

TEST REPORT

FCC ID: 2AIZN-X620B

Product: Mobile phone

Model No.: X620B

Additional Model No.: N/A

Trade Mark: Infinix

Report No.: FCC18070037A-BLE

Issued Date: July 27, 2018

Issued for:

INFINIX MOBILITY LIMITED

RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17

CANTON RD TST KLN HONG KONG

Issued By:

World Standardization Certification & Testing Group Co., Ltd.

Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192 FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group Co. Ltd. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

世标检测认证股份 esting Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

WSET

For Question,
Please Contact with WSC

TABLE OF CONTENTS

				www.wsct-cert.com
1/	GENERAL INFORMATION	WSET	WSET	3W5ET
2.	GENERAL DESCRIPTION OF EU			4
3.	Facilities and Accreditations			
WSET .	3.1. ACCREDITATIONS	WSET	WS	5
	3.2. TEST DESCRIPTION			6
	3.3. DESCRIPTION OF SUPPORT UNITS (CO	X	X	X
	3.4. SUMMARY OF TEST RESULTS			
4.	MEASUREMENT INSTRUMENTS	S		11
5.	ANTENNA REQUIREMENT			12
WSET	5.1. STANDARD APPLICABLE			
	5.2. ANTENNA CONNECTOR CONSTRUCTION			12
6.	CONDUCTED EMISSIONS	,	,	13
7.	SPURIOUS EMISSIONS	WSCT	WSCT	16W5LT
8.	-6dB BANDWIDTH TESTING			25
9.	MAXIMUM PEAK OUTPUT POWI	ER		28
	100 kHz Bandwidth of Frequenc			
	MAXIMUM CONDUCTED POWER			
• •	I MAXIMOM CONDOCTED I GWEI	COLLOTIVAL DENO	'''	
			AVEC CONTRACTOR	WELT
	WSU	WSET	AWDLI	
	WSU	Wister	WSL.	
X	WSU	Wister		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
WSCT	WSET WSET	WSLT	W	SET
WSCT	WSET WSET	WSET	W	SET
WSCT	WSET WSET	WSET	W	SET
	WSET WSET	WSET WSET	WSLT*	WSCT
	X	X	X	\times
	X	X	WSET	WSET
	X	WSCT	WSET	\times
	WSET*	WSCT	WSET	WSET
	WSET* WSET* WSET	WSCT	W5ET*	WSET
WSCT	WSET*	WSCT	WSET	WSET

世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

TEL:86-755-26996143/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Please Contact with WSCT www.wsct-cert.com

GENERAL INFORMATION

Product:	Mobile phone
Model No.:	X620B
Additional Model:	N/A
Applicant:	INFINIX MOBILITY LIMITED
Address:	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY,
	GUANGDONG PROVINCE, P.R.C
Data of receipt:	July 16, 2018
Date of Test:	July 16, 2018 to July 25, 2018
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Pu Shixi Tested By: (Pu Shixi) Date: July 27. 2018

Check By: Qin Shui quan

(Qin Shuiquan)

Approved By:

(Wang Fengbing)

esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

WSLT

2. GENERAL DESCRIPTION OF EUT

Z. GENEI	RAL DESCRIPTION OF EUT
Equipment Type:	Mobile phone
Test Model:	X620B
Additional Model:	N/A WSET WSET WSET
Trade Mark	Infinix
Applicant:	INFINIX MOBILITY LIMITED
Address:	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C
Hardware version:	V2.1
Software version:	X620B-Q6361A-O-180702V06 W5 CT W5 CT
Extreme Temp. Tolerance:	-10℃ to +65℃
Battery information:	Li-Polymer Battery: BL-35BX Voltage: 3.85V Capacity: 3550mAh/3650mAh(min/typ) Limited Charge Voltage: 4.4V
Adapter Information:	Adapter: CQ-18VX
Operating Frequency:	2402-2480MHz
Channels:	40 WSCT WSCT WSCT
Channel Spacing:	2MHz
Modulation Type:	GFSK WSET
Antenna Type:	Integral Antenna
Antenna gain:	0.5dBi

WSET 世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group Co., Ltd

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Registration Number: 366353

3.1. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA
NVLAP (The certificate registration number is NVLAP LAB CODE:600142-0)
VCCI (The certificate registration number is C-4790, R-3684, G-837)

Canada INDUSTRY CANADA

(The certificated registration number is 7700A-1)

China CNAS (The certificated registration number is L3732)

Copies of granted accreditation certificates are available for downloading from our web site, http://www.wsct-cert.com

素检测认证股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an Distri Group Co..Ltd.
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang

Certification

3.2. TEST DESCRIPTION

3.2.1. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

level of c	confidence	e of approximately 95 %。		
WSET	No.	Item	Uncertainty	WSET
\searrow	1	Conducted Emission Test	±3.2dB	
	2	RF power,conducted	±0.16dB	
W5E	3	Spurious emissions, conducted	±0.21dB	WSET
	4	All emissions,radiated(<1G)	±4.7dB	
	5	All emissions,radiated(>1G)	±4.7dB	
WSET	6 W	Temperature W5C7	±0.5°C/5/7	WSET
	7	Humidity	±2%	
X		\times	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \$	X
W5E	7	WSET	ET WSET	WSET
X		X	X	X
WSLT	W	SCT WSCT	WSET	WSCT
	/			
X		\times	X	X
WSI		WSET	CT WSCT	WSIT
X		X	X	X
WSET	Aug	SET WSET	WSET	WSET
ZIEG	1			
\times		\times	(X	X
WSI		WSET WS	ET" WSET	WSET
\times		\times	\sim	
WSET	W	SET [®] WSET [®]	WSET	W5ET*
Certification		WSET WS	ET WSET	WSET
Certification	dest.			
S WELT	1 3			

世标检测认证股份
ADD:Bujlding A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

3.2.2. DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

<	Pretest Mode	Description
	Mode 1	CH00
	Mode 2	CH20
	Mode 3	CH39
	Mode 4	Normal

Z1777		Y 2/		
For Conducted Emission				
Final Test Mode	Description			
Mode 4	Normal			

