

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200468

FCC RF Test Report

(Bluetooth)

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X6512

Trade Mark: Infinix

FCC ID: 2AIZN-X6512

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 21 Mar., 2022

Date of Test: 22 Mar., to 08 Apr., 2022

Date of Report Issued: 11 Apr., 2022

Test Result: PASS

Reviewed by: Date: 11 Apr., 2022

Approved by: ______ Date: _____ 11 Apr., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: JYTSZ-R12-2200468

2 Version

Version No.	Date	Description
00	11 Apr., 2022	Original

3 Contents

		· · · · · · · · · · · · · · · · · · ·	rage
1	Cov	ver Page	1
2	Ver	sion	2
3	Cor	ntents	3
4	Ger	neral Information	4
5	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Client Information General Description of E.U.T. Test Mode and Test Environment Description of Support Units Measurement Uncertainty Additions to, Deviations, or Exclusions From the Method. Laboratory Facility Laboratory Location Test Instruments List asurement Setup and Procedure	4 5 5 5 5
6	5.1 5.2 5.3	Test Channel Test Setup Test Procedure t Results.	7 7 9
	6.1 6.2 6.3 6.4 6.5	Summary	12 13 15

4 General Information

4.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

4.2 General Description of E.U.T.

F.2 General Description of E.O.T.			
Product Name:	Mobile Phone		
Model No.:	X6512		
Operation Frequency:	2402 MHz - 2480 MHz		
Transfer Rate:	1/2/3 Mbits/s		
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology:	FHSS		
Antenna Type:	Internal Antenna		
Antenna Gain:	1.2 dBi (declare by applicant)		
Antenna transmit mode:	SISO (1TX, 1RX)		
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh		
AC Adapter:	Model: U050XSA		
	Input: AC100-240V, 50/60Hz, 0.2A		
	Output: DC 5.0V, 1.0A		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

Report No.: JYTSZ-R12-2200468

4.3 Test Mode and Test Environment

Test Modes:					
Non-hopping mode:	Non-hopping mode: Keep the EUT in continuous transmitting mode.				
Hopping mode:	Keep the EUT in hopping mode.				
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π/4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:					
Temperature: 15° C ~ 35° C					
Humidity: 20 % ~ 75 % RH					
Atmospheric Pressure:	1010 mbar				

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

Nο

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

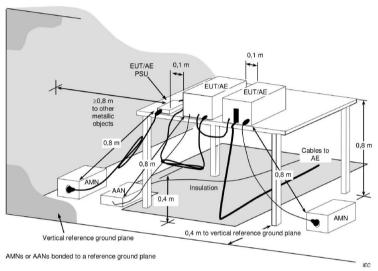
4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA- 180400G45B	WXG001-9	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Dond Doiget Filter Crown	Tanasand	100000 F	W/V IOOO	04-06-2021	04-05-2022	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	04-01-2022	03-31-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN- 8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS- 8M	WXG001-7	02-17-2022	02-16-2023	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	02-17-2022	02-16-2023		
RF Switch	TOP PRECISION	RSU0301	WXG003	02-17-2022	02-16-2023		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022		
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023		
Test Software	AUDIX	E3	Version: 6.110919b				

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022	
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022	
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022	
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	HONG ZHI	CZ-A-80D	WXJ032-3	02-19-2022	02-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		

