FCC Test Report

Application Purpose	:	Original grant
Applicant Name:	:	INFINIX MOBILITY LIMITED
FCC ID	:	2AIZN-X571
Equipment Type	:	Mobile phone
Model Name	:	X571
Report Number	:	FCC17060520A-7
Standard(S)	:	FCC Part 15 Subpart E
Date Of Receipt	:	June 14, 2017
Date Of Issue	:	June 30, 2017

:

:

:

:

Test By

Dekun Liu (Dekun Liu)

Reviewed By

Authorized by

Prepared by

Sol Gin (Sol Qin)

(Michal Ling)

QTC Certification & Testing Co., Ltd. 2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an District,,Shenzhen,518000 Registration Number: 588523

	SE RECORD			
Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	June 30, 2017	Valid	Original Report

Table of Contents	Page
 1. GENERAL INFORMATION 8. BAND EDGE EMISSIONS 8. 1 Test Equipment 8. 2 Test Procedure 8. 3 Test Setup 8. 4 Configuration of the EUT 8. 5 EUT Operating Condition 8. 6 Limit 8. 7 Test Result 	4 7 7 7 7 7 8 9
9. IN RESTRICTED BAND 10. EUT TEST PHOTO 11. PHOTOGRAPHS OF EUT	17 21 23

1. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

NERAL DESCRIP	
Test Model	X571
Applicant	INFINIX MOBILITY LIMITED
Address	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China
Equipment Type	Mobile phone
Brand Name	Infinix
Hardware version:	V1.1
Software version:	X571-H5311B-N-PR2-170511V85
Extreme Temp. Tolerance	-10℃ to +65℃
Battery information:	Li-Polymer Battery : BL-44AX Voltage: 3.85V Capacity: 4400mAh/4500mAh(min/typ) Limited Charge Voltage: 4.4V
Adapter Information:	Adapter: CQ-25JX Input: AC 100-240V 50/60Hz 0.8A Output: DC 5V 2A/5V 5A Max
Operating Frequency	see the below table
Channels	see the below table
Channel Spacing	see the below table
Modulation Type	see the below table
Antenna Type:	PIFA Antenna
Antenna gain:	-5dBi
Data of receipt	June 14, 2017
Date of test	June 14, 2017 to June 29, 2017
Deviation	None
Condition of Test Sample	Normal

Items	Descr	iption
		iption
Modulation	IEEE 802.11a: OFDM	
	IEEE 802.11n: see the below table	
B / M + / /	IEEE 802.11ac: see the below table	
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK	
	IEEE 802.11ac: OFDM (BPSK / QPSK	/ 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	IEEE 802.11a: OFDM 6,9,12,18,24,36,4	48, and 54 Mbps
	IEEE 802.11n: MCS 0-15 up to 150 Mb	
	IEEE 802.11ac: MCS 0-9 up to 866.7 M	lbps
Frequency Range	Band 1: 5150 MHz ~ 5250 MHz	
	Band 4: 5725 MHz ~ 5850 MHz	
Channel Number	13 for 20MHz bandwidth ; 6 for 40MHz	bandwidth ;
Communication Mode	☐IP Based (Load Based)	Frame Based
TPC Function	With TPC	Without TPC
Weather Band	With 5600~5650MHz	Without 5600~5650MHz
Beamforming Function	With beamforming	Without beamforming
Operating Mode	Outdoor access point	Indoor access point
	Fixed point-to-point access points	Mobile and portable client devic
		— ·
		Slave with radar detection

Antenna	One (TX)				
Band width Mode	20 MHz	40 MHz			
IEEE 802.11a	V	Х			
IEEE 802.11n	V	V			
IEEE 802.11ac	V	V			

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1	MCS 0-15
802.11n (HT40)	1	MCS 0-15
802.11ac (HT20)	1	MCS 0-9
802.11ac (HT40)	1	MCS 0-9

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40. Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

HT20/HT40/: IEEE 802.11ac

We hereby certify that:

All measurement facilities used to collect the measurement data are located at QTC Certification & Testing Co., Ltd.

Registration Number: 588523

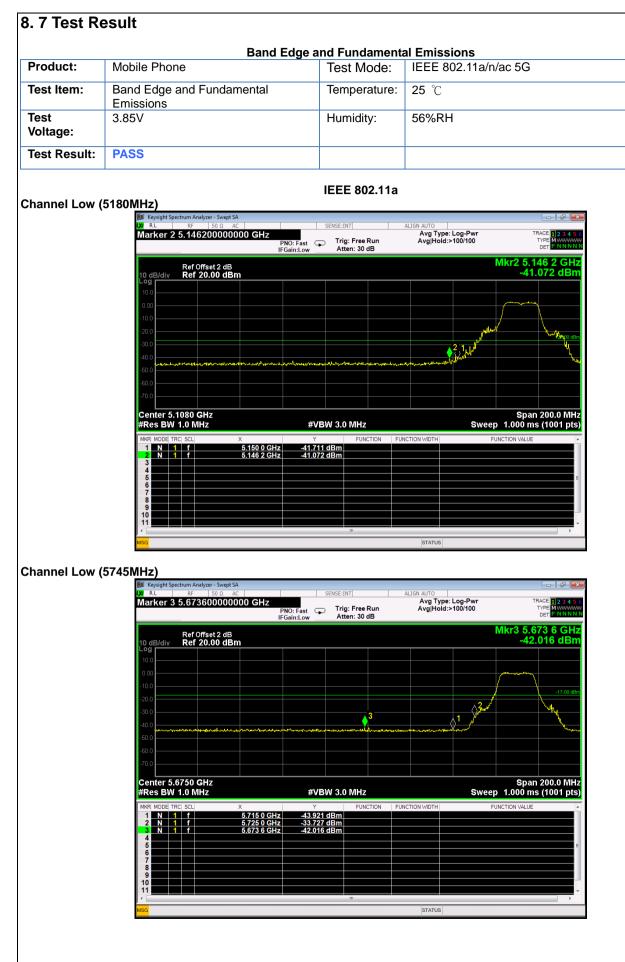
The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2014 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart E. All the testing was referenced KDB NO. 789033.