For Radiated Emission					
Final Test Mode Description					
Mode 1	CH00				
Mode 2	CH20				
Mode 3	CH39				

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Record the worst case of each test item in this report.
- (3)When we test it, the duty cycle ≥ 98%

WSET WSET WSET WSET WSET

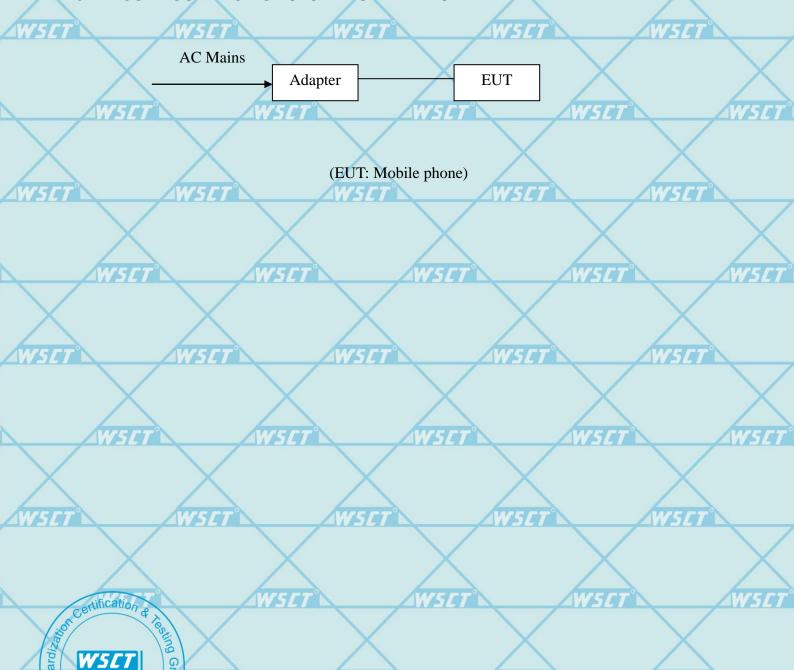
WSET WSET WSET

<mark>队证股份</mark> ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China IDCo...Ltd. TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Member of the WSCT INC

Report No.: FCC18070037A-BLE

Certification


For Question, Please Contact with WSCT

3.2.3. Table of Parameters of Text Software Setting

During testing channel & power controlling software provided by the customer was used to www.wsct-cert.com control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters.

Test software Version	N/A W5/7	W	5/7	WSET
Frequency	2402 MHz	2440 MHz	2480 MHz	
Parameters(1Mbps)	DEF	DEF	DEF	
W5[T°	V5CT°	WSIT	WSIT	

3.2.4. CONFIGURATION OF SYSTEM UNDER TEST

Report No.: FCC18070037A-BLE

Page 8 of 38

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Earphine West Communication of the Co

Member of the WSCT INC

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC

DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

4	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1	Adapter	///	CQ-18VX	/	/
	2	Earphone	/	N/A	//	/

7	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note	
_	1	Adapter	///	CQ-18VX	\ /	/	
	2	Earphone	/ /	N/A		/	
	W	(SET	W5ET	W5ET	WSET		W
/	Not	e:					
	(1)) The support equipm	ent was authorized by De	claration of Confirmat	ion.	X	
/	(2)) For detachable type	I/O cable should be speci	ified the length in cm i	າ 『Length 』colເ	ımn.	
7	(3)) "YES" is means "shie	lded" "with core"; "NO" i	s means "unshielded"	"without core".	WSET	
		X	X	X	X		
							/

	WSET	WSET	WSET	WSET	WSET
WSET	WSET	\times	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	
	WSET	WSET	WSET	WSCT	WSET
WSET	WSEI	WSE	WSL	T WSL	7
	WSLT	WSET	WSET	WSET	WSET
WSET	WSET		$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	
	fication	W5ET°	WSET	WSET	WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

3.4. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	WSET	WSCT WSCT	W	5 <i>[</i> 7°	WSET	
\times	FCC Part15 (15.247) , Subpart C					
SET	Standard Section	Test Item	Judgment	Remark	7	
	15.203	Antenna Requirement	PASS			
	15.207	Conducted Emission	PASS	557	WSET	
\checkmark	15.209, 15.205, 15.247(d)	Spurious Emission	PASS			
\triangle	15.247(a) (2)	6dB Bandwidth Testing	PASS			
5 <i>[T</i>	15.247(b) (3)	Maximum Peak Output Power	PASS	WSI	7	
	15.247(d)	100 KHz Bandwidth of Frequency Band Edge	PASS	X	X	
	15.247(e)	Maximum Conducted Power Spectral Density	PASS	SET	WSET	

WSET WSET WSET WSET

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

WSET WSET WSET

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China esting Group Co.,Ltd.
TEL:86-755-26996143/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

4. MEASUREMENT INSTRUMENTS

. IVIE	ENTERVI III	ROWILITI				1
NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	B
EMI Test Receiver	R&S	ESCI	100005	08/19/2017	08/18/2018	
LISN	AFJ	LS16	16010222119	08/19/2017	08/18/2018	
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2017	08/18/2018	1
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2017	08/18/2018	
Coaxial cable	Megalon	LMR400 // 5	N/A	08/12/2017	08/11/2018	Í
GPIB cable	Megalon	GPIB	N/A	08/12/2017	08/11/2018	
Spectrum Analyzer	R&S	FSU	100114	08/19/2017	08/18/2018	
Pre Amplifier 1/5	H.P.	/5 HP8447E	2945A02715	10/13/2017	10/12/2018	
Pre-Amplifier	CDSI	PAP-1G18-38	/ -	10/13/2017	10/12/2018	
Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2017	09/12/2018	
9*6*6 Anechoic	W5ET*	/W5	<i>-</i>	08/21/2017	08/20/2018	Í
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/13/2017	09/12/2018	
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2017	08/22/2018	
Cable W5	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2018	04/24/2019	
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
Antenna Tower	ccs	N/A W5	N/A	N.C.R	N.C.R	1
RF cable	Murata	MXHQ87WA3000		08/21/2017	08/20/2018	
Loop Antenna	EMCO	6502	00042960	08/22/2017	08/21/2018	
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2017	08/18/2018	
Power meter	Anritsu	ML2487A	6K00003613	08/23/2017	08/22/2018	
Power sensor	Anritsu	MX248XD	-	08/19/2017	08/18/2018	

VSET WSET WSET

AWSET 1

AWSET

WSET

WSE.