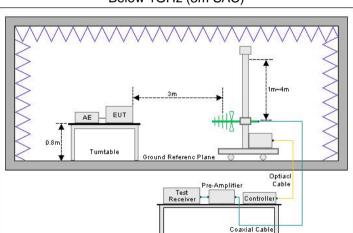
5 Measurement Setup and Procedure

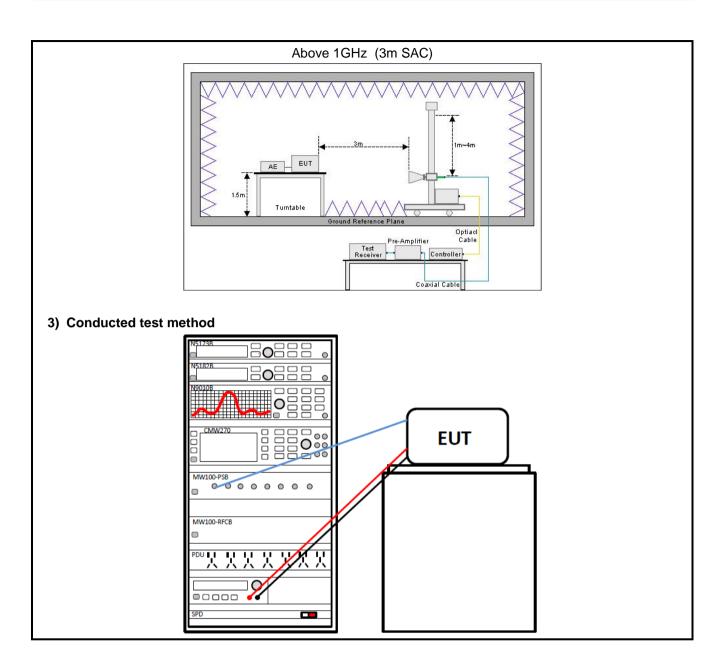

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highe	est channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

5.2 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	 For above 1GHz: The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Output Power	15.247 (b)(1)	Appendix – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix – BT	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BT	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} N/A: Not Applicable.

^{3.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

6.1.2 Test Limit

			nit				
	Frequency Limit (dBµV)						
	(MHz)	Quas	i-Peak	Average			
AC Power Line Conducted	0.15 – 0.5		56 Note 1	56 to 46 Note 1			
Emission	0.5 – 5		56	46			
	5 – 30 Note 1: The limit level in dBμ\ Note 2: The more stringent lim	decreases linearly		50 of frequency.			
Conducted Output Power	For frequency hopping sysemploying at least 75 non-frequency hopping systems	overlapping h	opping chann	els: 1 watt. For all oth	ner		
20dB Occupied Bandwidth	Within authorization band						
· · · · · · · · · · · · · · · · · · ·	a) 0.025MHz or the 20dB lb) 0.025MHz or two-thirds	•	_	•			
Hopping Channel Number	At least 15 channels.		<u> </u>				
Dwell Time	Not be greater than 0.4 sec	conds.					
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth aspectrum or digitally modul frequency power that is produced below that in the 100 kh highest level of the desired radiated measurement, prothe peak conducted power power limits based on the upermitted under paragraph this paragraph shall be 30 limits specified in §15.209(which fall in the restricted by with the radiated emission	ated intention oduced by the duced by the duced by the duced by the power, base ovided the trailimits. If the truse of RMS a (b)(3) of this dB instead of a) is not required ands, as defined as duced by the duced b	nal radiator is intentional rawithin the bard on either and insmitter demoransmitter corveraging over section, the a 20 dB. Attentired. In additioned in §15.20	operating, the radio idiator shall be at least and that contains the RF conducted or a constrates compliance inplies with the conduct a time interval, as a strenuation required upation below the general, radiated emissions (5(a), must also complication to the complex of the contact of the c	with ucted nder eral s		
	Frequency	Limit (d	BμV/m)	Batastan			
	(MHz)	@ 3m	@ 10m	Detector			
	30 – 88	40.0	30.0	Quasi-peak	_		
Emissions in Restricted	88 – 216	43.5	33.5	Quasi-peak	_		
Frequency Bands	216 – 960	46.0	36.0	Quasi-peak	\dashv		
	960 – 1000 54.0 44.0 Quasi-peak						
Emissions in Non-restricted Frequency Bands	cted Note: The more stringent limit applies at transition frequencies. Limit (dBµV/m) @ 3m						
Trequency Darius	Frequency Average Peake						
	Above 1 GHz	54	_	74.0	7		
	Note: The measurement bandy			1	1		

Report No.: JYTSZ-R12-2200468

6.2 Antenna Requirement

Standard requirement: FCC Part

FCC Part 15 C Section 15.203 & 247(b)