The test results of this report relate only to the tested sample identified in this report.

8. BAND EDGE EMISSIONS

8. 1 Test Equipment Please refer to Section 4 this report.

8. 2 Test Procedure

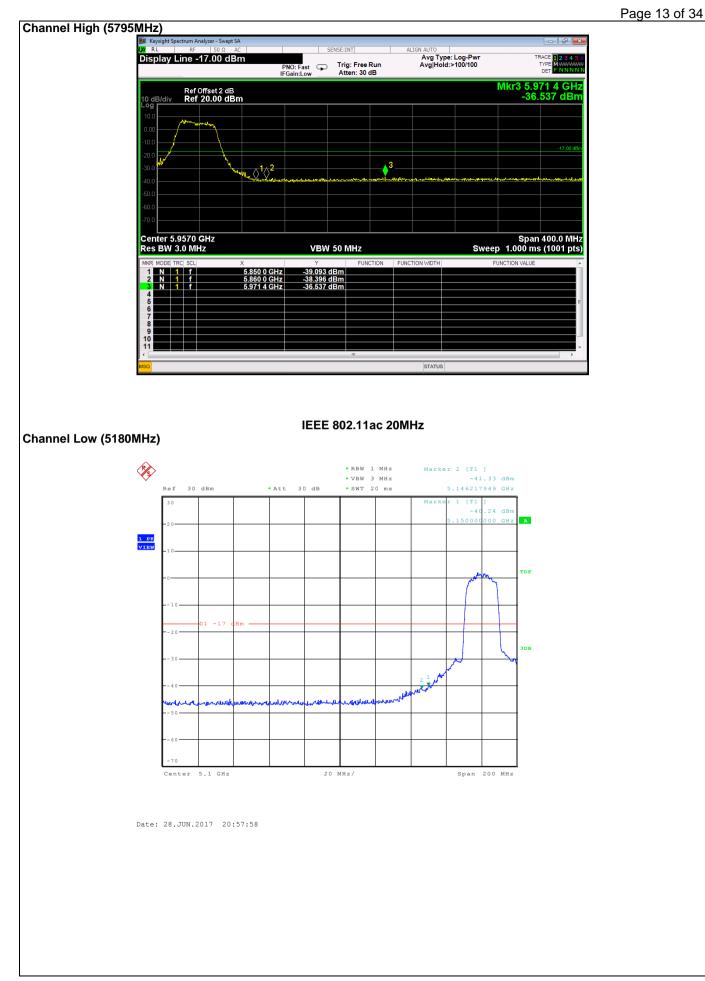

Test Method:	a.)The EUT was tested accordi	ng to ANSI C63.10.				
	b)The EUT, peripherals were p	ut on the turntable which table size is 1m x 1.5 m, table high				
		<u>1.5</u> m. All set up is according to ANSI C63.10.				
	 to <u>150</u> kHz are quasi-peak va <u>150</u> kHz to <u>30</u> MHz are quas readings from <u>30</u> MHz to <u>1</u> G KHz. All readings are above Measurements were made a d) The emissions from the EUT turntable. The Receiving ante emission for each frequency. antenna while emission abov antenna. e) Maximizing procedure was p compliance is with all installa detection mode. Quasi-peak be marginal (within -4 dB of s data table. f)Each emission was to be max both 	were measured continuously at every azimuth by rotating the enna high is varied from <u>1</u> m to <u>4</u> m high to find the maximum Emissions below 30MHz were measured with a loop e 30MHz were measured using a broadband E-field erformed on the six (6) highest emissions to ensure EUT tion combinations. All data was recorded in the peak readings was performed only when an emission was found to specification limit), and are distinguished with a " QP " in the imized by changing the polarization of receiving antenna				
		r to find out the max. emission, the relative positions of this hrough three orthogonal axes according to the				
	requirements in					
	Section 8 and 13 of ANSI C63	.10.				
Band Edge Em	issions Measurement:					
Test Equipment	Setting:					
a)Attenuation: A		d)RBW/VBW(Emission in non-restricted band)				
b)Span Frequer		1MHz / 3MHz for peak				
, ,	mission in restricted band):					
1MHz / 3MHz fo	r Peak.					

