KL, Hong Kong

Manufacturer: SHENZHEN TECNO TECHNOLOGY CO.,LTD.

Address of manufacturer: 101, Building 24, Waijing Industrial Park, Fumin Community,

Fucheng Street, Longhua District, Shenzhen City, P.R. China

General Description of El	JT:
Product Name:	Mobile Phone
Brand Name:	Infinix
Model No.:	X655C
Adding Model(s):	/
Rated Voltage:	DC3.85V by Battery
Battery:	4900mAh
Device Category:	Portable Device
	•
Note: The test data is gathered	from a production sample provided by the manufacturer.

Technical Characteristics of EUT:	Technical Characteristics of EUT:				
WIFI(5G)					
Support Standards:	802.11a, 802.11n-HT20/40, 802.11ac-HT20/40/80				
Fraguency Rongo:	U-NII-1: 5150-5250MHz,				
Frequency Range:	U-NII-3: 5725-5850MHz,				
RF Output Power:	20.39dBm (Conducted)				
Type of Modulation:	OFDM				
Type of Antenna:	Integral Antenna				
Antenna Gain:	3.9dBi				
Note: This report only evaluates 5G WIFI	Note: This report only evaluates 5G WIFI SAR				

Report No.: WTS19X12087643W Page 3 of 48 SAR Report

1.2 Test Standards

The following report is prepared on behalf of the INFINIX MOBILITY LIMITED in accordance with FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1-2005, ANSI / IEEE C95.3 :2002, IEEE 1528-2013, KDB 447498 D01 v06, KDB 648474 D04 v01r03, KDB 248227 D01 v02r02, KDB 941225 D01 v03r01, KDB 941225 D05 v02r05 , and KDB 865664 D01 v01r04 and KDB 865664 D02 v01r02.

The objective is to determine compliance with FCC Part 2.1093 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with KDB 865664 D01 v01r04 and KDB 865664 D02 v01r02. The public notice KDB 447498 D01 v06 for Mobile and Portable Devices RF Exposure Procedure also.

1.4 Test Facility

Address of the test laboratory

Laboratory: Shenzhen SEM Test Technology Co., Ltd.

Address: 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. The Designation Number is CN5010. Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

2. Summary of Test Results

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Engayonay Dand	Head SAR	Body (10mm Gap)	SAR _{1g} Limit	
Frequency Band	Maximum SAR _{1g} (W/kg)	Maximum SAR _{1g} (W/kg)	(W/kg)	
WLAN 5.2G	0.38	0.24	1.6	
WLAN 5.8G	0.28	0.11	1.6	

Remark:

The highest reported SAR values for head and body transmission conditions are 0.62W/kg and 0.20W/k respectively.

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2.1093 and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2013 and KDB 865664 D01 v01r04 and KDB 865664 D02 v01r02

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δ T is the temperature rise and δ t is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement System

4.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2 Probe

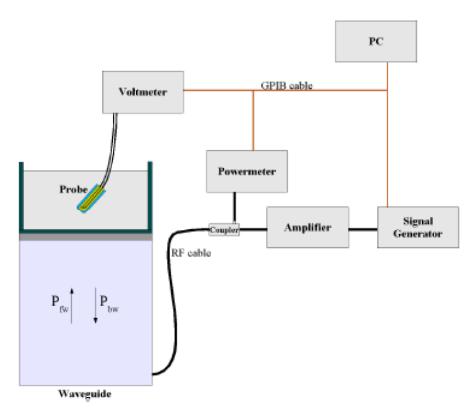
For the measurements the Specific Dosimetric E-Field Probe SSE5 SN 09/13 EP168 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Probe Length: 330 mm

Length of Individual Dipoles: 4.5 mmMaximum external diameter: 8 mmProbe Tip External Diameter: 5 mm

- Distance between dipoles / probe extremity: 2.7mm


TEST Model: X655C

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB

- Calibration range: 700 to 3000MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta}\cos^2\left(\pi\frac{y}{a}\right)e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

TEST Model: X655C

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N)) (N=1,2,3)$$

where DCP is the diode compression point in mV.

4.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

SAR =
$$C\frac{\Delta T}{\Delta t}$$
 $\Delta t = \text{exposure time (30 seconds)},$ $C = \text{heat capacity of tissue (brain or muscle)},$ $\Delta T = \text{temperature increase due to RF exposure}.$

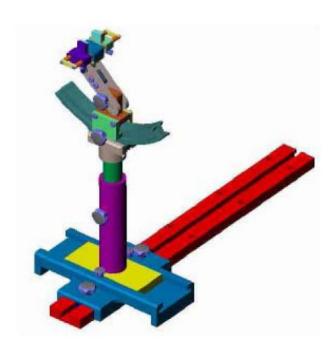
SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Report No.: WTS19X12087643W Page 9 of 48 SAR Report

$$SAR = \frac{\left| \mathbf{E} \right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma = \text{simulated tissue conductivity},$


 ρ = Tissue density (1.25 g/cm³ for brain tissue)

4.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

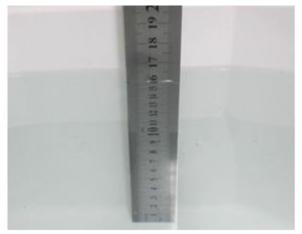
4.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

Report No.: WTS19X12087643W Page 10 of 48 SAR Report

4.6 Test Equipment List


Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
E-Field Probe	MVG	SSE2	SN 45/15 EPGO280	2019-07-08	2020-07-07
5 GHz Waveguide	MVG	SWG5500	SN 49/16 WGA45	2019-07-15	2020-07-14
Dielectric Probe Kit	MVG	SCLMP	SN 47/12 OCPG49	2019-03-16	2020-03-15
SAM Phantom	MVG	SAM	SN/ 47/12 SAM95	N/A	N/A
MULTIMETER	KEITHLEY	Keithley 2000	4006367	2019-04-30	2020-04-29
Signal Generator	Rohde & Schwarz	SMR20	100047	2019-04-30	2020-04-29
Universal Tester	Rohde & Schwarz	CMU200	112012	2019-04-30	2020-04-29
Communications Test er	Rohde & Schwarz	CMW500	148650	2019-04-30	2020-04-29
Network Analyzer	НР	8753C	2901A00831	2019-04-30	2020-04-29
Directional Couplers	Agilent	778D	20160	2019-04-30	2020-04-29