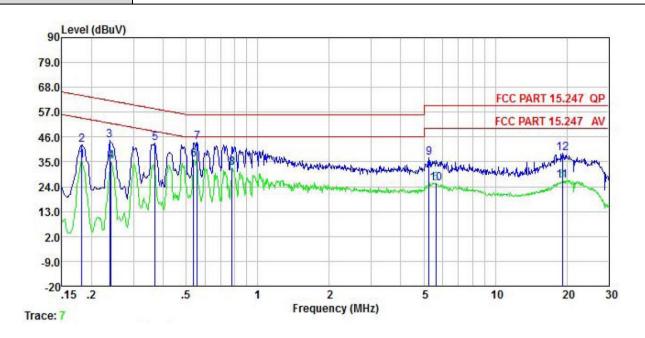
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

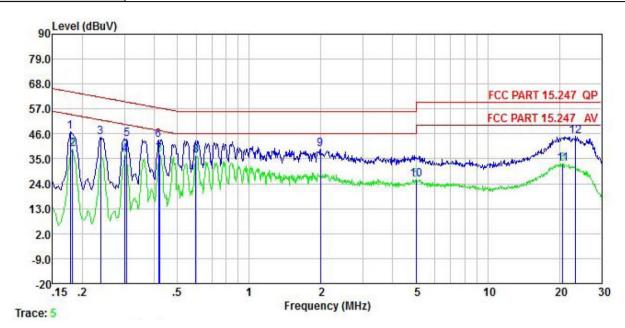
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 1.2 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

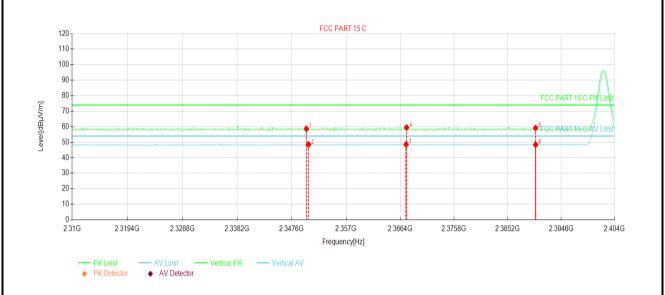
Product name:	Mobile Phone	Product model:	X6512
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1 2	0.182	35.47	0.04	0.01	35.52			Average
3	0.182 0.238	42.52 44.34	0.04 0.04	0.01 0.02	42.57 44.40		-21.85 -17.77	
4 5	0.242	35.27	0.04	0.01	35.32			Average
6	0.369 0.538	43.11 35.79	0.04 0.04	0.03	43.18 35.86		-15.34 -10.14	Average
7	0.555	43.55	0.04	0.02	43.61		-12.39	
8	0.779 5.249	32.12 36.74	0.04 0.12	0.03	32.19 36.95		-13.81 -23.05	Average QP
10	5.623	25.29	0.13	0.09	25.51			Average
11 12	19.122 19.224	26.17 38.22	0.31 0.31	0.15 0.15	26.63 38.68		-23.37 -21.32	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	X6512
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
1	0.178	46.85	0.04	0.01	46.90	64.59	-17.69	QP
2	0.182	39.08	0.04	0.01	39.13	54.42	-15.29	Average
3	0.238	44.66	0.04	0.02	44.72	62.17	-17.45	QP
4	0.302	36.89	0.04	0.03	36.96	50.19	-13.23	Average
5	0.307	43.78	0.04	0.03	43.85	60.06	-16.21	QP
1 2 3 4 5 6 7 8 9	0.417	43.11	0.04	0.04	43.19	57.51	-14.32	QP
7	0.421	36.68	0.04	0.04	36.76	47.42	-10.66	Average
8	0.598	36.19	0.04	0.02	36.25	46.00	-9.75	Average
9	1.991	38.99	0.06	0.21	39.26		-16.74	
10	5.005	25.59	0.10	0.09	25.78	50.00	-24.22	Average
11	20.594	32.24	0.31	0.18	32.73			Average
12	23.387	44.53	0.34	0.17	45.04		-14.96	