WSET

Certification

世标检测认证股份 festing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2. Antenna Connector Construction

The EUT's antenna Integral Antenna, The antenna's gain is 0.5dBi and meets the requirement.

	WSET	WSET	WSCT	WSCT	WSET
WSE	$\langle \rangle$	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			ET.
	WSET	WSET	W5CT°	WSET	WSET
WSG	$\langle \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$		ET
	\times	WSET	W5ET*	WSET	WSET
1	Certification &				

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fendling, Wang@wsct-cert.com Http://www.wsct-cert.com

6. CONDUCTED EMISSIONS

6.1.1. Applicable Standard

The specification used was with the FCC Part 15.207 limits.

6.1.2. Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

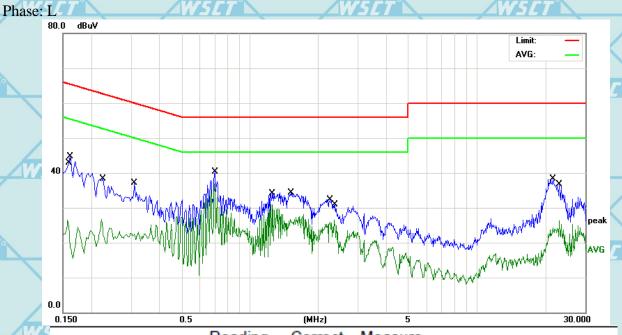
6.	.1.3. Test Conditio	ns WSCT	W5CT*	W5CT [®]	WSET
	Temperature:	26 °C			
	Relative Humidity:	60%			
WSET	ATM Pressure:	100.0kPa wsr		15CT	WSET
4W367 L	Voltage	120V/60Hz			1126
	X	X			
	WSET	WSET	W5ET*	WSET	WSET
X	X	X		X	X
	(m)		. 4		
AWSET"	W5Ei	W5C1		VSET*	W5ET
	WSET	WSET	WSLT	WSET	WSET
X	X	X		X	X
AWSET 1	WSE	WSET	T V	VSCT"	W5ET
	WSET	WSET	WSET	WSET	WSET
		A LONG TO SERVICE TO S			112131
\sim	\times	\times		\times	\times
WSET	W5G	WSE		VSET V	WSET
					\ /
	X	X	X	X	X
					Auror
Ce	nification & Page	WSET	WSET	W5ET*	WSET
in	(St.)				

Report No.: FCC18070037A-BLE Page 13 of 38

esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC



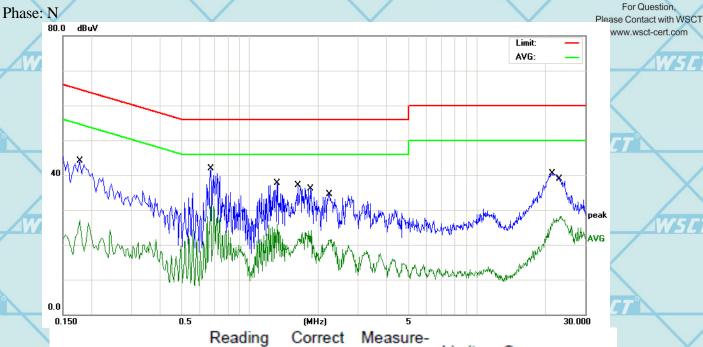
For Question,
Please Contact with WSCT
www.wsct-cert.com

6.1.4. TEST RESULTS

75	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		_
•			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	
	1		0.1580	16.04	10.44	26.48	55.56	-29.08	AVG	3
	2		0.1620	31.14	10.44	41.58	65.36	-23.78	QP	1
	3		0.2220	16.17	10.43	26.60	52.74	-26.14	AVG	
75	4		0.3100	25.07	10.42	35.49	59.97	-24.48	QP	
	5	*	0.6980	26.45	10.38	36.83	46.00	-9.17	AVG	-
•	6		0.7019	28.09	10.38	38.47	56.00	-17.53	QP	
	7		1.2620	20.52	10.33	30.85	46.00	-15.15	AVG	1
\	8		1.5180	22.95	10.31	33.26	56.00	-22.74	QP	
	9		2.2500	20.56	10.28	30.84	56.00	-25.16	QP	
<u>/</u> _	10		2.3580	16.15	10.28	26.43	46.00	-19.57	AVG	
	11		21.6180	26.14	10.11	36.25	60.00	-23.75	QP	-
•	12		23.0900	16.22	10.11	26.33	50.00	-23.67	AVG	-

Remark: All of the Tx modes have been investigated, and only worst mode is presented in this report.

世标检测认证股份 esting Group Co.,Ltd.


ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

Certification

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
3			MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	
	1		0.1780	28.31	10.44	38.75	64.57	-25.82	QP	
	2		0.1780	16.69	10.44	27.13	54.57	-27.44	AVG	
	3		0.6740	25.31	10.38	35.69	56.00	-20.31	QP	7
-	4	*	0.6740	20.94	10.38	31.32	46.00	-14.68	AVG	
/	5		1.3220	25.17	10.32	35.49	56.00	-20.51	QP	
Z	6		1.3220	15.63	10.32	25.95	46.00	-20.05	AVG	
	7		1.6340	24.27	10.31	34.58	56.00	-21.42	QP	/
	8		1.8620	13.77	10.30	24.07	46.00	-21.93	AVG	
	9		2.2460	24.26	10.28	34.54	56.00	-21.46	QP	j
	10		2.2700	11.31	10.28	21.59	46.00	-24.41	AVG	
1	11		21.3980	25.69	10.11	35.80	60.00	-24.20	QP	
4	12		23.2660	17.95	10.11	28.06	50.00	-21.94	AVG	

Remark: All of the Tx modes have been investigated, and only worst mode is presented in this report.

WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

7. SPURIOUS EMISSIONS

7.1.1. Test Equipment W5

Please refer to section 4 this report.