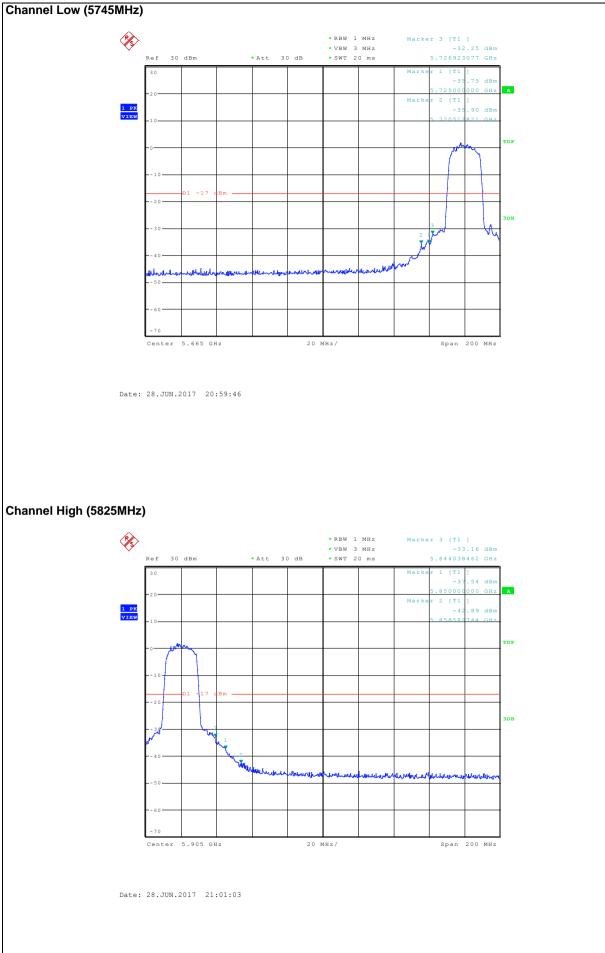
8. 3 Test Setup Same as section 2.2 of this report

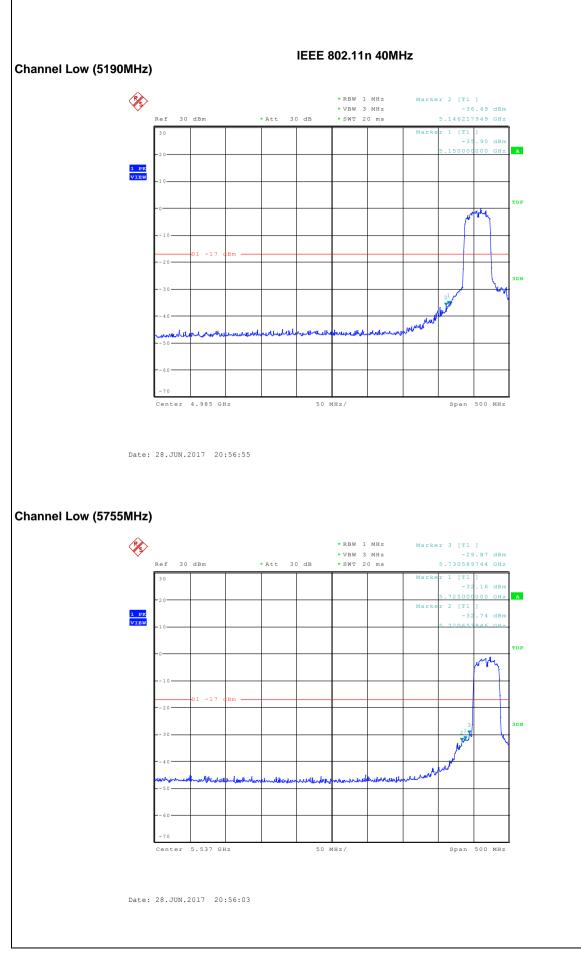
8. 4 Configuration of the EUT Same as section 2.2 of this report

8. 5 EUT Operating Condition Same as section 2.2 of this report.

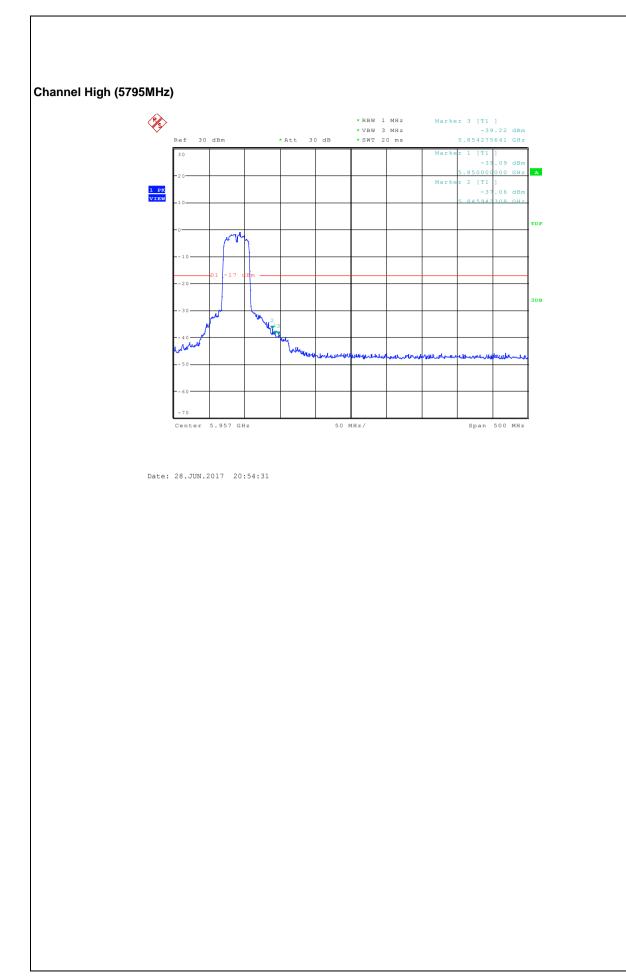
ote: pplies to harmon ermitted average	 ed Emission & Band Edge Emissions Measurement: For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
ote: oplies to harmon ermitted average	 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
oplies to harmorermitted average	 (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
ermitted average	 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
pplies to harmor ermitted average	 band edge increasing linearly to a level of 27 dBm/MHz at the band edge. (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020. hics/spurious emissions that fall in the restricted bands listed in section 15.205. The maximum
pplies to harmonermitted average	demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
pplies to harmonermitted average	nics/spurious emissions that fall in the restricted bands listed in section 15.205. The maximum
ermitted average	
in average detec	e field strength is listed in section 15.209. (c): The emission limits as specified above are based on measurement instrument employing tor. The provisions in section 15.35 for limiting peak emissions apply.