1. Level = Read level + LISN Factor + Cable Loss.

6.4 Emissions in Restricted Frequency Bands

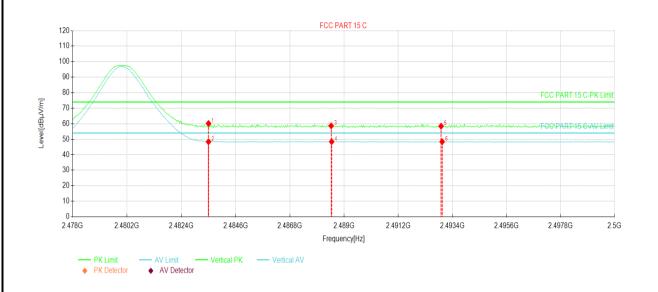
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority		
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity		
1	2350.13	23.09	58.65	35.56	74.00	15.35	PK	Vertical		
2	2350.51	12.96	48.52	35.56	54.00	5.48	AV	Vertical		
3	2367.43	12.89	48.57	35.68	54.00	5.43	AV	Vertical		
4	2367.52	23.74	59.42	35.68	74.00	14.58	PK	Vertical		
5	2390.08	23.34	59.18	35.84	74.00	14.82	PK	Vertical		
6	2390.08	12.53	48.37	35.84	54.00	5.63	AV	Vertical		

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

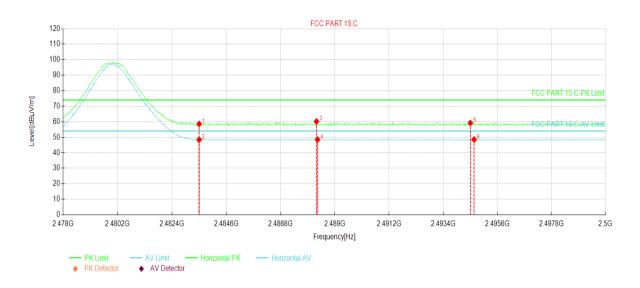
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Delerity			
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity			
1	2346.84	12.89	48.42	35.53	54.00	5.58	AV	Horizontal			
2	2347.03	23.37	58.90	35.53	74.00	15.10	PK	Horizontal			
3	2367.90	23.15	58.83	35.68	74.00	15.17	PK	Horizontal			
4	2368.18	12.68	48.36	35.68	54.00	5.64	AV	Horizontal			
5	2390.08	22.64	58.48	35.84	74.00	15.52	PK	Horizontal			
6	2390.08	12.49	48.33	35.84	54.00	5.67	AV	Horizontal			

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

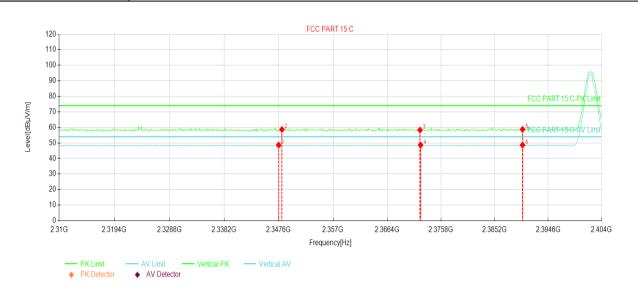
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Т	Delevitor		
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity		
1	2483.50	24.43	60.15	35.72	74.00	13.85	PK	Vertical		
2	2483.50	12.63	48.35	35.72	54.00	5.65	AV	Vertical		
3	2488.47	22.92	58.63	35.71	74.00	15.37	PK	Vertical		
4	2488.49	12.69	48.40	35.71	54.00	5.60	AV	Vertical		
5	2492.93	22.70	58.40	35.70	74.00	15.60	PK	Vertical		
6	2492.98	12.68	48.38	35.70	54.00	5.62	AV	Vertical		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

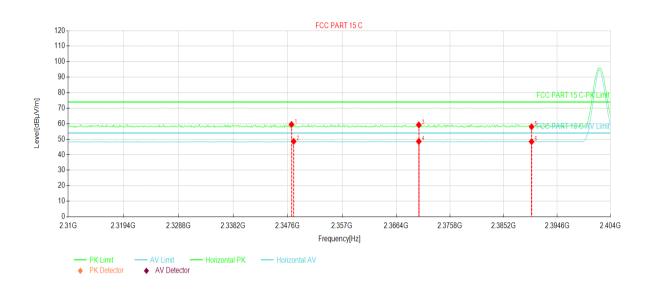
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	T	Delevity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.79	58.51	35.72	74.00	15.49	PK	Horizontal
2	2483.50	12.63	48.35	35.72	54.00	5.65	AV	Horizontal
3	2488.25	24.47	60.18	35.71	74.00	13.82	PK	Horizontal
4	2488.29	12.78	48.49	35.71	54.00	5.51	AV	Horizontal
5	2494.50	23.47	59.16	35.69	74.00	14.84	PK	Horizontal
6	2494.65	12.82	48.51	35.69	54.00	5.49	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