5. Tissue Simulating Liquids

5.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Head SAR
The Composition of Tissue Simulating Liquid

Liquid Height for Body SAR

Frequency	Water	Hexyl Carbitol	Triton X-100				
(MHz)	(%)	(%)	(%)				
	Head						
5000-6000	65.52	17.24	17.24				
	Body						
5000-6000	78.6	10.7	10.7				

5.2 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

m 4 F	Не	ead	Во	ody
Target Frequency (MHz)	Conductivity	Permittivity	Conductivity	Permittivity
(IVITIZ)	(σ)	(E _r)	(σ)	(E r)
150	0.76	52.3	0.80	61.9
300	0.87	45.3	0.92	58.2
450	0.87	43.5	0.94	56.7
750	0.89	41.9	0.96	55.5
835	0.90	41.5	0.97	55.2
900	0.97	41.5	1.05	55.0
915	0.98	41.5	1.06	55.0
1450	1.20	40.5	1.30	54.0
1610	1.29	40.3	1.40	53.8
1750	1.37	40.1	1.49	53.4
1800-2000	1.40	40.0	1.52	53.3
2450	1.80	39.2	1.95	52.7
3000	2.40	38.5	2.73	52.0
5200	4.66	36.0	5.30	49.0
5800	5.27	35.3	6.00	48.2

5.3 Tissue Calibration Result

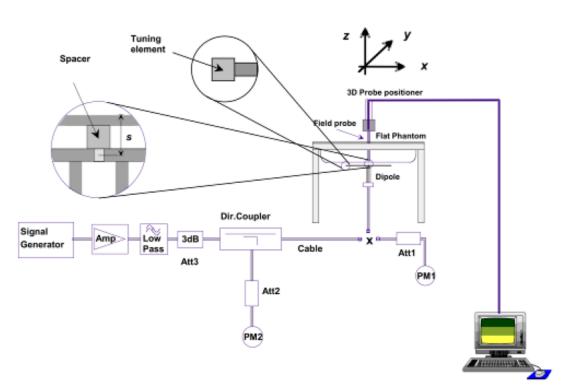
The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and an Agilent Network Analyzer.

Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

Head Tissue Simulating Liquid										
E-ma a	TD.	Conductivity Permittivity					Conductivity		T ::4	
Freq. MHz.	Temp. (℃)	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date	
	(0)	(σ)	(σ)	(%)	$(\mathcal{E} \mathbf{r})$	$(\mathcal{E}\mathbf{r})$	(%)	(70)		
5200	21.3	4.87	4.66	4.51	35.6	36.0	-1.11	±5	2019-12-19	
5800	21.3	5.17	5.27	-1.90	35.6	35.3	0.85	±5	2019-12-19	

Body Tissue Simulating Liquid									
Emag	Tomp	Conductivity Permittivity					Limit		
Freq. MHz.	Temp.	Reading	Target	Delta	Reading	Target	Delta	(%)	Date
		(σ)	(σ)	(%)	(<i>E</i> r)	$(\mathcal{E}\mathbf{r})$	(%)		
5200	21.3	5.16	5.30	-2.64	48.50	49.0	-1.02	±5	2019-12-19
5800	21.3	5.76	6.00	-4.00	48.50	48.2	0.62	±5	2019-12-19

Report No.: WTS19X12087643W Page 14 of 48 SAR Report


6. SAR Measurement Evaluation

6.1 Purpose of System Performance Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

6.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835MHz ,1800MHz, 1900MHz 2450MHz,2600MHz,and 5GHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

System Verification Setup Block Diagram

Setup Photo of Dipole Antenna

The output power on dipole port must be calibrated to 24 dBm(250 mW) before dipole is connected. The output power on 5 GHz Waveguide must be calibrated to 20 dBm (100mW) before 5 GHz Waveguide is connected.

6.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. Table 6.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Engguenav	Liquid	Power	Targeted	Measured	Normalized	Tolerance
Frequency		(mw)	SAR1g	SAR1g	SAR1g	Tolerance
5200	Head	100	161.23	16.946	169.46	5.10
5200	Body	100	154.45	16.681	166.81	8.00
5800	Head	100	179.32	17.191	171.91	-4.13
5800	Body	100	170.71	16.980	169.8	-0.53

Remark: Referring to IEEE 1528-2013, Section 8.2, The system check shall be performed at a test frequency that is within $\pm 10\%$ or ± 100 MHz of the compliance test mid-band frequency, so the 1750 MHz system verification is made of 1800MHz Dipole.

Targeted and Measurement SAR

Please refer to Annex A for the plots of system performance check.

7. EUT Testing Position

7.1 Define Two Imaginary Lines on The Handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

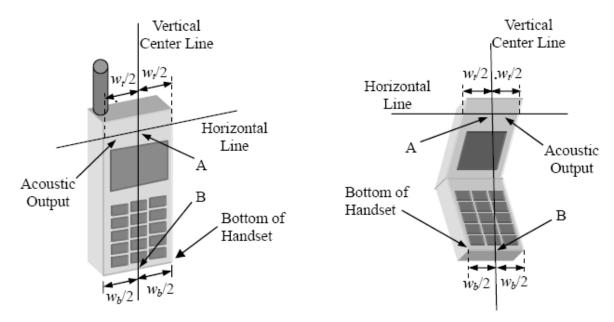
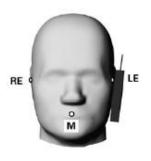
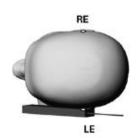



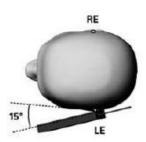
Illustration for Handset Vertical and Horizontal Reference Lines



7.2 Cheek Position

(a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 7.2).




Illustration for Cheek Position

7.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 7.3).