7.1.2. Test Procedure

The out of band emission tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part Subpart C limits.

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz.

 For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested

And performed pretest to three orthogonal axis. The worst case emissions were reported

7.1.3. Environmental Conditions

Temperature:	26 °C	WEET
Relative Humidity:	55%	N34
ATM Pressure:	100.0kPa	

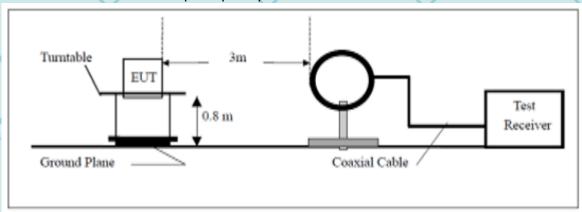
WSET WSET WSET WSET WSET

WSET WSET WSET

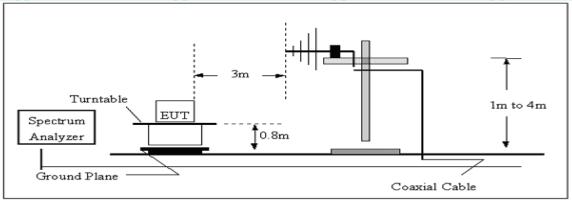
WSET WSET WSET

ADD:Bujlding A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

ertification


7.1.4. Radiated Test Setup

The system was investigated from 9 KHz to 25 GHz.


During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

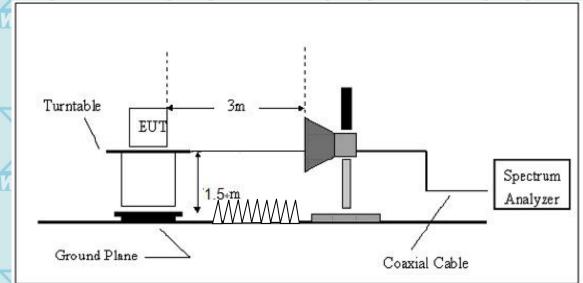
١	Frequency Range	RBW	Video B/W	Detector	
7	9KHz-30MHz W5	9kHz / 1/5 ET	30 kHz	5 C QP	WSET
	30 MHz – 1000 MHz	100 kHz	300 kHz	QP	
	1000 MHz – 25 GHz	1 MHz	3 MHz	PK	
	1000 MHz – 25 GHz	1 MHz	10 Hz	Ave	

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

WSI41

Certification



For Question,
Please Contact with WSCT
www.wsct-cert.com

Member of the WSCT INC.

For the accrual test configuration, please refer to the related items-photos of Testing.

W5ET*	WSET	WSET	WSET WSET
WSET WSET		WSET	WSET
WSET	WSET		WSET WSET
WSET WSET		WSET	WSET
W5CT°	WSET	X	WSET WSET
WSET WSET		WSET	WSET
Certification &	WSET	X	WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

7.1.5. Radiated Emission Limit

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Radiated Emission Test Result

Test Mode: Transmitting

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

7.1.6. Test result:

From 9KHz to 30MHz

NOTE: 9KHz-30MHz the measurements were greater than 20dB below the limit.

WSET WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET

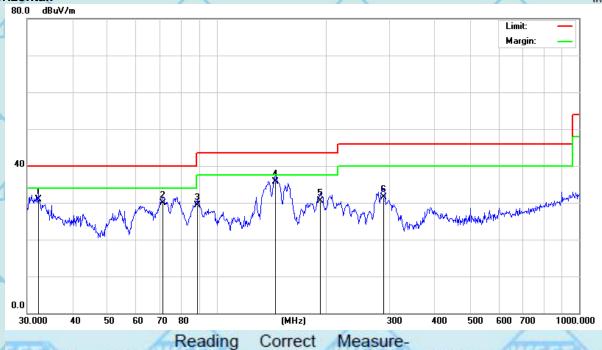
世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Member of the WSCT INC

Report No.: FCC18070037A-BLE

Certification

Page 19 of 38



Frequency from 30MHz to 1GHz Horizontal:

NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	PI
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	32.1795	26.88	3.96	30.84	40.00	-9.16	QP
2	4	71.0803	36.88	-7.02	29.86	40.00	-10.14	QP
/3		88.6524	35.43	-6.08	29.35	43.50	-14.15	QP
4	*	145.3506	40.34	-4.65	35.69	43.50	-7.81	QP
5	1	193.0945	37.72	-7.13	30.59	43.50	-12.91	QP
6		289.0021	34.35	-2.77	31.58	46.00	-14.42	QP
	1 2 3 4 5	3 4 *	MHz 1 32.1795 2 71.0803 3 88.6524 4 * 145.3506 5 193.0945	MHz dBuV 1 32.1795 26.88 2 71.0803 36.88 3 88.6524 35.43 4 * 145.3506 40.34 5 193.0945 37.72	MHz dBuV dB 1 32.1795 26.88 3.96 2 71.0803 36.88 -7.02 3 88.6524 35.43 -6.08 4 * 145.3506 40.34 -4.65 5 193.0945 37.72 -7.13	MHz dBuV dB dBuV/m 1 32.1795 26.88 3.96 30.84 2 71.0803 36.88 -7.02 29.86 3 88.6524 35.43 -6.08 29.35 4 * 145.3506 40.34 -4.65 35.69 5 193.0945 37.72 -7.13 30.59	MHz dBuV dB dBuV/m dBuV/m 1 32.1795 26.88 3.96 30.84 40.00 2 71.0803 36.88 -7.02 29.86 40.00 3 88.6524 35.43 -6.08 29.35 43.50 4 * 145.3506 40.34 -4.65 35.69 43.50 5 193.0945 37.72 -7.13 30.59 43.50	MHz dBuV dB dBuV/m dBuV/m dB 1 32.1795 26.88 3.96 30.84 40.00 -9.16 2 71.0803 36.88 -7.02 29.86 40.00 -10.14 3 88.6524 35.43 -6.08 29.35 43.50 -14.15 4 * 145.3506 40.34 -4.65 35.69 43.50 -7.81 5 193.0945 37.72 -7.13 30.59 43.50 -12.91

Remark: All of the TX modes have been investigated, and only worst mode is presented in this report.

