FCC Report

Application Purpose : Original grant

Applicant Name: : INFINIX MOBILITY LIMITED

FCC ID : 2AIZN-X601

Equipment Type : Mobile phone

Model Name : X601

Report Number : FCC16083894A-4

Standard(S) : FCC Part 15 Subpart B

Date Of Receipt : August 11, 2016

Date Of Issue : August 30, 2016

Test By :

(Daisy Qin)

Reviewed By

(Sol Qin)

Authorized by :

_(Michal Ling)

Prepared by

QTC Certification & Testing Co., Ltd.

2nd Floor,B1 Buiding,Fengyeyuan Industrial Plant,,Liuxian

2st.Road,Xin'an Street,Bao'an District,,Shenzhen, 518000China. **Registration Number: 588523**

Report Version Revise Time Issued Date Valid Version Notes V1.0 / August 30, 2016 Valid Original Report Valid Version Valid Original Report Valid Version Valid Original Report	REPORT REV	ISE RECORD			
V1.0 / August 30, 2016 Valid Original Report	Report Version	Revise Time	Issued Date	Valid Version	Notes
	V1.0	/	August 30, 2016	Valid	Original Report
				1	

Table of Contents	Page
1. GENERAL INFORMATION	4
2. TEST DESCRIPTION	6
2.1 MEASUREMENT UNCERTAINTY	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 CONFIGURATION OF SYSTEM UNDER TEST	8
2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	8
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
5.1.2 TEST PROCEDURE	13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 TEST SETUP	13
5.1.5 EUT OPERATING CONDITIONS	13
5.1.6 TEST RESULTS	14
5.2 RADIATED EMISSION MEASUREMENT	20
5.2.1 RADIATED EMISSION LIMITS	20
5.2.2 TEST PROCEDURE	21
5.2.3 DEVIATION FROM TEST STANDARD	21
5.2.4 TEST SETUP	22
5.2.5 EUT OPERATING CONDITIONS	22
5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	23
5.2.5.2 TEST RESULTS(1GHZ TO 6GHZ)	29
12. EUT TEST PHOTO	32
13. PHOTOGRAPHS OF EUT	34

1. GENERAL INFORMATION

Test Model	X601
Applicant	INFINIX MOBILITY LIMITED
Address	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China
Equipment Type	Mobile phone
Brand Name	Infinix
Hardware	V1.2
Software	X601-H536-B1-M-X1-20160627
Battery information:	Li-ion Battery : BL-45BX Voltage: 3.85V Capacity: 4500mAh Limited Charge Voltage: 4.4V
Adapter Information:	Adapter: CQ-24JX Input: AC 100-240V 50/60Hz 600mA Output: 5V-2A/7V-2A 9V-2A/12V-2A
Data of receipt	August 11, 2016
Date of test	August 11, 2016, to August 30, 2016
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:
The above equipment was tested by QTC Certification & Testing Co., Ltd.
2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an District,,Shenzhen,518000 Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in
accordance with the procedures given in ANSI C 63.4:2014. The sample tested as described in this report
is in compliance with the FCC Rules Part15 Subpart B.
The test results of this report relate only to the tested sample identified in this report.

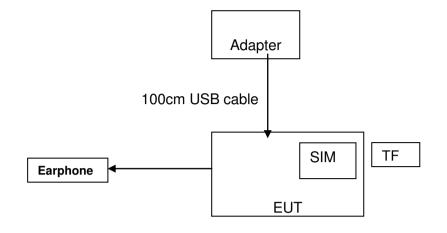
2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

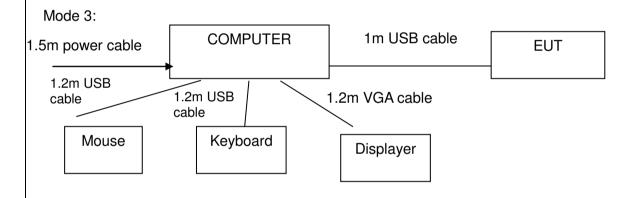
The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Video Recording
Model 2	Video Playing
Mode 3	Exchange data with computer


For Conducted Emission			
Final Test Mode Test with Keyboard and Mouse			
Mode 1 Video Recording			
Model 2	Video Playing		
Mode 3	Exchange data with computer		

For Radiated Emission			
Final Test Mode Test with Keyboard and Mouse			
Mode 1 Video Recording			
Model 2 Video Playing			
Mode 3	Exchange data with computer		

2.3 CONFIGURATION OF SYSTEM UNDER TEST Mode 1&2:

(EUT: Mobile phone)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
Power	1	1m USB cable, unshielded	1		
Earphone	1	1m USB cable, unshielded	1		

(EUT: Mobile phone)

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	CQ-24JX	/	/
2	Keyboard	HP	SK-2880	435302-AA-	/
3	Mouse	DELL	MS111-1	/	/

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ${}^{\mathbb{F}}$ Length ${}_{\mathbb{F}}$ column. (2)