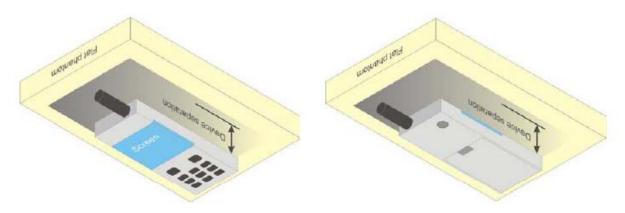
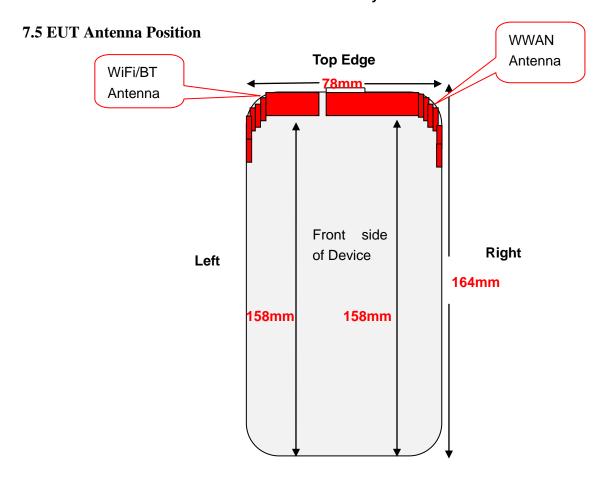


Illustration for Tilted Position



7.4 Body Position

- (a) To position the device parallel to the phantom surface with each side.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 10mm.

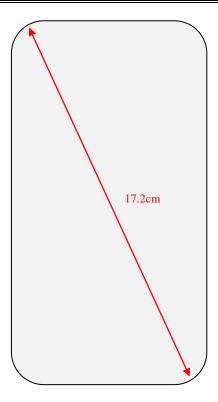


Illustration for Body Position

Bottom Edge

Block Diagram for EUT Antenna Position

7.6 EUT Testing Position

Head/Body mode SAR assessments are required for this device. This EUT was tested in different positions for different SAR test modes, more information as below:

Head SAR tests						
Antennas Right Cheek Left Cheek Right Tilted Left Tilted						
WLAN	Yes	Yes	Yes	Yes		

	Body SAR tests, Test distance: 10mm										
Antennas	Antennas Front Back Right Side Left Side Top Side Bottom Side										
WLAN											

Remark:

1. Referring to KDB 447498 D01 v06, the test separation distances is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

Please refer to Annex D for the EUT test setup photos.

Report No.: WTS19X12087643W Page 21 of 48 SAR Report

8. SAR Measurement Procedures

8.1 Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Annex D demonstrates.
- (e) Set scan area, grid size and other setting on the SATIMO software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

8.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

9. SAR Test Result

9.1 Conducted RF Output Power

	WLAN(5	.2G) - Maximum Avei	rage Power	
Test Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-up power (dBm)
	36	5180	20.03	20.5
802.11a	40	5200	19.23	20.5
	48	5240	20.39	20.5
	36	5180	19.40	20.5
802.11n (20M)	40	5200	19.94	20.5
	48	5240	20.09	20.5
000 14 (10) 5	38	5190	19.80	20.0
802.11n (40M)	46	5230	19.52	20.0
	36	5180	19.68	20.0
802.11ac (20MHz)	40	5200	19.20	20.0
	48	5240	19.54	20.0
	38	5190	19.29	19.5
802.11ac (40MHz)	46	5230	19.34	19.5
802.11ac (80MHz)	42	5210	19.61	20.0

	WLAN(5	5.8G) - Maximum Avera	age Power	
Test Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-up power (dBm)
	149	5745	17.25	17.5
802.11a	157	5785	16.99	17.5
	165	5825	17.41	17.5
	149	5745	17.01	17.5
802.11n (20M)	157	5785	17.16	17.5
	165	5825	17.41	17.5
000 11 (10) 5	151	5755	16.76	17.0
802.11n (40M)	159	5795	16.90	17.0
	149	5745	16.91	17.5
802.11ac (20MHz)	157	5785	16.84	17.5
	165	5825	17.35	17.5

	151	5755	16.65	17.0
802.11ac (40MHz)	159	5795	16.85	17.0
802.11ac (80MHz)	CH155	5775	16.90	17.0

Remark:

- 1. Per KDB 248227 D01 v02r02, For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.
- 2. Per KDB 248227 D01 v02r02, For 802.11b DSSS SAR measurements ,when the reported SAR of the highest measured maximum output power channel (see 3.1) for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 3 .For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2W/kg.
- 4. Per KDB 248227 D01 v02r02, When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined by applying the following steps sequentially.
- 1) The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same specified maximum output power.
- 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

Report No.: WTS19X12087643W Page 25 of 48 SAR Report

9.2 Test Results for Standalone SAR Test

Head SAR

	WLAN 5.2GHz – Head SAR Test												
Plot		Test	Freq	uency	Output Rated		Scaling	SAR1g	Scaled				
No.	Mode	Position	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Head	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Ng)	(W/kg)				
1.	802.11a	Right Cheek	48	5240	20.39	20.5	1.026	0.140	0.14				
2.	802.11a	Right Tilted	48	5240	20.39	20.5	1.026	0.078	0.08				
3.	802.11a	Left Cheek	48	5240	20.39	20.5	1.026	0.366	0.38				
4.	802.11a	Left Tilted	48	5240	20.39	20.5	1.026	0.179	0.18				

	WLAN 5.8GHz – Head SAR Test											
Plot		Test	Frequ	uency Output		Rated	Scaling	SAR1g	Scaled			
No.	Mode	Position	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g			
140.		Head	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
5.	802.11a	Right Cheek	165	5825	17.41	17.5	1.021	0.269	0.28			
6.	802.11a	Right Tilted	165	5825	17.41	17.5	1.021	0.142	0.15			
7.	802.11a	Left Cheek	165	5825	17.41	17.5	1.021	0.272	0.28			
8.	802.11a	Left Tilted	165	5825	17.41	17.5	1.021	0.151	0.15			

Remark: Per KDB 447498 D01 v06, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.