π/4-DQPSK mode

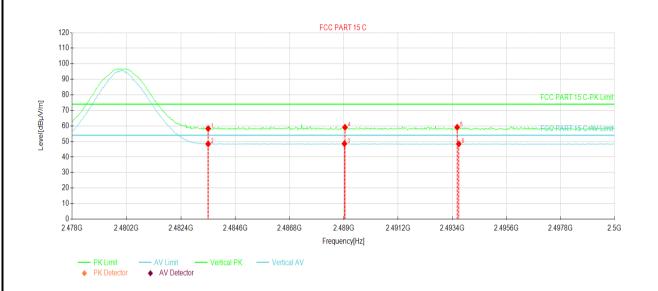
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2347.60	13.11	48.65	35.54	54.00	5.35	AV	Vertical
2	2348.16	23.14	58.68	35.54	74.00	15.32	PK	Vertical
3	2372.13	22.59	58.30	35.71	74.00	15.70	PK	Vertical
4	2372.22	12.95	48.66	35.71	54.00	5.34	AV	Vertical
5	2390.08	22.89	58.73	35.84	74.00	15.27	PK	Vertical
6	2390.08	12.84	48.68	35.84	54.00	5.32	AV	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

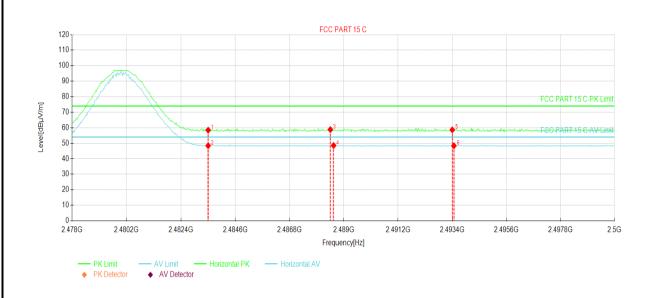
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	_	



Susp	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Dolority	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	2348.25	23.97	59.51	35.54	74.00	14.49	PK	Horizontal	
2	2348.63	13.05	48.60	35.55	54.00	5.40	AV	Horizontal	
3	2370.34	23.53	59.23	35.70	74.00	14.77	PK	Horizontal	
4	2370.34	12.88	48.58	35.70	54.00	5.42	AV	Horizontal	
5	2390.08	22.20	58.04	35.84	74.00	15.96	PK	Horizontal	
6	2390.08	12.61	48.45	35.84	54.00	5.55	AV	Horizontal	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

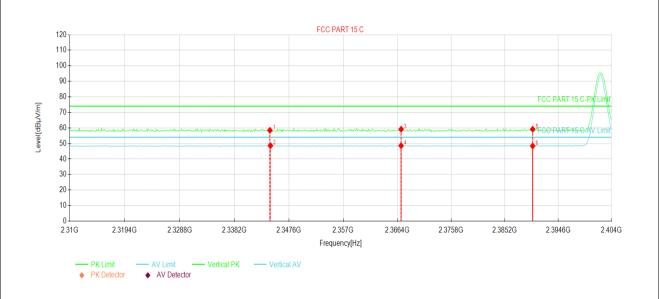
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Delerity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.56	58.28	35.72	74.00	15.72	PK	Vertical
2	2483.50	12.70	48.42	35.72	54.00	5.58	AV	Vertical
3	2489.02	12.85	48.56	35.71	54.00	5.44	AV	Vertical
4	2489.04	23.42	59.13	35.71	74.00	14.87	PK	Vertical
5	2493.59	23.44	59.13	35.69	74.00	14.87	PK	Vertical
6	2493.66	12.74	48.43	35.69	54.00	5.57	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