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 , Subpart B					
Standard Section	Test Item	Judgment	Remark		
15.107	CONDUCTED EMISSION	PASS			
15.109	RADIATED EMISSION	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until
ESCI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
pre-amplifier	CDSI	PAP-1G18-38		08/19/2016	08/18/2017
System Controller	СТ	SC100	-	08/19/2016	08/18/2017
Bi-log Antenna	Chase	CBL6111C	2576	08/19/2016	08/18/2017
Spectrum analyzer	R&S	FSU26	200409	08/19/2016	08/18/2017
Horn Antenna	SCHWARZBECK	9120D	1141	08/19/2016	08/18/2017
Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

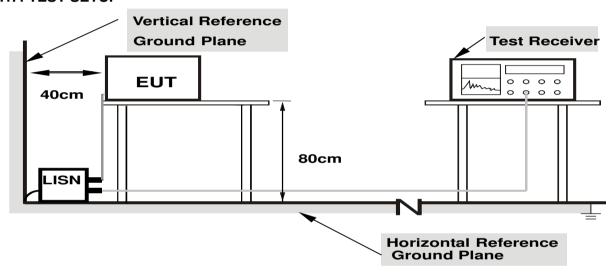
FREQUENCY (MHz)	Class A (dBuV)		Class B	Standard	
FREQUENCY (MITZ)	Quasi-peak	Average	Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


5.1.2 TEST PROCEDURE

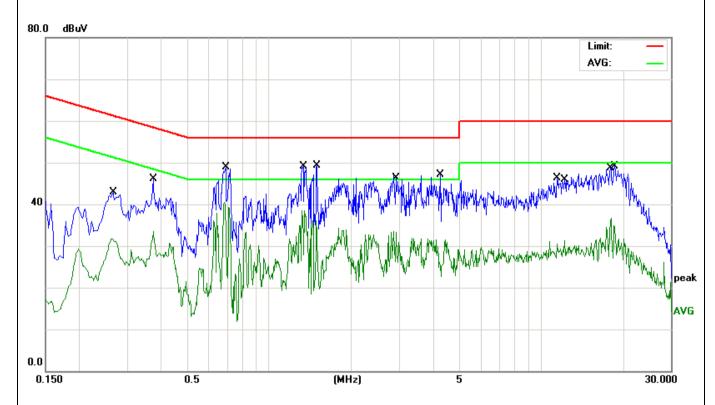
- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

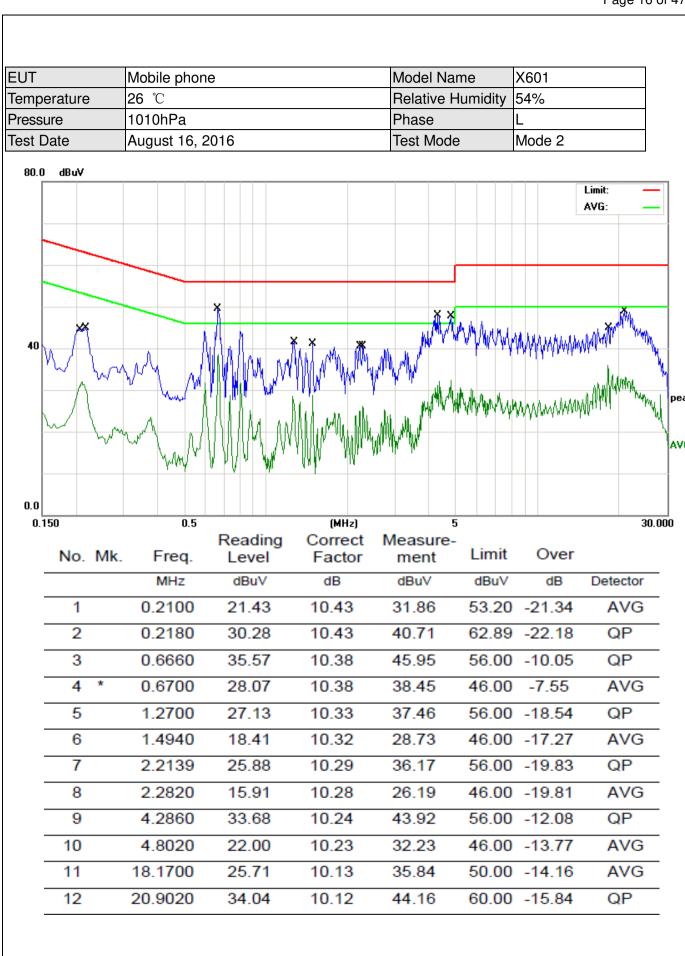
No deviation

5.1.4 TEST SETUP

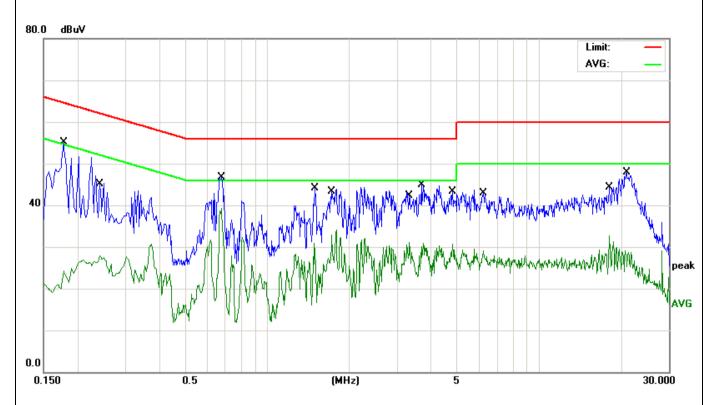
Note: 1.Support units were connected to second LISN.
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80