Report No.: WTS19X12087643W Page 26 of 48 SAR Report

Body SAR

	WLAN 5.2GHz –Body SAR Test (Gap: 10mm)											
Plot		Test	Frequency		Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode	Position	CH. MHz		Power	Limit	Factor	(W/kg)	SAR1g			
110.		Body	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
9.	802.11a	Back Side	48	5240	20.39	20.5	1.026	0.148	0.15			
10.	802.11a	Front Side	48	5240	20.39	20.5	1.026	0.081	0.08			

	WLAN 5.8GHz –Body SAR Test											
Plot		Test	Frequency		Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode Position		СН.	CH. MHz		Power Limit		(W/kg)	SAR1g			
140.		Body	Cn.	MITIZ	(dBm)	(dBm)	Factor	(W/Kg)	(W/kg)			
11.	802.11a	Back Side	165	5825	17.41	17.5	1.021	0.043	0.04			
12.	802.11a	Front Side	165	5825	17.41	17.5	1.021	0.088	0.09			

Hot-spot SAR

	WLAN 5.2GHz –Body SAR Test (Gap: 10mm)													
Plot		Test	Frequ	uency	Output	Scaling	SAR1g	Scaled						
No.	Mode	Position	CH.	МНа	Power	Limit	Factor	(W/kg)	SAR1g					
140.		Body	CII.	CH. MHz		(dBm)	ractor	(W/Kg)	(W/kg)					
13.	802.11a	Back Side	48	5240	20.39	20.5	1.026	0.148	0.15					
14.	802.11a	Front Side	48	5240	20.39	20.5	1.026	0.081	0.08					
15.	802.11a	Top side	48	5240	20.39	20.5	1.026	0.233	0.24					
16.	802.11a	Left side	48	5240	20.39	20.5	1.026	0.122	0.13					

	WLAN 5.8GHz –Body SAR Test												
Plot		Test	Frequ	uency	Output Rated		Scaling	SAR1g	Scaled				
No.	Mode	Position	CH.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Body	CII.	WIIIZ	(dBm)	(dBm)	Tactor	(/ / / K g)	(W/kg)				
17.	802.11a	Back Side	165	5825	17.41	17.5	1.021	0.043	0.04				
18.	802.11a	Front Side	165	5825	17.41	17.5	1.021	0.088	0.09				
19.	802.11a	Top side	165	5825	17.41	17.5	1.021	0.107	0.11				
20.	802.11a	Left side	165	5825	17.41	17.5	1.021	0.065	0.07				

Remark:

- **1.**Per KDB 447498 D01 v06, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.
- 2.According to KDB 648474-D04 Handset SAR v01r03 section 1.5, the diagonal dimension of this device is > 16.0 cm, but the hotspot mode 1-g reported SAR is 0.24 W <1.2 W ,so the 10-g extremity SAR is not required.

Report No.: WTS19X12087643W Page 27 of 48 SAR Report

10. Measurement Uncertainty

10.1 Uncertainty for EUT SAR Test

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
		(+- %)	Dist.				(+-%)	(+-%)	
Measurement System									
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	œ
Axial Isotropy	E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	×
Hemispherical Isotropy	E.2.2	4.0	R	√3	(Cp)^1/2	(Cp)^1/2	1.63	1.63	8
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	œ
System detection limits	E.2.5	1.0	R	√3	1	1	0.58	0.58	×
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	œ
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	œ
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	œ
RF ambient Conditions – Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
RF ambient Conditions - Reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	8
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	√3	1	1	1.15	1.15	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5	5.0	R	√3	1	1	2.89	2.89	8
Test Sample Related									
Test sample positioning	E.4.2	0.03	N	1	1	1	0.03	0.03	N-1
Device Holder Uncertainty	E.4.1	5.00	N	1	1	1	5.00	5.00	
Output power Variation - SAR drift measurement	E.2.9	12.02	R	√3	1	1	6.94	6.94	&
SAR scaling	E6.5	0.0	R	√3	1	1	0.0	0.0	œ
Phantom and Tissue Parameters		1	1		1		1		1
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	1	1	0.03	0.03	8
Uncertainty in SAR correction for deviations in permittivity and	E3.2	1.9	R	√3	1	0.84	1.10	0.90	œ
conductivity									

Liquid conductivity - deviation	E.3.2	5.00	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	∞
from target value									
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	∞
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	0.37	R	$\sqrt{3}$	0.6	0.49	0.13	0.10	∞
from target value									
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	8
measurement uncertainty									
Combined Standard Uncertainty			RSS				12.98	12.53	
Expanded Uncertainty			K=2				25.32	24.43	
(95% Confidence interval)									

10.2 Uncertainty for System Performance Check

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
		(+- %)	Dist.				(+-%)	(+-%)	
Measurement System									
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	œ
Axial Isotropy	E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	×
Hemispherical Isotropy	E.2.2	4.0	R	√3	(Cp)^1/2	(Cp)^1/2	1.63	1.63	8
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	~
System detection limits	E.2.5	1.0	R	√3	1	1	0.58	0.58	8
Modulation response	E.2.5	0	R	√3	0	0	0.0	0.0	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	8
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	8
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	8
RF ambient Conditions – Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
RF ambient Conditions - Reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	8
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	√3	1	1	1.15	1.15	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	8
Extrapolation, interpolation and	E.5.2	5.0	R	√3	1	1	2.89	2.89	8