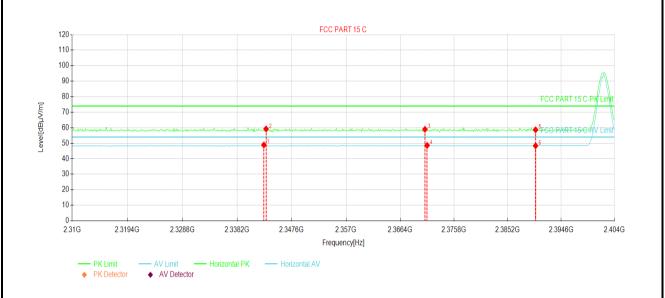
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trans	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	22.71	58.43	35.72	74.00	15.57	PK	Horizontal
2	2483.50	12.68	48.40	35.72	54.00	5.60	AV	Horizontal
3	2488.45	23.09	58.80	35.71	74.00	15.20	PK	Horizontal
4	2488.58	12.82	48.53	35.71	54.00	5.47	AV	Horizontal
5	2493.40	22.92	58.62	35.70	74.00	15.38	PK	Horizontal
6	2493.46	12.67	48.37	35.70	54.00	5.63	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

8DPSK mode

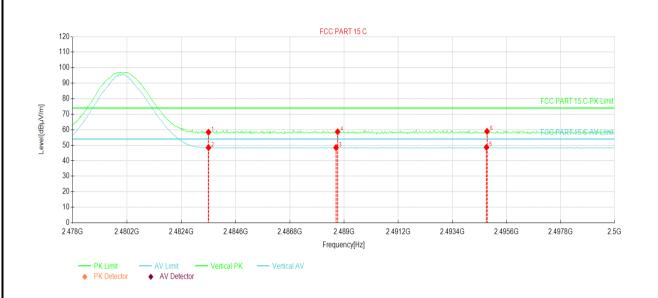
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delesitu
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity
1	2344.31	22.95	58.46	35.51	74.00	15.54	PK	Vertical
2	2344.40	13.07	48.59	35.52	54.00	5.41	AV	Vertical
3	2367.05	23.49	59.17	35.68	74.00	14.83	PK	Vertical
4	2367.05	12.91	48.59	35.68	54.00	5.41	AV	Vertical
5	2390.08	23.34	59.18	35.84	74.00	14.82	PK	Vertical
6	2390.08	12.54	48.38	35.84	54.00	5.62	AV	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

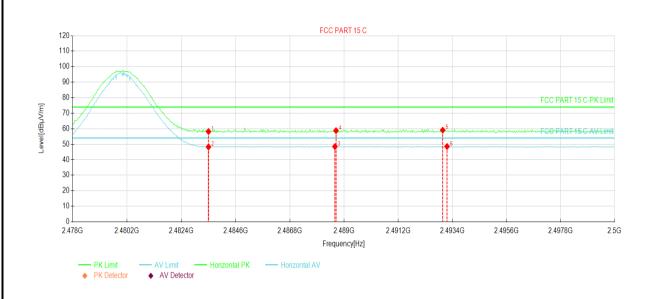
Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity		
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]				
1	2342.80	13.38	48.88	35.50	54.00	5.12	AV	Horizontal		
2	2343.18	23.70	59.21	35.51	74.00	14.79	PK	Horizontal		
3	2370.72	23.28	58.98	35.70	74.00	15.02	PK	Horizontal		
4	2371.10	12.93	48.63	35.70	54.00	5.37	AV	Horizontal		
5	2390.08	22.80	58.64	35.84	74.00	15.36	PK	Horizontal		
6	2390.08	12.50	48.34	35.84	54.00	5.66	AV	Horizontal		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