Report No.: FCC17060520A-7




Page 11 of 34

MHz)						
Keysight Spectrum Analyzer - S	Ω AC	SENSE:INT	ALIGN AUTO	Les Dur	TRACE	
Marker 2 5.144000	PI	NO: Fast 😱 Trig: Free Ru Gain:Low #Atten: 30 d	Avg Type: un Avg Hold:> B	Log-Pwr 100/100	TRACE 123 TYPE MWW DET PN	
Ref Offset2 10 dB/div Ref 12.00	2 dB) dBm			Mkr2 5	5.144 0 C 84.695 d	
10 dB/div Ref 12.00						
-8.00						
-28.0				2 ¹	-27	
-38.0 -48.0	anne da ann ta Usersta Inn ann	talesader the state and the second	ggygganen styr mgur milinie had	herene any gray for a free		
-58.0						
-78.0						
Center 4.9825 GHz #Res BW 1.0 MHz		#VBW 3.0 MHz		Sp Sweep 1.000	an 500.0 ms (1001	
MKR MODE TRC SCL	× 5.150 0 GHz 5.144 0 GHz	Y FUNCT -31.325 dBm	ION FUNCTION WIDTH	FUNCTION VAL	UE	
2 N 1 f 3 4	5.144 0 GHz	-34.695 dBm				
5 6 7						
8 9 10						
11						
<		m				
MHz) Keysight Spectrum Analyzer - 3 W RL RF 50 Display Line -17.00	Ω AC D dBm	SENSE:INT	ALIGN AUTO Avg Type: un Avg(Type:	Log-Pwr 100/100	TRACE 1 2	
Keysight Spectrum Analyzer - S	Ω AC) dBm Pt		ALIGN AUTO Avg Type: un Avg[Hold:	100/100	TRACE 22 TYPE MW DET F.N	
Keysight Spectrum Analyzer - 5 Keysight Spectrum Analyzer - 5 Display Line -17.00 Ref Offset 2 Ref Offset 2	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg[Hold:	100/100 Mkr3 5	TRACE 1 2 TYPE MWA DET P N	
Keysight Spectrum Analyzer - S RL RF S0 Display Line -17.00 Ref Offset 1 Ref 20.00 Ref 20.00 Ref 20.00 Ref 20.00 Log Ref 20.00 Ref 20.00 Ref 20.00	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg[Hold:	100/100 Mkr3 5	TRACE 1 2 TYPE MWA DET P N	
Keysight Spectrum Analyzer - S W RL RF S0 Display Line -17.00 Ref Offset / Log Ref 20.00	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg[Hold:	100/100 Mkr3 5	TRACE 12 TYPE MM DET IP N 0.614 5 0 12.574 d	
Keysight Spectrum Analyzer - S Image: Construction of the system Image: Construction of the system Ref Offset Construction of the system Ref Offset Construction of the system Ref Offset Construction of the system Construction of the system <	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2 TYPE M W DET P N 5.614 5 (12.574 d	
Keysight Spectrum Analyzer - S RL RF S0 Display Line -17.00 Ref Offset 1 S0 Ref Offset 2 Ref Offset 2 S0 S0 IO B B S0 S0 IO B S0 S0 S0 S0 IO B S0 S0 <t< td=""><td>Ω AC D dBm Ph IFC 2 dB</td><td>SENSE:INT</td><td>ALIGN AUTO Avg Type: un Avg[Hold:</td><td>100/100 Mkr3 5</td><td>TRACE 1 2 TYPE M W DET P N 5.614 5 (12.574 d</td></t<>	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg[Hold:	100/100 Mkr3 5	TRACE 1 2 TYPE M W DET P N 5.614 5 (12.574 d	
Keysight Spectrum Analyzer - S RL RF S0 Display Line -17.00 Ref Offset / S0 Ref Offset / Ref 20.00 S0 10 B S0 S0 -10	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2 TYPE M W DET P N 5.614 5 (12.574 d	
Keysight Spectrum Analyzer - 5 R L RF 50 Display Line - 17.00 Ref Offset 2 10 Ref 20.00 R dB/div Ref 20.00 10	Ω AC D dBm Ph IFC 2 dB	SENSE:INT	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2 TYPE M WI DET P N 5.614 5 (42.574 d	
Keysight Spectrum Analyzer - 5 Rt RF 50 Display Line - 17.00 Ref Offset 2 50 Ref Offset 2 8 9 10 Ref Offset 2 9 9 10 10 Ref Offset 2 9 10 10 10 10 20.00 9 9 9 10	Ω AC D dBm Ph IFC 2 dB	SENSE:INT O: Fast ain:Low Trig: Free R #Atten: 30 d	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47	
Keysight Spectrum Analyzer - 5 Off RL RF 50 Display Line - 17.00 Ref Offset 2 50 Ref Offset 2 Ref Offset 2 60 60 60 60 60 60 60 60 60 70.0 70.0 <th 70.0<="" td="" th<=""><td>α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C</td><td>O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm</td><td>ALIGN AUTO Avg Type: un Avg Hold:> B</td><td>100/100 Mkr3 5 -4</td><td>TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47</td></th>	<td>α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C</td> <td>O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm</td> <td>ALIGN AUTO Avg Type: un Avg Hold:> B</td> <td>100/100 Mkr3 5 -4</td> <td>TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47</td>	α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C	O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47
Keysight Spectrum Analyzer - 50 Ref Offset 2 Off RL RF 50 Display Line - 17.00 Sef Offset 2 Ref Offset 2 Sef Offset 2 10 dB/div Ref Offset 2 10 dB/div Ref 20.00 -0.0 Sef Offset 2 -0.0 Sef Offset 2 </td <td>α AC D dBm P IFC 2 dB D dBm</td> <td>SENSE:INT O: Fast ain:Low Trig: Free R #Atten: 30 d</td> <td>ALIGN AUTO Avg Type: un Avg Hold:> B</td> <td>100/100 Mkr3 5 -4</td> <td>TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47</td>	α AC D dBm P IFC 2 dB D dBm	SENSE:INT O: Fast ain:Low Trig: Free R #Atten: 30 d	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47	
Keysight Spectrum Analyzer - So Ref RF So Display Line - 17.000 Ref Offset 2 So Ref Offset 2 So So 10 dB/div Ref Offset 2 So 10.0	α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C	O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2 : TYPE NW 0 ET 2 N 1.614 5 C 42.574 d 	
Keysight Spectrum Analyzer - 5 Rt RF 50 Display Line - 17.000 Ref Offset 2 50 Ref Offset 2 80 80 80 Ref Offset 2 90 10 <th10< th=""> 10 10</th10<>	α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C	O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47	
Keysight Spectrum Analyzer - 50 RL RF 50 Display Line - 17.000 Ref Offset 2 50 Ref Offset 2 Ref Offset 2 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 70.0 70.0 <th 70.0<="" td="" th<=""><td>α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C</td><td>O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm</td><td>ALIGN AUTO Avg Type: un Avg Hold:> B</td><td>100/100 Mkr3 5 -4</td><td>TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47</td></th>	<td>α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C</td> <td>O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm</td> <td>ALIGN AUTO Avg Type: un Avg Hold:> B</td> <td>100/100 Mkr3 5 -4</td> <td>TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47</td>	α AC D dBm P IFC 2 dB D dBm C C C C C C C C C C	O: Fast AO: Fast ain:Low Trig: Free R #Atten: 30 dl #Atten: 30 dl #VBW 3.0 MHz Y FUNCT 41.473 dBm -36.860 dBm	ALIGN AUTO Avg Type: un Avg Hold:> B	100/100 Mkr3 5 -4	TRACE 1 2: TYPE MW 0 ET 2 M 5.614 5 (42.574 d -47 -47 -47 -47 -47 -47 -47 -47