Report No.: WTS19X12087643W Page 29 of 48 SAR Report

						ı	1	
8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	N-1
8,6.6.2	12.02	R	√3	1	1	6.94	6.94	œ
E.6.4	5.5	R	√3	1	1	3.20	3.20	œ
						•		,
E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
E3.2	2.0	R	√3	1	0.84	1.10	1.10	œ
E.3.2	5.00	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	
E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	
E.3.2	0.37	R	√3	0.6	0.49	0.13	0.10	
E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
		RSS				12.00	11.50	
		K=2				23.39	22.43	
	E.3.1 E.3.2 E.3.3 E.3.2	8,6.6.2 12.02 E.6.4 5.5 E.3.1 0.05 E3.2 2.0 E.3.2 5.00 E.3.3 5.00 E.3.2 0.37	8,6.6.2 12.02 R E.6.4 5.5 R E.3.1 0.05 R E3.2 2.0 R E.3.2 5.00 R E.3.3 5.00 N E.3.2 0.37 R E.3.3 10.00 N RSS RSS	8,6.6.2 12.02 R $\sqrt{3}$ E.6.4 5.5 R $\sqrt{3}$ E.3.1 0.05 R $\sqrt{3}$ E3.2 2.0 R $\sqrt{3}$ E.3.2 5.00 R $\sqrt{3}$ E.3.3 5.00 N 1 E.3.2 0.37 R $\sqrt{3}$ E.3.3 10.00 N 1 RSS RSS	8,6.6.2 12.02 R $\sqrt{3}$ 1 E.6.4 5.5 R $\sqrt{3}$ 1 E.3.1 0.05 R $\sqrt{3}$ 1 E3.2 2.0 R $\sqrt{3}$ 1 E.3.2 5.00 R $\sqrt{3}$ 0.64 E.3.3 5.00 N 1 0.64 E.3.2 0.37 R $\sqrt{3}$ 0.6 E.3.3 10.00 N 1 0.6 RSS	8,6.6.2 12.02 R $\sqrt{3}$ 1 1 E.6.4 5.5 R $\sqrt{3}$ 1 1 E.3.1 0.05 R $\sqrt{3}$ 1 1 E3.2 2.0 R $\sqrt{3}$ 1 0.84 E.3.2 5.00 R $\sqrt{3}$ 0.64 0.43 E.3.3 5.00 N 1 0.64 0.43 E.3.2 0.37 R $\sqrt{3}$ 0.6 0.49 E.3.3 10.00 N 1 0.6 0.49 RSS RSS	8,6.6.2 12.02 R $\sqrt{3}$ 1 1 6.94 E.6.4 5.5 R $\sqrt{3}$ 1 1 3.20 E.3.1 0.05 R $\sqrt{3}$ 1 1 0.03 E3.2 2.0 R $\sqrt{3}$ 1 0.84 1.10 E.3.2 5.00 R $\sqrt{3}$ 0.64 0.43 1.85 E.3.3 5.00 N 1 0.64 0.43 3.20 E.3.2 0.37 R $\sqrt{3}$ 0.6 0.49 0.13 E.3.3 10.00 N 1 0.6 0.49 6.00 RSS 12.00	8,6.6.2 12.02 R $\sqrt{3}$ 1 1 6.94 6.94 E.6.4 5.5 R $\sqrt{3}$ 1 1 3.20 3.20 E.3.1 0.05 R $\sqrt{3}$ 1 1 0.03 0.03 E3.2 2.0 R $\sqrt{3}$ 1 0.84 1.10 1.10 E.3.2 5.00 R $\sqrt{3}$ 0.64 0.43 1.85 1.24 E.3.3 5.00 N 1 0.64 0.43 3.20 2.15 E.3.2 0.37 R $\sqrt{3}$ 0.6 0.49 0.13 0.10 E.3.3 10.00 N 1 0.6 0.49 6.00 4.90 RSS 12.00 11.50

Annex A. Plots of System Performance Check

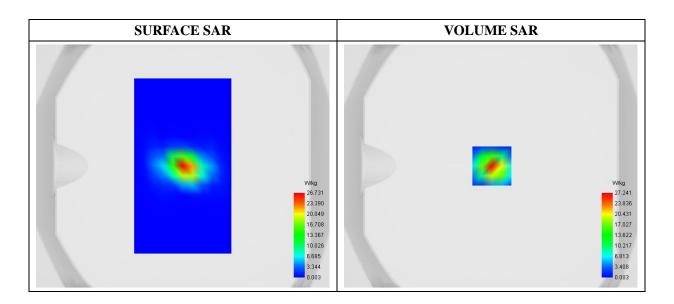
MEASUREMENT 1

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 12/19/2019

Measurement duration: 12 minutes 21 seconds

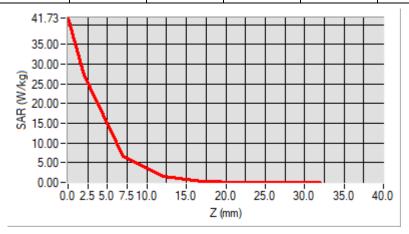

E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF: 2.44; Calibrated: 2019/07/08

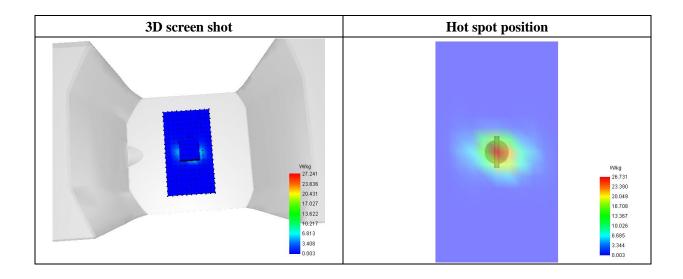
A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW5200		
Signal	CW (Crest factor: 1.0)		

B. SAR Measurement Results

Frequency (MHz)	5200.000000
Relative Permittivity (real part)	35.612911
Conductivity (S/m)	4.871483
Power Variation (%)	0.943213
Ambient Temperature	21.1
Liquid Temperature	21.2





Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	5.310334
SAR 1g (W/Kg)	16.946226

Z (mm)	0.00	2.00	7.00	12.00	17.00	22.00	27.00
SAR (W/Kg)	41.7264	27.2408	6.5746	1.6234	0.3765	0.0793	0.0129