WSET WSET WSET WSET WSET WSET

世标检测认证股份 ation Certification & Festing Group Co., Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

Certification

For Question,

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	The same
V			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	*	34.3964	32.75	3.11	35.86	40.00	-4.14	QP /
ı	2	11/	42.8562	35.53	-1.19	34.34	40.00	-5.66	QP
3	/3		51.8679	37.03	-5.25	31.78	40.00	-8.22	QP
\	4		60.0691	36.81	-6.22	30.59	40.00	-9.41	QP
7	5	7	145.8611	41.63	-4.68	36.95	43.50	-6.55	QP
V	6		196.5098	34.91	-7.07	27.84	43.50	-15.66	QP

Remark: All of the TX modes have been investigated, and only worst mode is presented in this report.

世标检测认证股份 Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

7.1.7. From 1GHz to 25GHz:

Operation Mode:	Channel 0	Measured Distance:	3m - 5-7
Frequency Range:	Above 1GHz	Temperature :	28℃
Test Result:	PASS	Humidity:	65 %

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4804	V	59.79	40.79	74	54	-14.21	-13.21
7206	V	59.15	39.09	74	54	-14.85	-14.91
4804	Н	58.61	39.08	74	54	-15.39	-14.92
7206	H	59.03	40.03	74	54	-14.97	-13.97

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

WSET	WSET	WSET	WSET	WSET	
WS				WSET .	WSET
WSET	WSET	WSET	WSET	WSET	
WS				W5ET°	WSET
WSET	WSET	WSET	WSET	WSET	
					X

Report No.: FCC18070037A-BLE

Page 22 of 38

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

For Question,

Please Col	itact with vv5C1
www.w	sct-cert.com

	Operation Mode:	Channel 20	Measured Distance:	3m www.w	sct-cert
1	Frequency Range:	Above 1GHz	Temperature :	28°C	1
_	Test Result:	PASS	Humidity:	65 %	

Freq.	Ant.Pol.	Emission	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4880	₩5 ⊻7°\	60.05	40.68	74	54	-13.95	-13.32	
7320	V	59.18	39.83	74	54	-14.82	-14.17	
4880	Н	59.04	39.06	74	54	-14.96	-14.94	
7320	Н	59.55	40.55	74	54	-14.45	-13.45	

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Note:

- (1) All Readings are Peak Value and AV.
- (2) Emission Level= Reading Level+Probe Factor +Cable Loss.
- (3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

WSET	W5ET	WSET	WSET	W5ET	
WSL				5.07	WSET
WSCT	WSET	WSET	WSET	WSET	WJL1
WSL				X	WSET
WSET	WSET	WSET	WSET	WSET	
\times				X	X

Report No.: FCC18070037A-BLE

esting Group Co.,Ltd.

Certification

Member of the WSCT INC Page 23 of 38

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSC

	Operation Mode:	Channel 39	Measured Distance:	3m www.w	sct-cert.com
1	Frequency Range:	Above 1GHz	Temperature :	28℃	WSIT
	Test Result:	PASS	Humidity:	65 %	

Freq.	Ant.Pol.	Emission	Level(dBuV)	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	V H/V	PK	AV7	PK	VAVET	PK	AV C7
4960	٧	58.93	39.89	74	54	-15.07	-14.11
7440	V	59.63	39.41	74	54	-14.37	-14.59
4960	Н	58.52	40.02	74	54	-15.48	-13.98
7440	Н	59.14	40.14	W 74 T	54	-14.86	-13.86

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Note:

- (1) All Readings are Peak Value and AV.
- (2) Emission Level= Reading Level+Probe Factor +Cable Loss.
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

WSET	WSCT	WSET	W5ET*	W5E	7°\
W5L		X	WSET	WSET	WSET
WSET	WSET	WSET	WSET	WSE	
WSL		X	WSET	WSET	WSET
WSET	WSET	WSLT	WSET	WSE	
		X	X	X	X

Report No.: FCC18070037A-BLE

Page 24 of 38

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC

8. -6dB BANDWIDTH TESTING

8.1.1. Test Equipment

Please refer to Section 4 this report.

8.1.2. Test Procedure

- Set EUT in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100KHz,VBW≥RBW, Span=3MHz,Sweep=auto.
- 4. Mark the peak frequency and -6dB(upper and lower)frequency.
- 5. Repeat until all the rest channels are investigated.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

8.1.3. Environmental Conditions

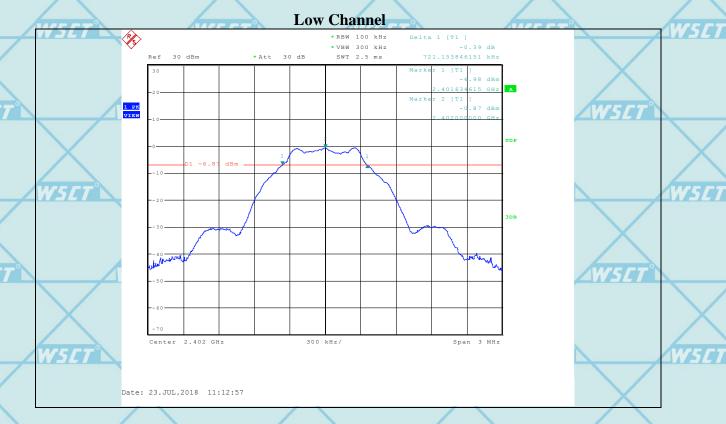
Temperature:	26 °C	/
Relative Humidity:	55%	Aug
ATM Pressure:	100.0kPa	

8.1.4. Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

WSET	WSET	WSET	WSET	WSET
WSET WSET	X	$\langle \ \rangle$		
W5ET°	WSET	W5ET°	WSET	WSET
WSET WSET	WSE	$\langle \ \rangle$		
Certification &	WSET	WSET	WSET	WSET
Cert &				