from other units and other metal planes

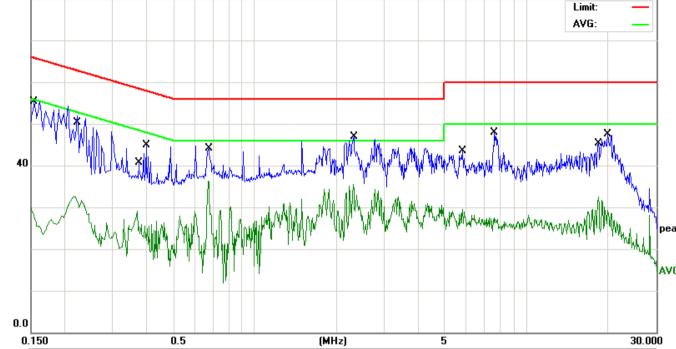
5.1.5 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

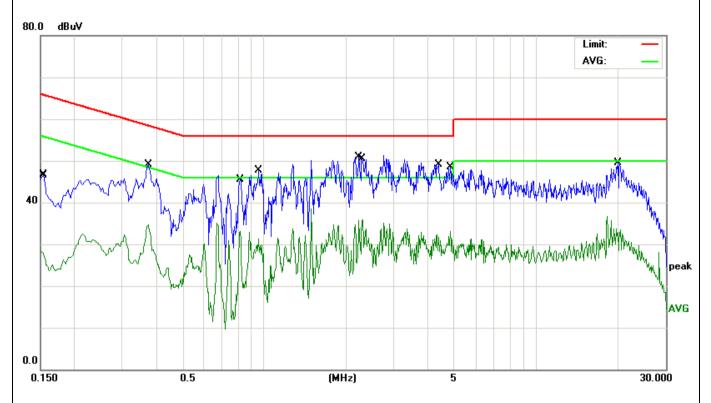
5.1.6 TEST RESULTS EUT X601 Mobile phone Model Name Temperature 26 ℃ Relative Humidity 54% 1010hPa Pressure Phase Test Date August 16, 2016 Test Mode Mode 1 80.0 dBuV Limit: AVG: 40 0.0 0.5 (MHz) 30.000 0.150 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB. dBuV dBuV dB. Detector 0.3740 35.78 10.41 46.19 58.41 -12.22 QP 2 0.3740 27.18 10.41 37.59 48.41 -10.82 AVG 3 0.6740 25.42 10.38 35.80 46.00 -10.20 AVG 0.6900 33.23 10.38 43.61 56.00 -12.39 QP 4 5 1.3260 34.68 10.32 45.00 56.00 -11.00 QP 6 1.3260 26.60 10.32 36.92 46.00 -9.08AVG 2.9180 28.17 10.27 38.44 46.00 -7.56AVG 8 2.9860 37.86 10.27 48.13 56.00 -7.87QP. 9 5.1380 24.87 10.23 35.10 50.00 -14.90 AVG 10.22 10 6.1660 33.89 44.11 60.00 -15.89QP 11 18.0700 27.6610.13 37.79 50.00 -12.21 AVG 12 21.2820 36.65 10.11 46.76 60.00 -13.24 QP


EUT	Mobile phone	Model Name	X601
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 16, 2016	Test Mode	Mode 1

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2660	28.18	10.43	38.61	61.24	-22.63	QP
2	0.3740	23.13	10.41	33.54	48.41	-14.87	AVG
3 *	0.6860	30.11	10.38	40.49	46.00	-5.51	AVG
4	0.6900	34.49	10.38	44.87	56.00	-11.13	QP
5	1.3220	28.20	10.32	38.52	46.00	-7.48	AVG
6	1.4980	34.81	10.32	45.13	56.00	-10.87	QP
7	2.9300	23.00	10.27	33.27	46.00	-12.73	AVG
8	4.2580	32.76	10.24	43.00	56.00	-13.00	QP
9	11.4940	31.98	10.18	42.16	60.00	-17.84	QP
10	12.2460	21.17	10.17	31.34	50.00	-18.66	AVG
11	18.0580	26.64	10.13	36.77	50.00	-13.23	AVG
12	18.6340	34.97	10.13	45.10	60.00	-14.90	QP



EUT	Mobile phone	Model Name	X601
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 16, 2016	Test Mode	Mode 2


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1		0.1777	40.61	10.44	51.05	64.59	-13.54	QP
2		0.2416	17.51	10.43	27.94	52.04	-24.10	AVG
3		0.6790	32.28	10.38	42.66	56.00	-13.34	QP
4	*	0.6790	28.82	10.38	39.20	46.00	-6.80	AVG
5		1.4953	29.81	10.32	40.13	56.00	-15.87	QP
6		1.7253	22.51	10.30	32.81	46.00	-13.19	AVG
7		3.3281	20.89	10.26	31.15	46.00	-14.85	AVG
8		3.6806	30.50	10.26	40.76	56.00	-15.24	QP
9		4.7969	20.44	10.23	30.67	46.00	-15.33	AVG
10		6.2189	27.92	10.22	38.14	60.00	-21.86	QP
11		18.0393	22.54	10.13	32.67	50.00	-17.33	AVG
12		20.9243	33.05	10.12	43.17	60.00	-16.83	QP