Report No.: FCC17060520A-7

Report No.: FCC17060520A-7

9. IN RESTRICTED BAND

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205

Test Method: KDB 789033 D02 v01r04 Section G.2

- a) For all measurements, follow the requirements in II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in II.G.4. "Procedure for Unwanted Emissions Measurements Below 1000 MHz."
- c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in II.G.5., "Procedure for Unwanted Emissions Measurements Above 1000 MHz."
- (i) Sections 15.407(b)(1) to (b)(3) specify the unwanted emission limits for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of 27 dBm/MHz.3
- (ii) Section 15.407(b)(4) specifies the unwanted emission limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are in terms of a Peak detector. An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the devices using the alternative limit.4
- d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
- (i) $EIRP = ((E \times d)^2) / 30$ where:

E is the field strength in V/m;

d is the measurement distance in meters;

EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to:

 $EIRP[dBm] = E[dB\mu V/m] + 20 \log (d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] -95.2$

§15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

Page 18 of 34

Test result

802.11a

Band1:5180MHz

Indica	ited		Antenna	Corr	ection Fa	ctor			
Frequency (MHz)	Receiver Reading (dBµV/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5150	30.83	AV	V	30.3	4.1	33.1	32.13	54	21.87
5150	29.61	AV	н	30.3	4.1	33.1	30.91	54	23.09
5150	40.20	PK	V	30.3	4.1	33.1	41.50	74	32.50
5150	40.13	PK	н	30.3	4.1	33.1	41.43	74	32.57
						-		•	
5050	31.13	AV	V	31	4.4	32.7	33.83	54	20.17
5050	30.13	AV	Н	31	4.4	32.7	32.83	54	21.17
5050	39.42	PK	V	31	4.4	32.7	42.12	74	31.88
5050	39.28	PK	Н	31	4.4	32.7	41.98	74	32.02

802.11n/H20 Band1:5180MHz

Indicated			Antenna	Corr	ection Fa	ictor				
Frequency (MHz)	Receiver Reading (dBµV/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
5150	34.99	AV	V	30.3	4.1	33.1	36.29	54	17.71	
5150	34.55	AV	н	30.3	4.1	33.1	35.85	54	18.15	
5150	49.76	PK	V	30.3	4.1	33.1	51.06	74	22.94	
5150	52.00	PK	Н	30.3	4.1	33.1	53.30	74	20.70	
5050	31.56	AV	V	31	4.4	32.7	34.26	54	19.74	
5050	30.48	AV	Н	31	4.4	32.7	33.18	54	20.82	
5050	41.19	PK	V	31	4.4	32.7	43.89	74	30.11	
5050	40.99	PK	Н	31	4.4	32.7	43.69	74	30.31	