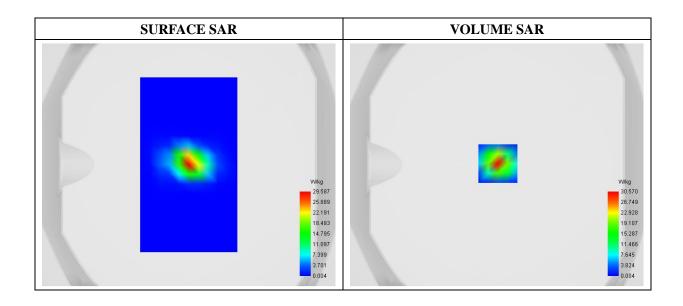
MEASUREMENT 2

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 12/19/2019

Measurement duration: 12 minutes 21 seconds

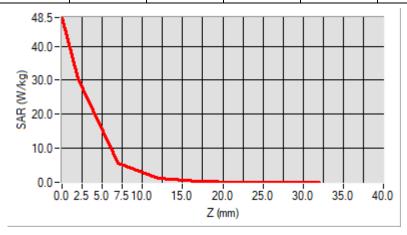

E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF: 2.52; Calibrated: 2019/07/08

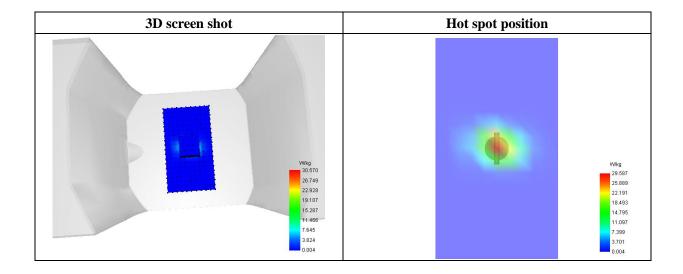
A. Experimental conditions

Area Scan dx=8mm dy=8mm			
Phantom	Validation plane		
Device Position	Dipole		
Band	CW5800		
Signal	CW (Crest factor: 1.0)		

B. SAR Measurement Results

Frequency (MHz)	5800.000000
Relative Permittivity (real part)	35.612911
Conductivity (S/m)	5.171483
Power Variation (%)	0.943782
Ambient Temperature	21.1
Liquid Temperature	21.2





Maximum location: X=1.00, Y=1.00

SAR 10g (W/Kg)	5.879544
SAR 1g (W/Kg)	17.190731

Z (mm)	0.00	2.00	7.00	12.00	17.00	22.00	27.00
SAR (W/Kg)	48.4695	30.5699	5.7100	1.0698	0.1906	0.0364	0.0052

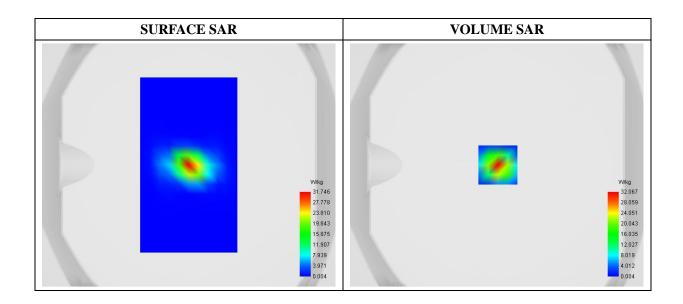
MEASUREMENT 3

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 12/19/2019

Measurement duration: 12 minutes 21 seconds

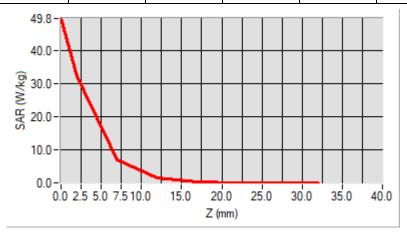

E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF:2.54; Calibrated: 2019/07/08

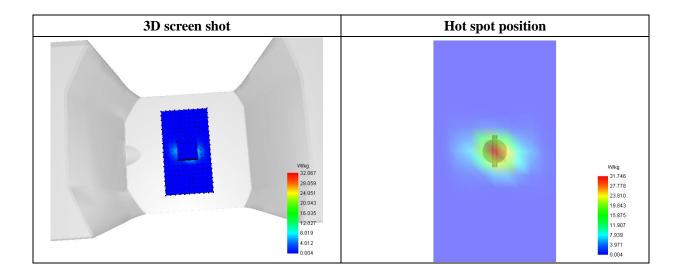
A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW5200		
Signal	Duty Cycle 1:1		

B. SAR Measurement Results

Frequency (MHz)	5200.000000
Relative Permittivity (real part)	48.501241
Conductivity (S/m)	5.160213
Power Variation (%)	0.749201
Ambient Temperature	21.1
Liquid Temperature	21.2





Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	6.047588
SAR 1g (W/Kg)	16.681175

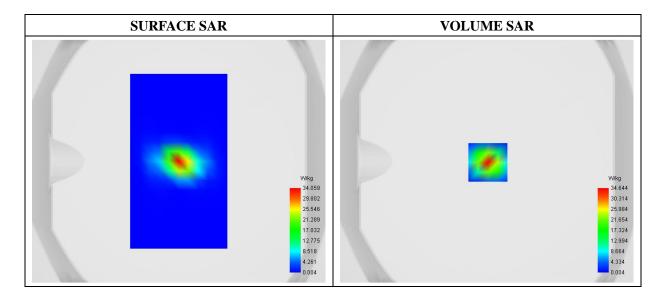
Z (mm)	0.00	2.00	7.00	12.00	17.00	22.00	27.00
SAR (W/Kg)	49.8193	32.0669	7.0244	1.5969	0.3410	0.0635	0.0070

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 12/19/2019

Measurement duration: 12 minutes 21 seconds

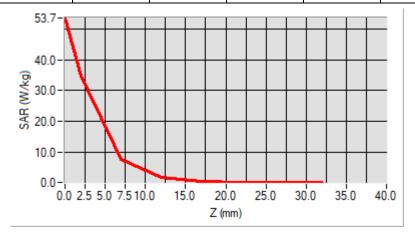

E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF:2.58; Calibrated: 2019/07/08