				P	age 18
EUT	Mobile phone	Mode	I Name	X601	
Temperature	26 ℃	Relati	ive Humidity	54%	
Pressure	1010hPa	Phase	Э	L	
Test Date	August 16, 2016	Test N	Лode	Mode 3	
80.0 dBuV					
				Limit: AVG:	-

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1		0.1539	40.91	10.44	51.35	65.78	-14.43	QP
2		0.2180	22.12	10.43	32.55	52.89	-20.34	AVG
3		0.3700	18.75	10.41	29.16	48.50	-19.34	AVG
4		0.3980	30.42	10.41	40.83	57.89	-17.06	QP
5	*	0.6740	25.92	10.38	36.30	46.00	-9.70	AVG
6		0.6780	29.79	10.38	40.17	56.00	-15.83	QP
7		2.3020	25.16	10.28	35.44	46.00	-10.56	AVG
8		2.3100	32.53	10.28	42.81	56.00	-13.19	QP
9		5.8140	19.32	10.22	29.54	50.00	-20.46	AVG
10		7.6460	33.50	10.21	43.71	60.00	-16.29	QP
11		18.3660	22.29	10.13	32.42	50.00	-17.58	AVG
12		19.9220	32.03	10.12	42.15	60.00	-17.85	QP

EUT	Mobile phone	Model Name	X601
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 16, 2016	Test Mode	Mode 3

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	18.09	10.44	28.53	55.99	-27.46	AVG
2		0.1539	31.83	10.44	42.27	65.78	-23.51	QP
3		0.3740	34.72	10.41	45.13	58.41	-13.28	QP
4		0.3740	24.23	10.41	34.64	48.41	-13.77	AVG
5		0.8139	22.68	10.36	33.04	46.00	-12.96	AVG
6		0.9580	31.96	10.34	42.30	56.00	-13.70	QP
7	*	2.2300	35.90	10.29	46.19	56.00	-9.81	QP
8		2.2980	25.68	10.28	35.96	46.00	-10.04	AVG
9		4.3780	34.92	10.24	45.16	56.00	-10.84	QP
10		4.8420	22.90	10.23	33.13	46.00	-12.87	AVG
11		19.7820	23.59	10.12	33.71	50.00	-16.29	AVG
12		19.9619	34.80	10.12	44.92	60.00	-15.08	QP

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

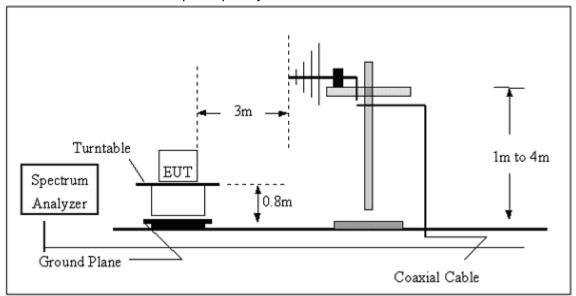
FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
FREQUENCY (MIDZ)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

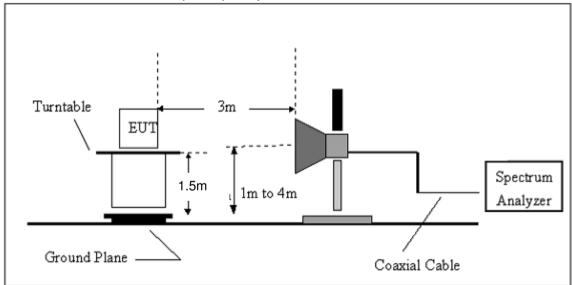
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	1 Mile / 1 Mile for Dook 1 Mile / 101 le for Averson
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


5.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector


then Quasi Peak detector mode re-measured.
 e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported
5.2.3 DEVIATION FROM TEST STANDARD No deviation

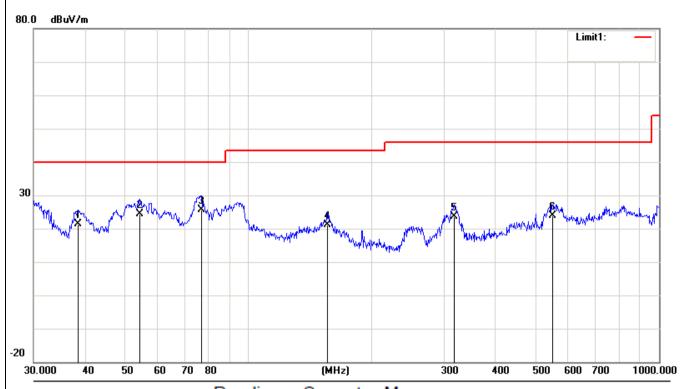
5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