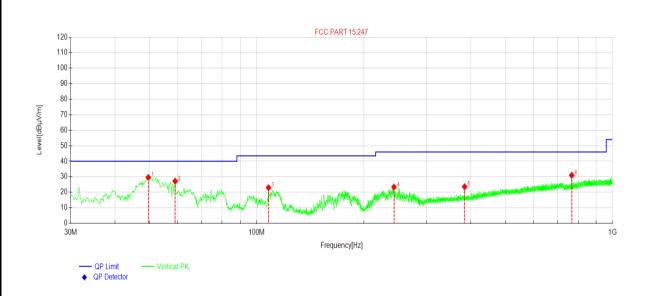


Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	5.1."	
NO. [MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity		
1	2483.50	22.69	58.41	35.72	74.00	15.59	PK	Vertical	
2	2483.50	12.73	48.45	35.72	54.00	5.55	AV	Vertical	
3	2488.67	12.76	48.47	35.71	54.00	5.53	AV	Vertical	
4	2488.73	22.97	58.68	35.71	74.00	15.32	PK	Vertical	
5	2494.78	12.96	48.65	35.69	54.00	5.35	AV	Vertical	
6	2494.80	23.25	58.94	35.69	74.00	15.06	PK	Vertical	

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

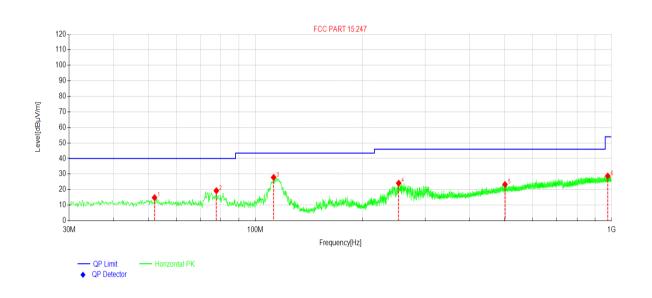
Suspe	ected Data	List						
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]		
1	2483.50	22.46	58.18	35.72	74.00	15.82	PK	Horizontal
2	2483.50	12.53	48.25	35.72	54.00	5.75	AV	Horizontal
3	2488.62	12.77	48.48	35.71	54.00	5.52	AV	Horizontal
4	2488.67	23.05	58.76	35.71	74.00	15.24	PK	Horizontal
5	2493.00	23.37	59.07	35.70	74.00	14.93	PK	Horizontal
6	2493.18	12.84	48.54	35.70	54.00	5.46	AV	Horizontal


1. Level = Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	49.5960	44.31	29.57	-14.74	40.00	10.43	PK	Vertical		
2	59.0059	42.12	27.18	-14.94	40.00	12.82	PK	Vertical		
3	107.995	38.87	22.93	-15.94	43.50	20.57	PK	Vertical		
4	243.130	37.45	23.36	-14.09	46.00	22.64	PK	Vertical		
5	383.988	34.28	23.56	-10.72	46.00	22.44	PK	Vertical		
6	768.049	34.42	30.96	-3.46	46.00	15.04	PK	Vertical		

Remark

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Mobile Phone	Product Model:	X6512
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading[d BµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	52.1182	29.47	14.80	-14.67	40.00	25.20	PK	Horizontal		
2	77.7288	36.51	19.28	-17.23	40.00	20.72	PK	Horizontal		
3	112.555	43.46	27.81	-15.65	43.50	15.69	PK	Horizontal		
4	252.637	37.87	24.12	-13.75	46.00	21.88	PK	Horizontal		
5	502.243	30.23	23.29	-6.94	46.00	22.71	PK	Horizontal		
6	975.941	29.62	28.72	-0.90	54.00	25.28	PK	Horizontal		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz:

			hannel: Lowest cl			
	T	D	etector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	55.26	-9.60	45.66	74.00	28.34	Vertical
4804.00	54.65	-9.60	45.05	74.00	28.95	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	47.29	-9.60	37.69	54.00	16.31	Vertical
4804.00	46.90	-9.60	37.30	54.00	16.70	Horizontal
			channel: Middle ch			
	T	D	etector: Peak Valı			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	55.19	-9.05	46.14	74.00	27.86	Vertical
4882.00	54.29	-9.05	45.24	74.00	28.76	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	47.46	-9.05	38.41	54.00	15.59	Vertical
4882.00	47.26	-9.05	38.21	54.00	15.79	Horizontal
			hannel: Highest c etector: Peak Val			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4960.00	54.91	-8.45	46.46	74.00	27.54	Vertical
4960.00	54.71	-8.45	46.26	74.00	27.74	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarizatio
(46.96	-8.45	38.51	54.00	15.49	Vertical
4960.00	10.00					

-----End of report-----