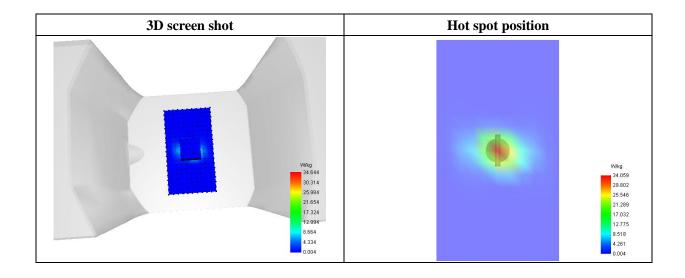
A. Experimental conditions

Area Scan	dx=8mm dy=8mm
Phantom	Validation plane
Device Position	Dipole
Band	CW5800
Signal	Duty Cycle 1:1

B. SAR Measurement Results

Frequency (MHz)	5800.000000
Relative Permittivity (real part)	48.501939
Conductivity (S/m)	5.761487
Power Variation (%)	0.749201
Ambient Temperature	21.1
Liquid Temperature	21.2




Maximum location: X=1.00, Y=-1.00

SAR 10g (W/Kg)	5.534984
SAR 1g (W/Kg)	16.980104

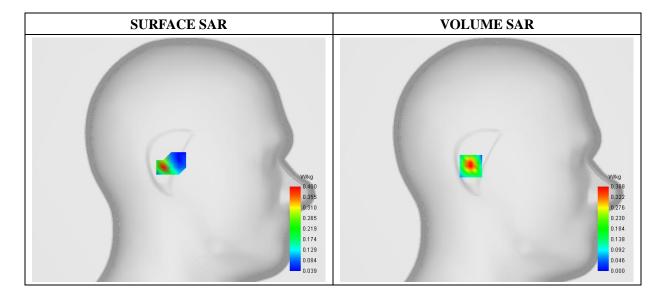
Z (mm)	0.00	2.00	7.00	12.00	17.00	22.00	27.00
SAR (W/Kg)	53.7412	34.6438	7.6928	1.6986	0.3713	0.0871	0.0117

Annex B. Plots of SAR Measurement

TYPE	BAND	<u>PARAMETERS</u>
Phone	WLAN 5.2GHz	Measurement 3: Left Head with Cheek device position on
Filone	_802.11a	High Channel in 802.11a mode
WLAN 5.8GHz Measurement 7: Left Head with Cl		Measurement 7: Left Head with Cheek device position on
Phone	_802.11a	High Channel in 802.11ac mode
Dhono	WLAN 5.2GHz Measurement 15: Flat Plane with Top side device posit	
Phone _802.11a on Low Channel in 802.11a mode		on Low Channel in 802.11a mode
Dhono	WLAN 5.8GHz Measurement 19:Flat Plane with Top side device pos	
Phone802.11a on High Channel in 802.11a mode		on High Channel in 802.11a mode

Remark: SAR plot is showed the highest measured SAR in each exposure configuration, wireless mode and frequency band combination.

Type: Phone measurement (Complete)
Date of measurement: 12/19/2019

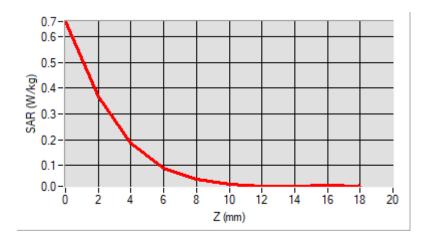

Measurement duration: 12 minutes 3 seconds

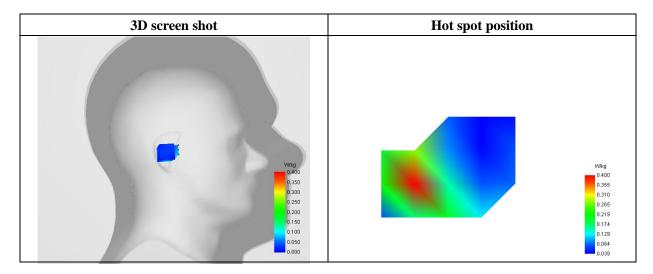
E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF: 2.44; Calibrated: 2019/07/08

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	WiFi(5.2G)_802.11a
Channels	High
Signal	Duty Cycle: 1:1

Frequency (MHz)	5240.000000
Relative Permittivity (real part)	35.612911
Conductivity (S/m)	4.871483
Power Variation (%)	1.083921
Ambient Temperature	21.1
Liquid Temperature	21.2



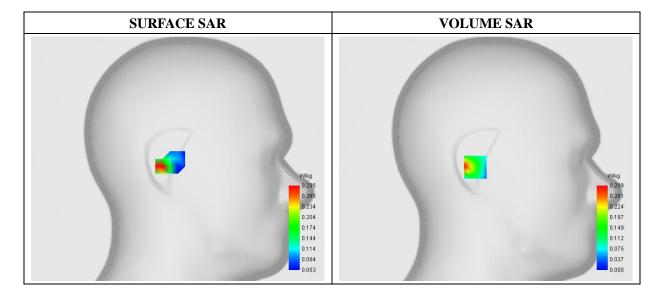


Maximum location: X=17.00, Y=-7.00

SAR 10g (W/Kg)	0.127336
SAR 1g (W/Kg)	0.365956

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	0.6596	0.3681	0.1868	0.0898	0.0448	0.0258	0.0193	0.0195	0.0241

Type: Phone measurement (Complete)
Date of measurement: 12/19/2019

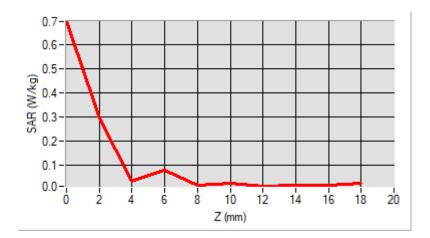

Measurement duration: 12 minutes 3 seconds

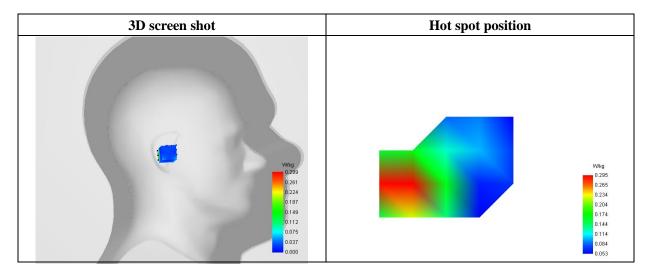
E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF: 2.52; Calibrated: 2019/07/08