(B) Radiated Emission Test-Up Frequency Above 1GHz

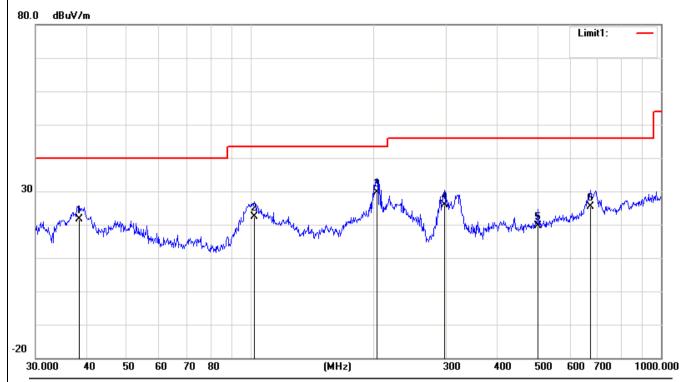
5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)

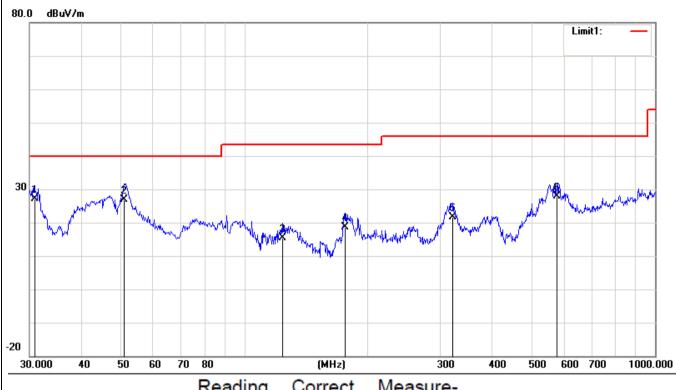
EUT	Mobile phone	Model Name	X601
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Horizontal
Test Mode	Mode 1	Test Date	August 16, 2016

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		47.4917	32.97	-7.98	24.99	40.00	-15.01	QP
2		99.8777	26.38	-6.32	20.06	43.50	-23.44	QP
3		125.4457	23.95	-2.14	21.81	43.50	-21.69	QP
4	*	202.8103	35.22	-4.92	30.30	43.50	-13.20	QP
5		295.1469	21.09	-5.80	15.29	46.00	-30.71	QP
6		501.1788	31.43	-1.00	30.43	46.00	-15.57	QP


EUT	Mobile phone	Model Name	X601
_	20 °C		48%
Temperature	-		
Pressure	1010 hPa	Polarization :	Vertical
Test Mode	Mode 1	Test Date	August 16, 2016

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.4808	23.90	-2.40	21.50	40.00	-18.50	QP
2		54.4515	33.78	-9.44	24.34	40.00	-15.66	QP
3	*	76.7806	33.22	-7.61	25.61	40.00	-14.39	QP
4		155.9099	25.32	-4.24	21.08	43.50	-22.42	QP
5		316.5889	27.99	-4.44	23.55	46.00	-22.45	QP
6		550.9479	23.33	0.46	23.79	46.00	-22.21	QP

				Mobile phone					Model Name				X601				
Tempe	eratur	re		20 ℃				Relative Humidity			4	48%					
Pressu	ıre			101	0 hF	a Pa				Polarization:			Н	Horizontal			
Test M	1ode			Mod	de 2					Test Da	ate		Α	ugus	st 16,	2016	6
0.0 dB	tuV/m														Limi	t1:	
30	Ward.	****	W. W.	Contrology	Part and delivery	en up-w	Moreologi	MILINA S	de de vendratis de la	Grown probability	***************************************	en e	g/hadhig ^a	hw ?	And Thomas	agree after 18	roogle ⁽ /p·/
o																	
30.000	40	!	50	60 7	'O 80	Read	ling	Cor	(Hz)	Moa	300 -sure) !	500	600	700	1000.0
No	o. N	lk.	F	req.		Lev			ctor		ent	Lim	it	O۱	/er		
			M	MHz		dΒι	V	d	В	dBu	V/m	dBuV	/m	d	В	Det	ector
	1 *	4	43.9	9658		33.	79	-6.	23	27.	56	40.00	0	-12	.44	Q	Р
2	2	8	83.5	5220		29.2	23	-7.	90	21.	33	40.0	0	-18	.67	Q	Р
	3	1	55.9	9099		28.	10	-4.	24	23.	86	43.50	0	-19	.64	Q	Р
	4			9753		29.			38	23.		46.0		-22			Р
	5	32	21.0	0605		27.2	22	-4.	53	22.	69	46.00	0	-23	.31	Q	Р
	6	58	80.7	7024		26.	73	0.	73	27.	46	46.0	0	-18	.54	Q	Р


FUT	NA 1 '1 1	NA 1 1 N	V004
EUT	Mobile phone	Model Name	X601
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 2	Test Date	August 16, 2016

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.3462	23.94	-2.30	21.64	40.00	-18.36	QP
2		102.3597	28.04	-5.66	22.38	43.50	-21.12	QP
3	*	203.5226	34.58	-4.95	29.63	43.50	-13.87	QP
4		297.2241	31.71	-5.76	25.95	46.00	-20.05	QP
5		501.1788	20.69	-1.00	19.69	46.00	-26.31	QP
6		672.8444	23.51	1.98	25.49	46.00	-20.51	QP