802.11ac/H20 Band1:5180MHz

Indicated		Antenna	Corr	ection Fa	ctor					
Receiver Reading (dBµV/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
37.92	AV	V	30.3	4.1	33.1	39.22	54	14.78		
36.64	AV	Н	30.3	4.1	33.1	37.94	54	16.06		
52.38	PK	V	30.3	4.1	33.1	53.68	74	20.32		
52.62	PK	Н	30.3	4.1	33.1	53.92	74	20.08		
33.63	AV	V	31	4.4	32.7	36.33	54	17.67		
33.52	AV	Н	31	4.4	32.7	36.22	54	17.78		
45.91	PK	V	31	4.4	32.7	48.61	74	25.39		
45.63	PK	Н	31	4.4	32.7	48.33	74	25.67		
	ted Receiver Reading (dBµV/m) 37.92 36.64 52.38 52.62 33.63 33.52 45.91	ted Receiver Reading (dBμV/m) 37.92 AV 36.64 AV 52.38 PK 52.62 PK 33.63 AV 33.52 AV 45.91 PK	ted Receiver Reading (dBμV/m) 37.92 AV V 36.64 AV H 52.38 PK V 52.62 PK H 33.63 AV V 33.52 AV H 45.91 PK V	ted result (PK/AV) Antenna Polar (H/V) Corr 37.92 AV V Ant. Factor (dB/m) 37.92 AV V 30.3 36.64 AV H 30.3 52.38 PK V 30.3 52.62 PK H 30.3 33.63 AV V 31 33.52 AV H 31 45.91 PK V 31	ted result (PK/AV) Antenna Polar (H/V) Correction Fa 37.92 AV V Ant. Factor (dB/m) Cable Loss (dB) 37.92 AV V 30.3 4.1 36.64 AV H 30.3 4.1 52.38 PK V 30.3 4.1 52.62 PK H 30.3 4.1 33.63 AV V 31 4.4 33.52 AV H 31 4.4 45.91 PK V 31 4.4	tedresult PK/AV)Antenna Polar (H/V)Correction FactorAnt. Factor (dB,m)Cable Loss (dB)Pre-Amp. Gain (dB)37.92AVV30.34.136.64AVH30.34.133.152.38PKV30.34.133.152.62PKH30.34.133.133.63AVV314.432.733.52AVH314.432.745.91PKV314.432.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

802.11n/H40 Band1:5190MHz

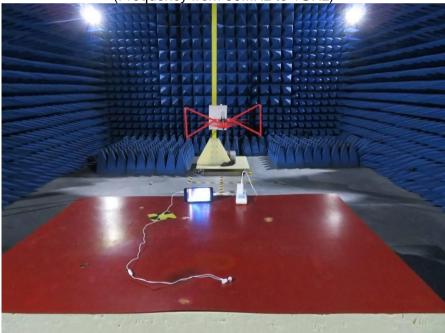
Indicated			Antenna	Corr	ection Fa	ictor				
Frequency (MHz)	Receiver Reading (dBµV/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
5150	29.25	AV	V	30.3	4.1	33.1	30.55	54	23.45	
5150	29.60	AV	н	30.3	4.1	33.1	30.90	54	23.10	
5150	42.00	PK	V	30.3	4.1	33.1	43.30	74	30.70	
5150	41.49	PK	н	30.3	4.1	33.1	42.79	74	31.21	
5050	30.43	AV	V	31	4.4	32.7	33.13	54	20.87	
5050	32.03	AV	Н	31	4.4	32.7	34.73	54	19.27	
5050	40.75	PK	V	31	4.4	32.7	43.45	74	30.55	
5050	41.32	PK	Н	31	4.4	32.7	44.02	74	29.98	

802.11ac/H40 Band1:5190MHz

Dand 1.5 150 Mill2										
Indicated			Antenna	Corr	ection Fa	ctor				
Frequency (MHz)	Receiver Reading (dBµV/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
5150	34.39	AV	V	30.3	4.1	33.1	35.69	54	18.31	
5150	34.75	AV	Н	30.3	4.1	33.1	36.05	54	17.95	
5150	51.81	PK	V	30.3	4.1	33.1	53.11	74	20.89	
5150	49.27	PK	Н	30.3	4.1	33.1	50.57	74	23.43	
5050	30.42	AV	V	31	4.4	32.7	33.12	54	20.88	
5050	29.48	AV	Н	31	4.4	32.7	32.18	54	21.82	
5050	41.39	РК	V	31	4.4	32.7	44.09	74	29.91	
5050	41.12	PK	Н	31	4.4	32.7	43.82	74	30.18	

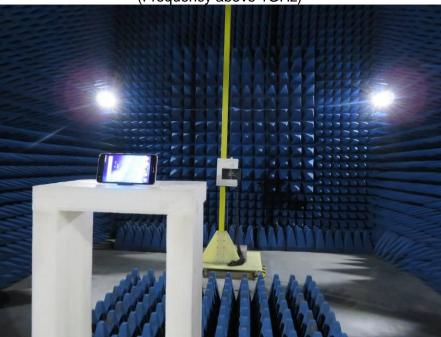
Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

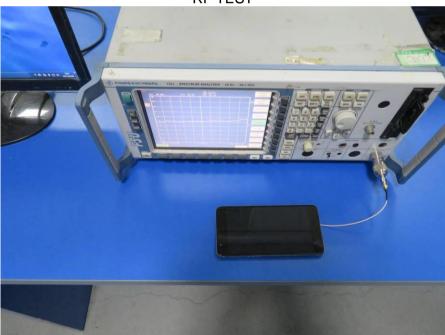

And only worst case is presented in this report.