A. Experimental conditions

Area Scan sam_direct_droit2_surf8mm				
Phantom	Left head			
Device Position	Cheek			
Band	WiFi(5.8G)_802.11a			
Channels	High			
Signal	Duty Cycle: 1:1			

Frequency (MHz)	5825.000000
Relative Permittivity (real part)	35.612911
Conductivity (S/m)	5.171483
Power Variation (%)	1.083921
Ambient Temperature	21.1
Liquid Temperature	21.2



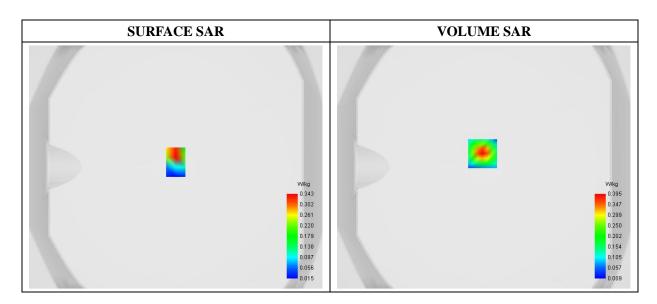


Maximum location: X=11.00, Y=-9.00

SAR 10g (W/Kg)	0.096016
SAR 1g (W/Kg)	0.272489

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	0.6980	0.2988	0.0350	0.0787	0.0164	0.0245	0.0131	0.0177	0.0165

Type: Phone measurement (Complete)
Date of measurement: 12/19/2019

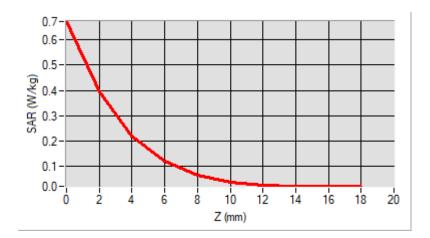

Measurement duration: 12 minutes 3 seconds

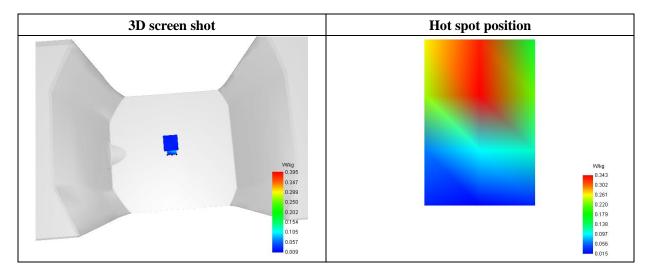
E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF: 2.54; Calibrated: 2019/07/08

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt			
Phantom	Flat Plane			
Device Position	Тор			
Band	WiFi(5.2G)_802.11a			
Channels	High			
Signal	Duty Cycle: 1:1			

Frequency (MHz)	5240.000000		
Relative Permittivity (real part)	48.501241		
Conductivity (S/m)	5.160213		
Power Variation (%)	0.542660		
Ambient Temperature	21.1		
Liquid Temperature	21.2		



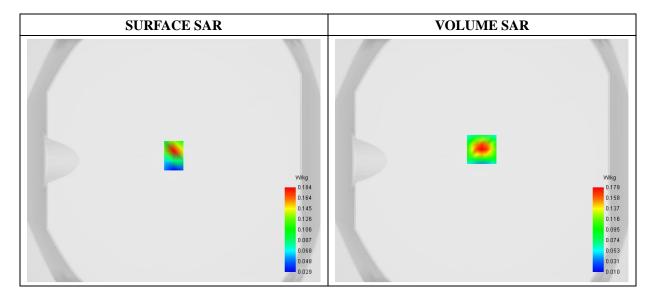


Maximum location: X=-1.00, Y=11.00

SAR 10g (W/Kg)	0.081605
SAR 1g (W/Kg)	0.233317

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	0.6714	0.3954	0.2205	0.1190	0.0660	0.0397	0.0275	0.0228	0.0220

Type: Phone measurement (Complete)
Date of measurement: 12/19/2019

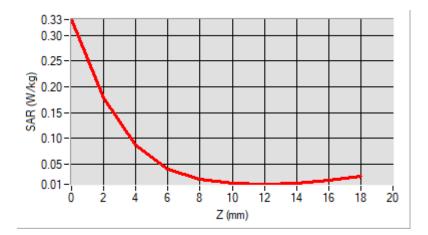

Measurement duration: 12 minutes 3 seconds

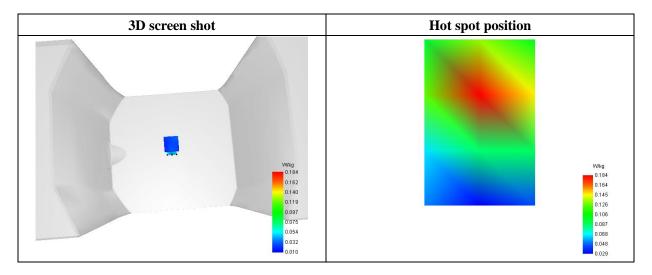
E-field Probe: SSE2 - SN 45/15 EPGO280; ConvF: 2.58; Calibrated: 2019/07/08

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt			
Phantom	Flat Plane			
Device Position	Тор			
Band	WiFi(5.8G)_802.11a			
Channels	High			
Signal	Duty Cycle: 1:1			

Frequency (MHz)	5825.000000		
Relative Permittivity (real part)	48.501939		
Conductivity (S/m)	5.761487		
Power Variation (%)	0.542660		
Ambient Temperature	21.1		
Liquid Temperature	21.2		





Maximum location: X=0.00, Y=9.00

SAR 10g (W/Kg)	0.045975
SAR 1g (W/Kg)	0.107381

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	0.3310	0.1791	0.0878	0.0409	0.0204	0.0126	0.0109	0.0131	0.0184

TEST Model: X655C

Annex C. Calibration Certificate

Please refer to the exhibit for the calibration certificate

***** END OF REPORT *****