			Мо	bile phone		Model Name	X6	601			
Dur -	mperature 20 °C			$^{\circ}$ C		Relative Humi	dity 48	48%			
Pressu	re		101	10 hPa		Polarization:	larization: Horizonta				
Test Mo	ode		Мо	de 3		Test Date	Au	ıgust 16, 20	16		
0.0 dBu	uV/m							Limit1:			
0	MAT X	√\$\\	Wy	3			٠ المعادية				
	W			,	anne la refere de contra de ser desta desta de la contra de se de la contra de la contra de la contra de la co	Walter Harrison	han make hay part of the same	1100			
30.000	40	50	60 7	70 80	(MHz)	300	400 50	00 600 700	1000.00		
				Reading				300 100	1000.00		
No.	Mk.	F	req.	Level	Factor	ment	Limit	Over			
		N	ИHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detect		
1		41.5	670	26.76	-4.57	22.19	40.00	-17.81	QP		
2	*	51.6	613	35.63	-9.17	26.46	40.00	-13.54	QP		
3		74.9	9191	29.46	-7.53	21.93	40.00	-18.07	QP		
4	1	04.1	701	32.82	-5.18	27.64	43.50	-15.86	QP		
5	3	18.8	3170	27.91	-4.48	23.43	46.00	-22.57	QP		
6	5	56.7	7744	25.00	0.37	25.37	46.00	-20.63	QP		

EUT	Mobile phone	Model Name	X601
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 3	Test Date	August 16, 2016

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.8535	24.31	2.92	27.23	40.00	-12.77	QP
2		50.9420	36.01	-9.10	26.91	40.00	-13.09	QP
3		123.6984	17.54	-2.18	15.36	43.50	-28.14	QP
4		175.6516	23.56	-4.97	18.59	43.50	-24.91	QP
5	,	321.0605	26.17	-4.53	21.64	46.00	-24.36	QP
6	ļ	576.6443	27.27	0.64	27.91	46.00	-18.09	QP

5.2.5.2 TEST RESULTS(1GHZ TO 6GHZ)

EUT	Mobile phone	Model Name	X601
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1
Test Date	August 16, 2016		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
1632.45	V	60.15	39.98	74	54	-13.85	-14.02
2829.27	V	58.00	40.66	74	54	-16.00	-13.34
1684.52	Н	58.58	39.62	74	54	-15.42	-14.38
2831.6	Н	58.74	39.74	74	54	-15.26	-14.26

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X601
Temperature	12() (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2
Test Date	August 16, 2016		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
1583.35	V	58.67	39.18	74	54	-15.33	-14.82
2641.52	V	58.48	40.30	74	54	-15.52	-13.70
1628.42	Н	58.02	39.61	74	54	-15.98	-14.39
2810.39	Н	59.42	40.42	74	54	-14.58	-13.58

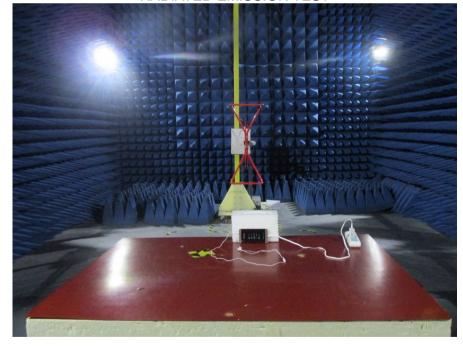
Remark:

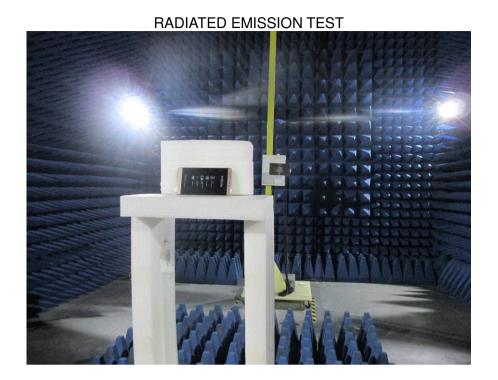
All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier. All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X601
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3
Test Date	August 16, 2016		

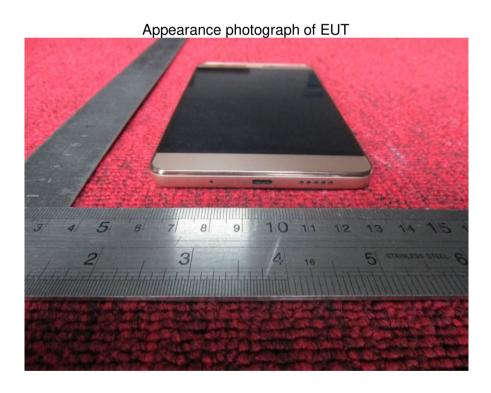
Freq. (MHz)	Ant. Pol.	Emis Level(ssion dBuV)	Limit 3m(dBuV/m)		Over(dB)	
(/	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	60.79	41.06	74	54	-13.21	-12.94
2652.38	V	59.69	39.47	74	54	-14.31	-14.53
1699.33	Н	59.99	39.81	74	54	-14.01	-14.19
2739.42	Н	58.44	39.44	74	54	-15.56	-14.56