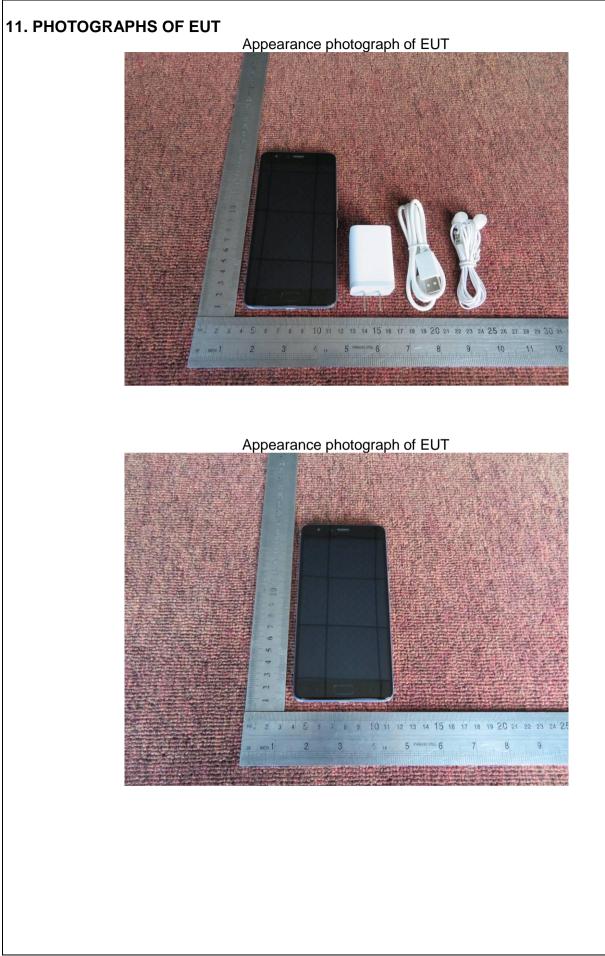
10. EUT TEST PHOTO

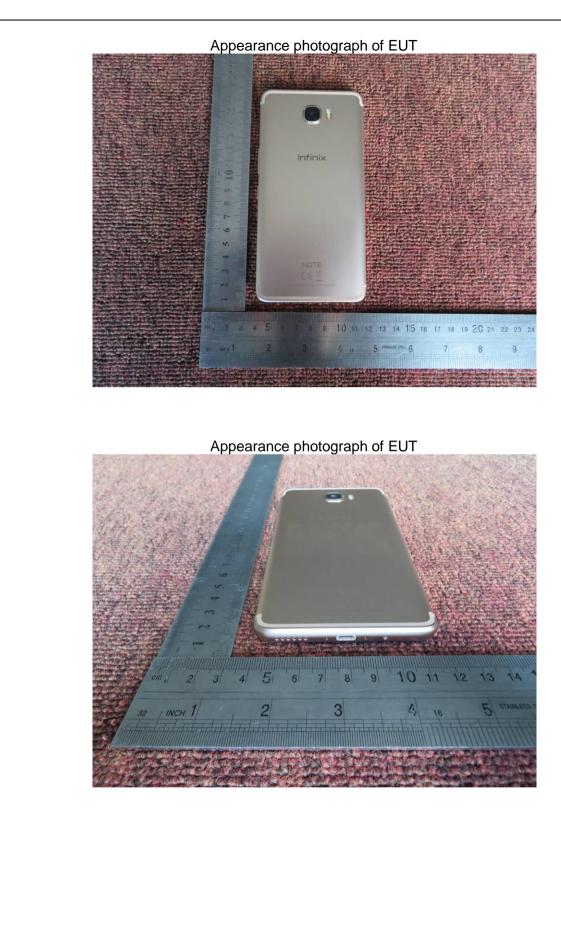
CONDUCTED EMISSION TEST



RADIATED EMISSION TEST (Frequency from 30MHz to 1GHz)



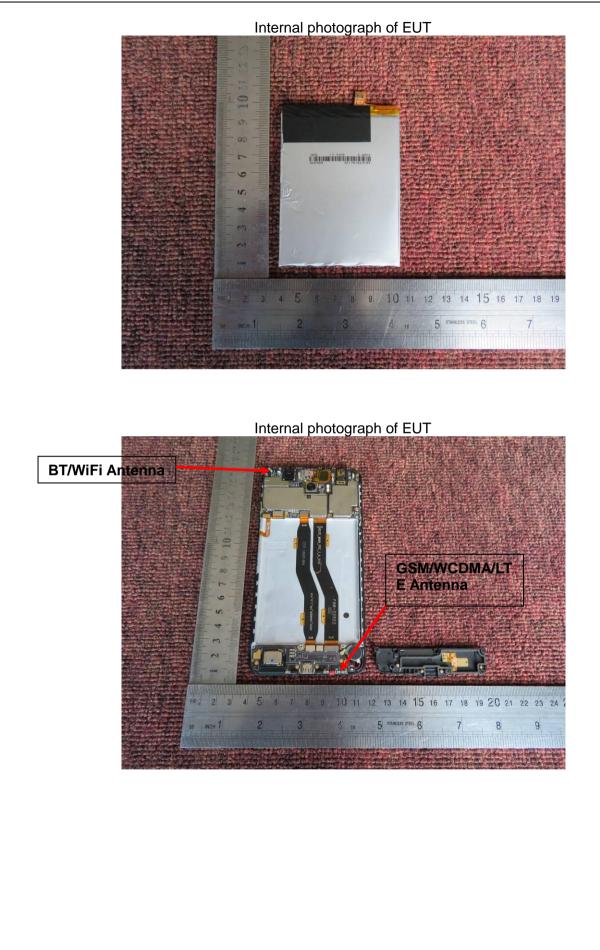

Page 22 of 34


RADIATED EMISSION TEST (Frequency above 1GHz)