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http:www.wsct-cert.com

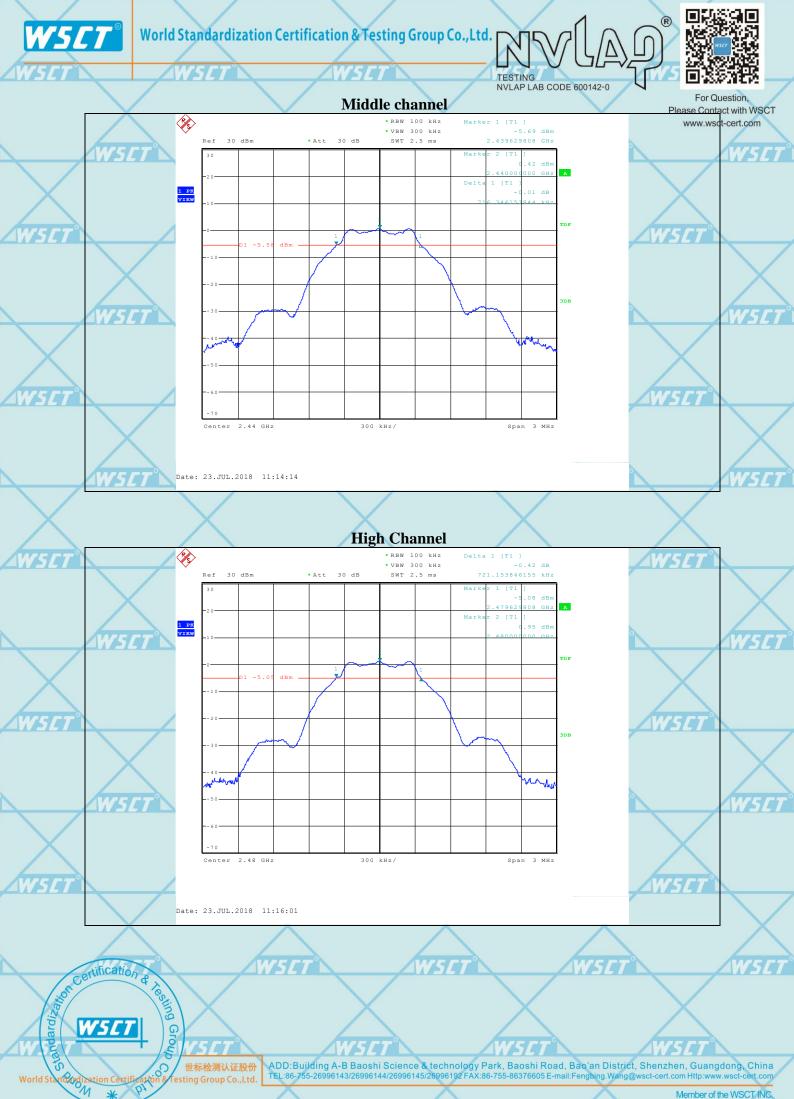


For Question,
Please Contact with WSCT
www.wsct-cert.com

8.1.5. Test Result: Pass.

Please refer to the following tables

	Channel Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)	Limit (kHz)	Ref. Plot	
	2402	1	721.15	>500	PLOT 1	
/	2440	1	716.35	>500	PLOT 2	
	2480	1	721.15	>500	PLOT 3	



WSCT WSCT WSCT WSCT WSCT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

世标检测认证股份 esting Group Co.,Ltd.

9. MAXIMUM PEAK OUTPUT POWER

9.1.1. Test Equipment

Please refer to Section 4 this report.

9.1.2. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in block diagram below,
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set the RBW =1MHz, VBW \geq 3RBW, span \geq 1.5*6dbbandwith. Sweep time = auto couple, Detector = peak, Trace mode = max hold.
- 4. Record the maximum power from the spectrum analyzer.
- 5. The maximum peak power shall be less 1 Watt (30dBm).

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

9.1.3. Environmental Conditions

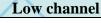
Temperature:	26 °C
Relative Humidity:	55%/5[T° W5[T°
ATM Pressure:	100.0kPa

9.1.4. Applicable Standard

According to §15.247(b) (3), for systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

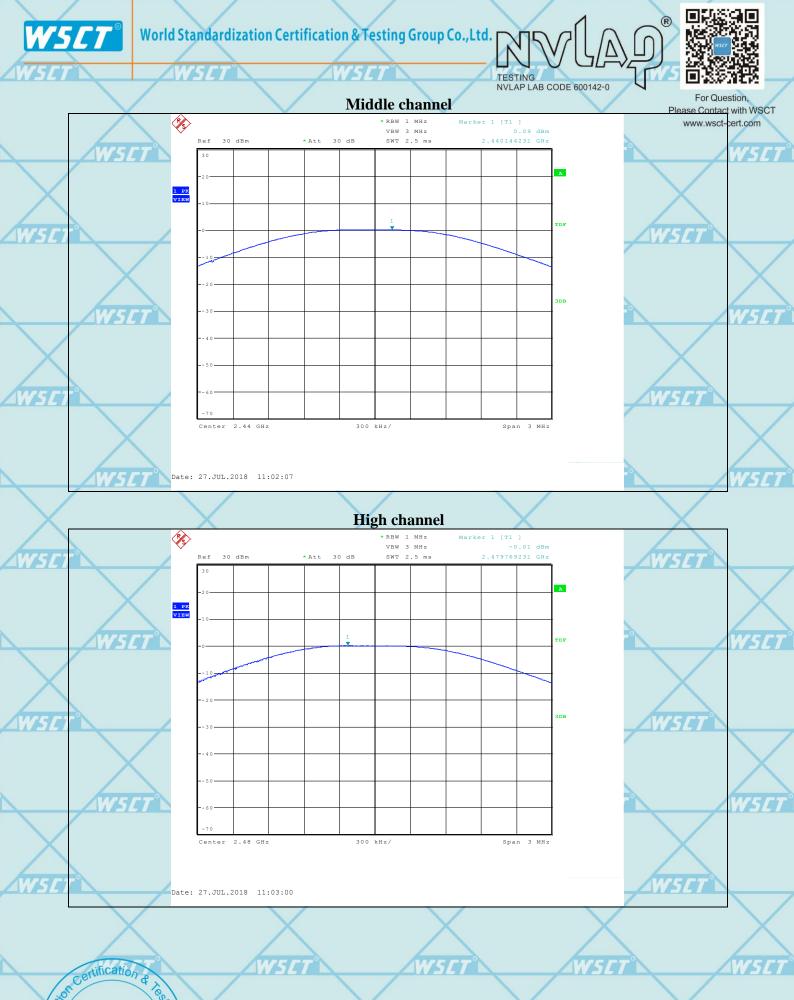
WSET WSET WSET WSET WSET

世标检测认证股份 Testing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China



For Question, Please Contact with WSCT www.wsct-cert.com

9.1.5. Test Result


-						
Channel		Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)	
	Low	2402	1	0.31	30	
	Middle	2440	1	0.09	30	
	High	2480	61	-0.01	30	

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份 resting Group Co.,Ltd.