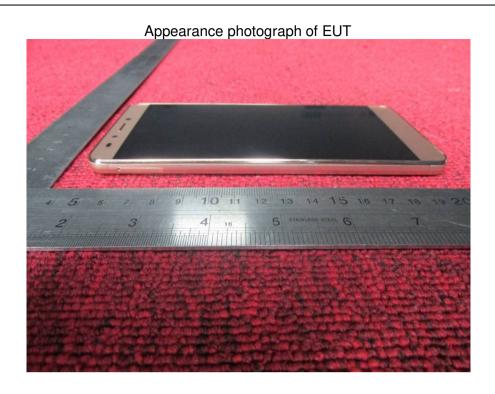
Remark:

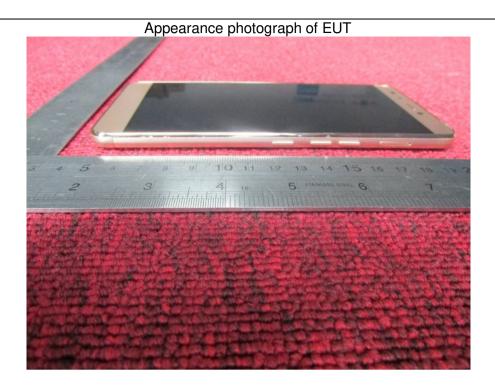

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier. All the x/y/z orientation has been investigated, and only worst case is presented in this report.