RF TEST

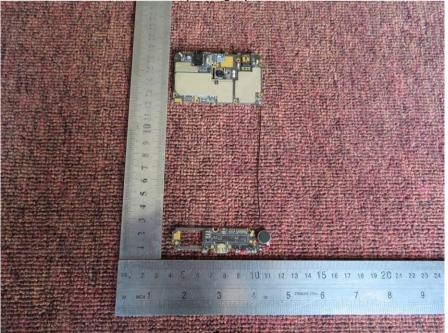
Page 25 of 34

Internal photograph of EUT


Page 27 of 34

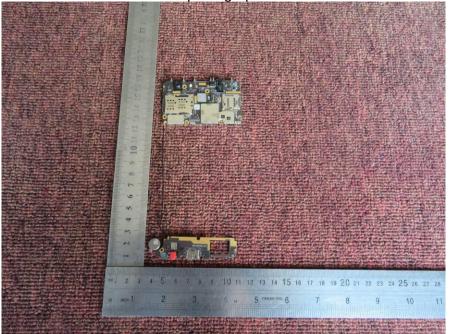
Internal photograph of EUT

Page 28 of 34

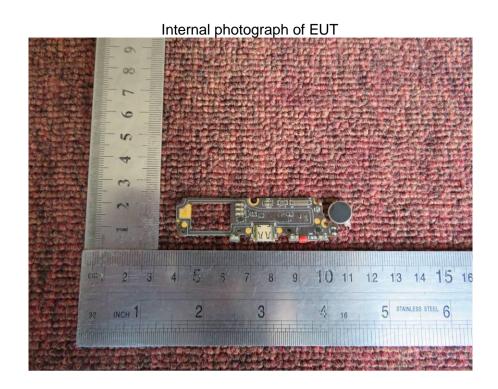


Report No.: FCC17060520A-7

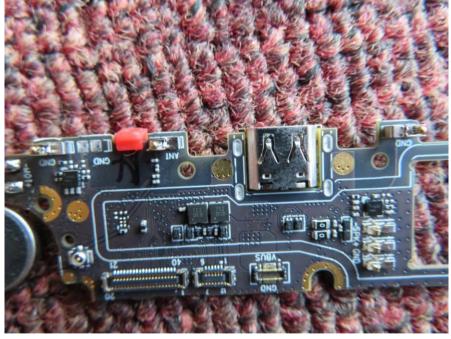
Internal photograph of EUT

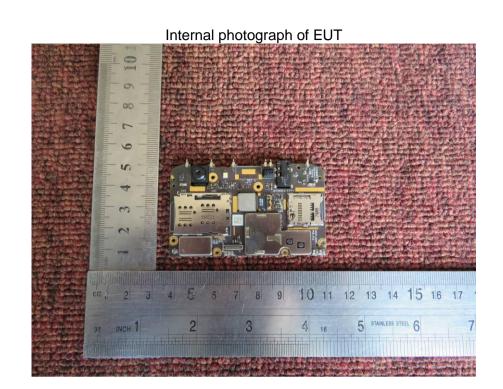

Internal photograph of EUT

Report No.: FCC17060520A-7

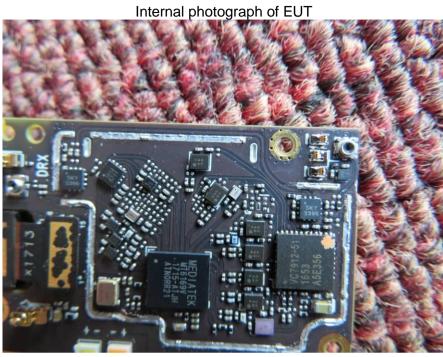

Page 30 of 34

Internal photograph of EUT

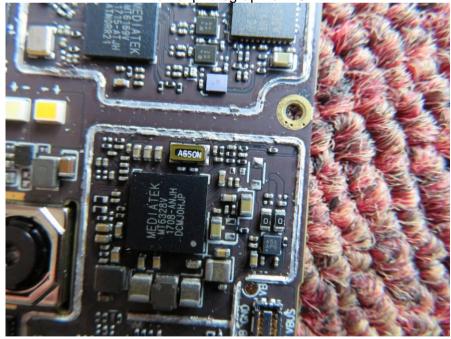


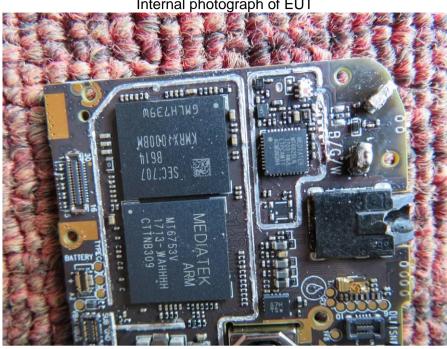

Internal photograph of EUT

Internal photograph of EUT



Internal photograph of EUT





Report No.: FCC17060520A-7

Internal photograph of EUT

Internal photograph of EUT

---END OF REPORT---