Certification d

10. 100 kHz Bandwidth of Frequency Band Edge

10.1.1. Test Equipment

Please refer to Section 4 this report.

10.1.2. Test Procedure

The out of band emission tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part Subpart C limits.

10.1.3. Environmental Conditions

Temperature:	26 °C
Relative Humidity:	55%
ATM Pressure:	100.0kPa

10.1.4. Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

	§15.209(a) (s	see §15.205(c)).	567	WSCT	WSET	WSET
WS		WSCT	WSE			VSET
	WSET	W	5.27	W5ET	WSLT	WSET
WIS		WSET	WSE			VSCT
	X		527	WSET	WSET	WSET
	Certification &					

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

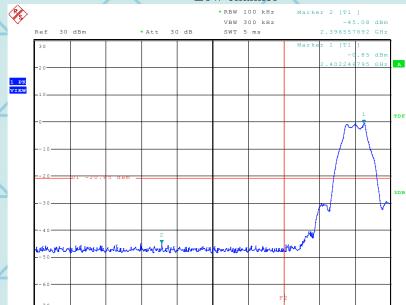
10.1.5. Test Result: PASS

	WSET	Rad	iated r	neas	ureme	ent:	AW.	ET L		WSL	7		W5ET
	Indica	ted		Table	Antei	nna	Co	rrection Fa	actor	FCC	Part 15.24	7	
ET	Frequency (MHz)	Receiver Reading (dBµV/m)	result (PK/AV)	Table Angle Degree	Height (m)	I (H/\/)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
					Low C	hanne	l (2402	MHz)					
	2390	39.46	AV	225	1.5	V	30.3	4.1	33.1	40.76	54	13.24	
	2390	40.68	AV	90	2	Н	30.3	4.1	33.1	39.38	54	12.02	WSET
	2390	60.22	PK	180	1.5	V	30.3	4.1	33.1	61.52	74	12.48	
	2390	59.72	PK	270	2	XН	30.3	4.1	33.1	61.02	74	12.98	
					High C	hanne	I (2480)MHz)					
ΕΤ	2483.5	41.63	AV	360	1	5/ _V /	31	4.4	32.7	44.33	54	9.67	
	2483.5	41.58	AV	90	2	Н	31	4.4	32.7	44.28	54	9.72	
	2483.5	60.36	PK	180	1	V	31	4.4	32.7	63.06	74	10.94	
	2483.5	60.74	PK	225	2	Н	31/	4.4	32.7	63.44	74	10.56	W5E7
			/										

WSET	WSET	WSET	WSET	WSET
\rightarrow				
W5L	WS	CT WS	W5	ET WSET
WSET	WSET	WSET	WSCT	WSET
WSL	WS	CT WS	W5	ET WSET

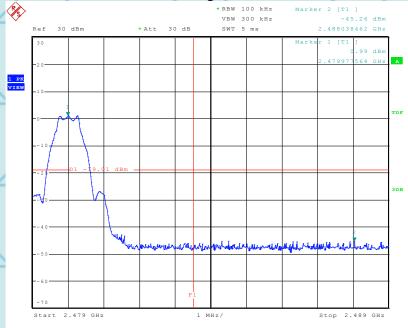
WSCT WSCT WSCT ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996145/26996145/26996149/26996145/269

Certification &



For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Measurement:


Low channel

WSET

Date: 23.JUL.2018 11:19:03

High channel

4W561

 \times

WELL

WSE

WSET"