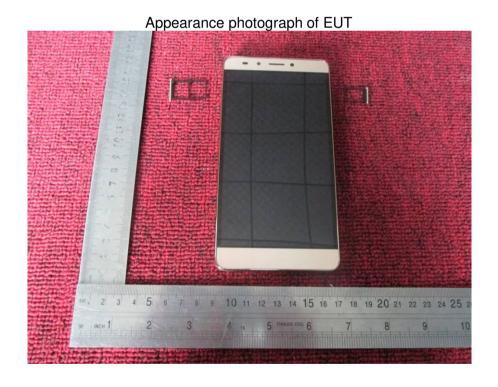

6. EUT TEST PHOTO

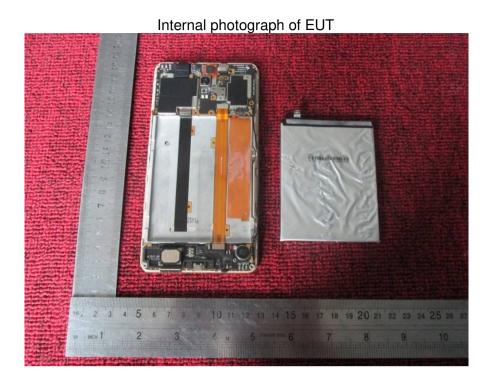
RADIATED EMISSION TEST

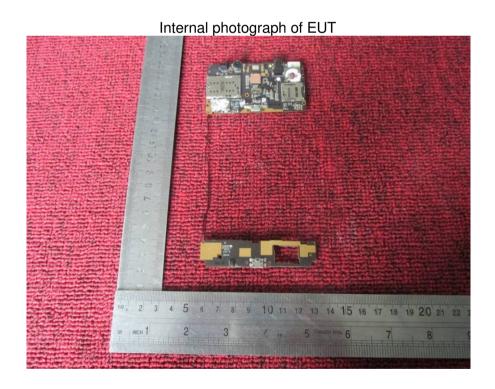


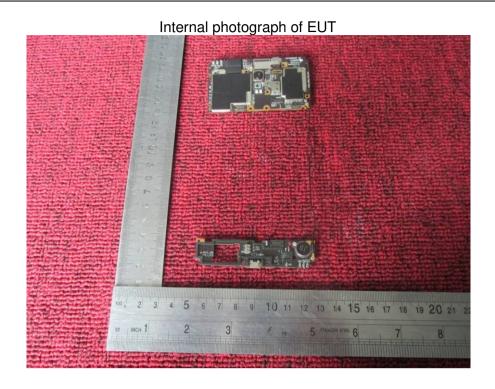

7. PHOTOGRAPHS OF EUT

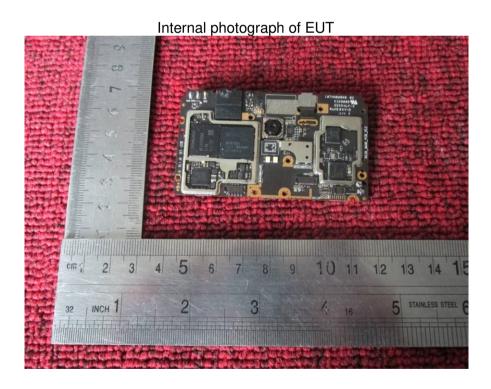


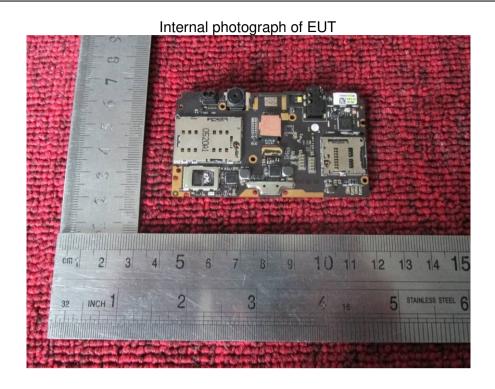


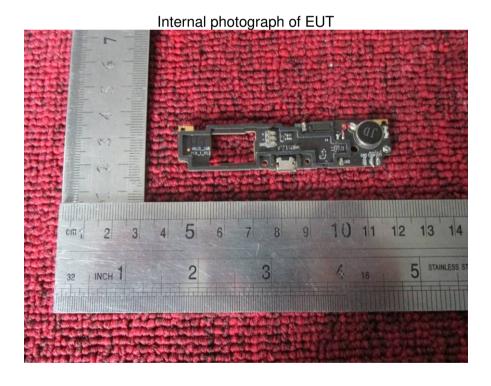


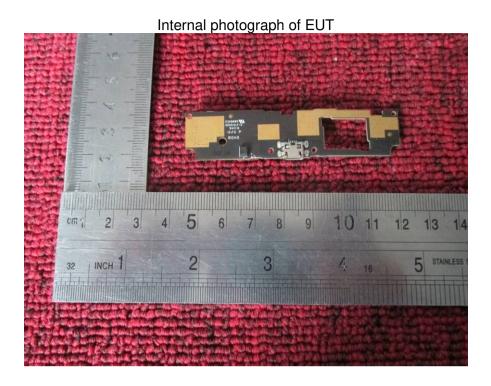


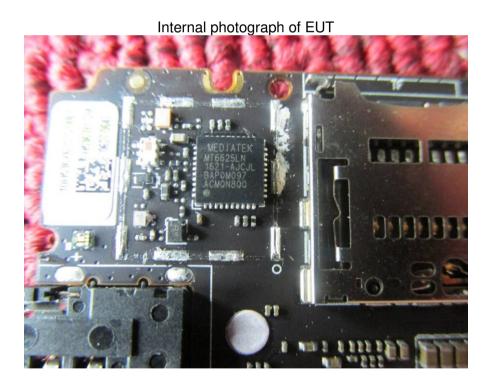


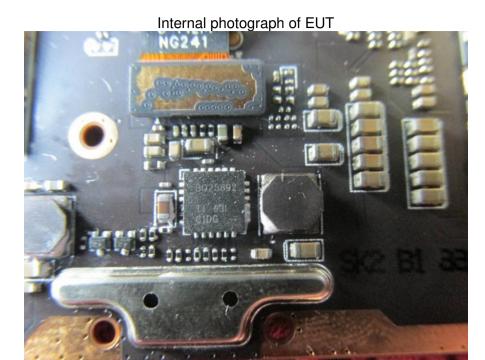


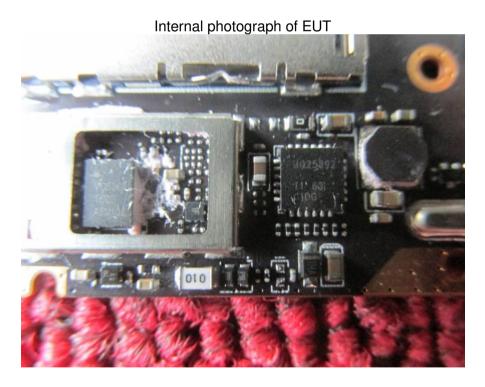


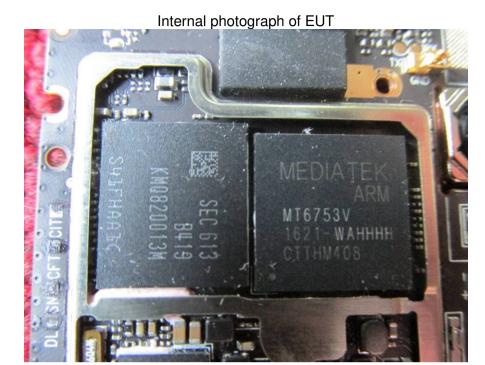


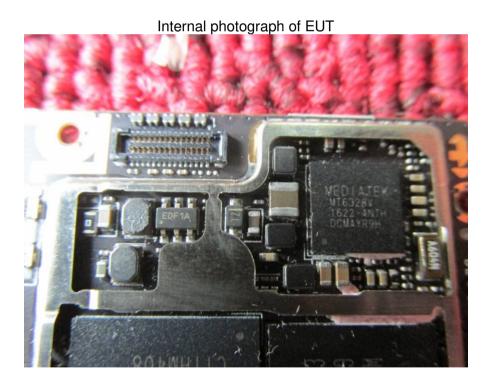


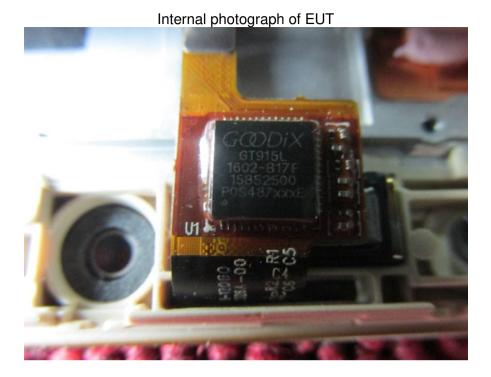












---END OF REPORT---