WSLT

SET°

WSE7

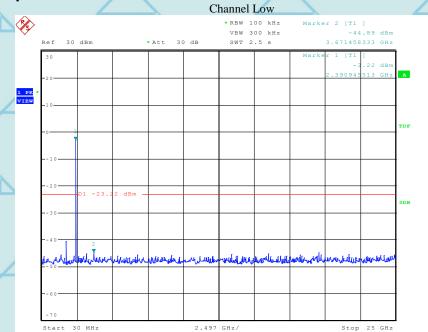
W5E

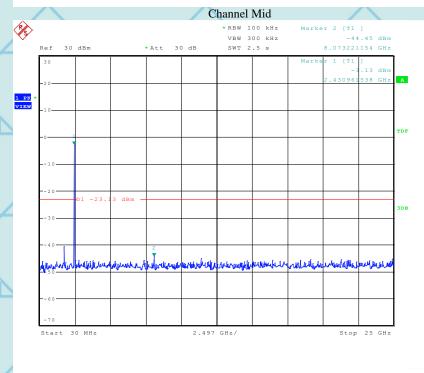
WSET |

Certification

CT WS

世标检测认证股份 Festing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com





For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted spurious emissions

Date: 23.JUL.2018 11:22:04

____AW5Ci

WSET

W5E

WSTT

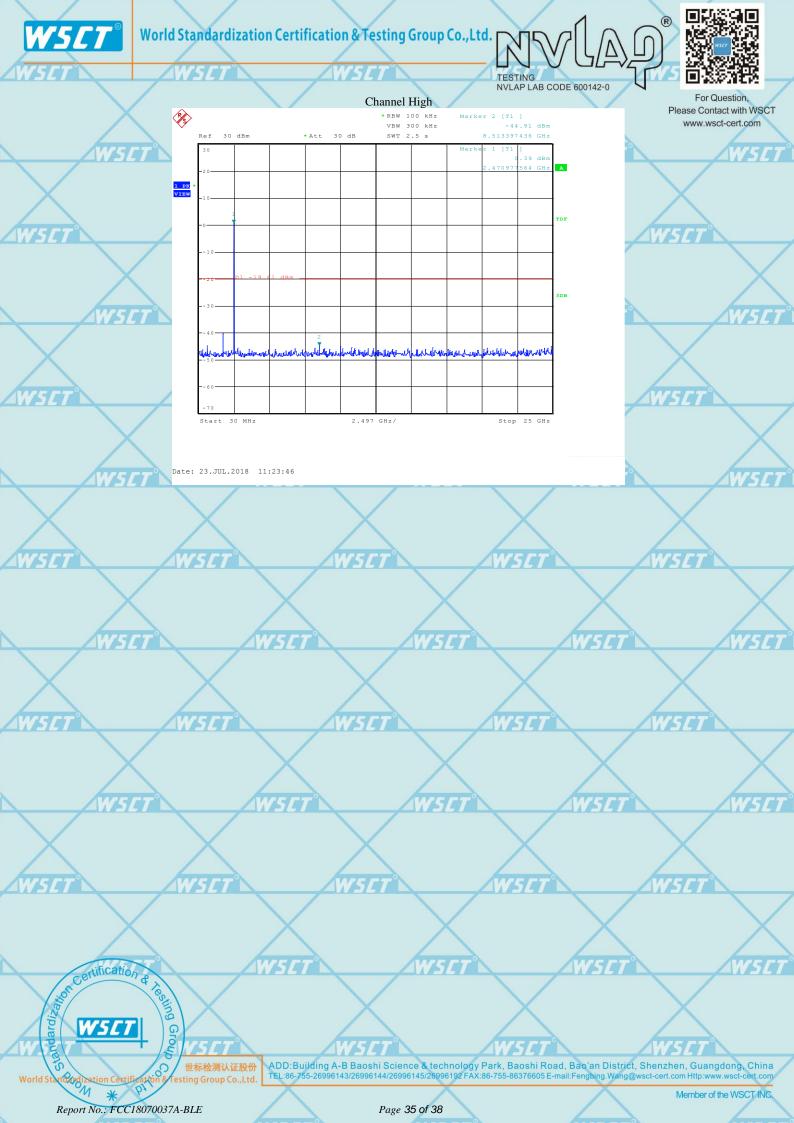
Date: 23.JUL.2018 11:22:47

WSET

WSET

WEFT

W5E


WSET |

Certification &

世标检测认证股份

Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

11. MAXIMUM CONDUCTED POWER SPECTRAL DENSITY

11.1.1. Test Equipment

Please refer to Section 4 this report.

11.1.2. Test Procedure

- 1, This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.
- 2, Set analyzer center frequency to DTS channel center frequency.
- 3, Set the RBW to:3 kHz ≦RBW ≦100 kHz, Set the VBW ≧3 RBW, Detector = peak. Sweep time = auto couple
- 4, Trace mode = max hold, Allow trace to fully stabilize.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

11.1.3. Environmental Conditions

Temperature:	25 °C 5 6 7 W 5 6 7
Relative Humidity:	55%
ATM Pressure:	100.0kPa

11.1.4. Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

WSET WSET WSET WSET WSET WSET WSET WSET

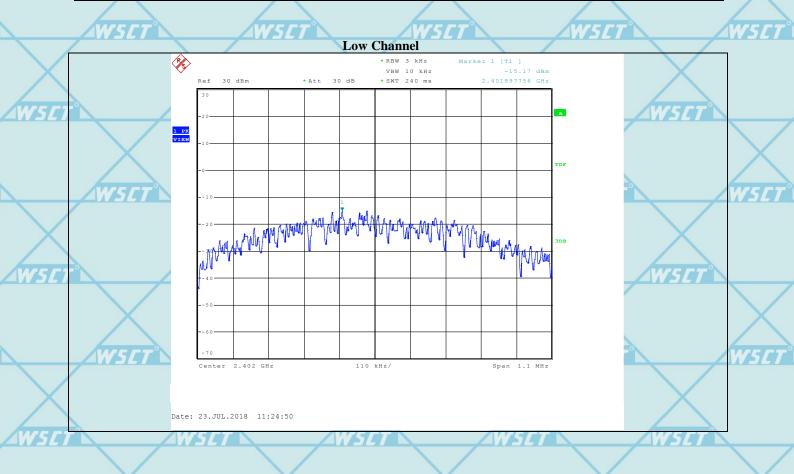
WSIAI

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

Report No.: FCC18070037A-BLE

TESTING
NVLAP LAB CODE 600142-0



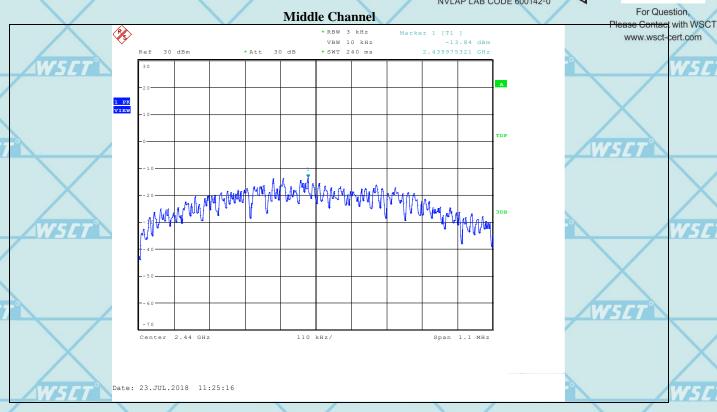
For Question,
Please Contact with WSCT
www.wsct-cert.com

11.1.5. Test Result

PASS

	Channel Frequency (MHz)	Data Rate (Mbps)	PSD (dBm/3kHz)	Limit (dBm/3kHZ)	RESULT	
	2402	1	-15.17	8	Compliant	
7	2440 W54	1	-13.84	W5 8	Compliant	
	2480	1	-13.31	8	Compliant	

WSET WSET WSET WSET WSET WSET WSET WSET


世标检测认证股份 esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

WSCT WSCT WSCT WSCT WSCT WSCT WSCT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

世标检测认证股份 Testing Group Co.,Ltd.