FCC Report

Application Purpose : Original grant

Applicant Name: : INFINIX MOBILITY LIMITED

FCC I D : 2AIZN- X556

Equipment Type : Mobile phone

Model Name : X556

Report Number : FCC16083919A-4

Standard(S) : FCC Part 15 Subpart B

Date Of Receipt : August 19, 2016

Date Of Issue : September 29, 2016

Test By :

(Daisy Qin)

Reviewed By :

(Sol Qin)

Authorized by :

(Michal Ling)

Prepared by : QTC Certification & Testing Co., Ltd.

2nd Floor, Bl Building, Fengyeyuan Industrial Plant,,

Liuxian 2st. Road, Xin'an Street, Bao'an

District,, Shenzhen, 518000

Registration Number: 588523

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	September 29, 2016	Valid	Original Report
V1.1	/	October 13, 2016	Valid	Original Report

Table of Contents	Page
1. GENERAL INFORMATION	4
2. TEST DESCRIPTION	6
2.1 MEASUREMENT UNCERTAINTY	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 CONFIGURATION OF SYSTEM UNDER TEST	8
2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	8
	_
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
5.1.2 TEST PROCEDURE	13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 TEST SETUP	13
5.1.5 EUT OPERATING CONDITIONS	13
5.1.6 TEST RESULTS	14
5.2 RADIATED EMISSION MEASUREMENT	24
5.2.1 RADIATED EMISSION LIMITS	24
5.2.2 TEST PROCEDURE	25
5.2.3 DEVIATION FROM TEST STANDARD	25
5.2.4 TEST SETUP	26
5.2.5 EUT OPERATING CONDITIONS	26
5.2.5.1 TEST RESULTS (BETWEEN 30M - 1000 MHZ)	27
5.2.5.2 TEST RESULTS(1GHZ TO 6GHZ)	37
6. EUT TEST PHOTO	40
7. PHOTOGRAPHS OF EUT	42

1. GENERAL INFORMATION

Test Model	X556	
Applicant	INFINIX MOBILITY LIMITED	
Address	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG	
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.	
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China	
Equipment Type	Mobile phone	
Brand Name	Infinix	
Hardware	V1.3	
Software	X556-H372A1-M-160720V16	
Battery information:	Li-ion Battery : BL-39AX Voltage: 3.85V Capacity: 3950 mAh /4000mAh Limited Charge Voltage: 4.4V	
Adapter Information:	Adapter: A88-502000 Input: 100-240V 50/60Hz 350mA Output: 5V-2A	
Data of receipt	August 19, 2016	
Date of test	August 19, 2016 to September 27, 2016	
Deviation	None	
Condition of Test Sample	Normal	

We hereby certify that:
The above equipment was tested by QTC Certification & Testing Co., Ltd.
2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an
District,,Shenzhen,518000
Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in
accordance with the procedures given in ANSI C 63.4:2014. The sample tested as described in this report
is in compliance with the FCC Rules Part15 Subpart B.
The test results of this report relate only to the tested sample identified in this report.

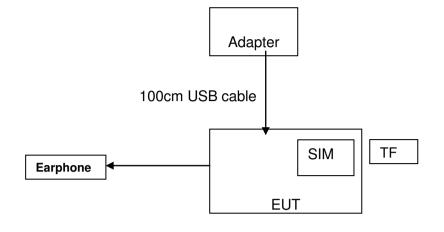
2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

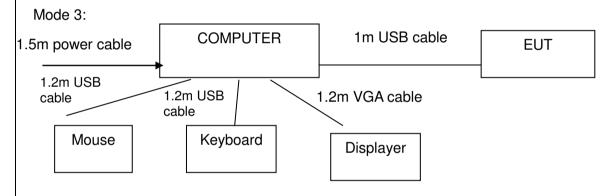
The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	Video Recording	
Model 2	Video Playing	
Mode 3	Exchange data with computer	
Mode 4	GPS	
Mode 5	FM	


For Conducted Emission				
Final Test Mode Test with Keyboard and Mouse				
Mode 1	Video Recording			
Model 2	Video Playing			
Mode 3	Exchange data with computer			
Mode 4	GPS			
Mode 5	FM			

For Radiated Emission				
Final Test Mode	Test with Keyboard and Mouse			
Mode 1	Video Recording			
Model 2 Video Playing				
Mode 3	Exchange data with computer			
Mode 4	GPS			
Mode 5	FM			

2.3 CONFIGURATION OF SYSTEM UNDER TEST Mode 1&2:

(EUT: Mobile phone)

(EUT: Mobile phone)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested w					
Power	1	1m USB cable, unshielded	1		
Earphone	1	1m USB cable, unshielded	1		

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	A88-502000	/	/
2	Keyboard	HP	SK-2880	435302-AA-	/
3	Mouse	DELL	MS111-1	/	/

Note:

- (1) (2)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ${}^{\mathbb{F}}$ Length ${}_{\mathbb{F}}$ column.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 , Subpart B					
Standard Section	I I I I I I I I I I I I I I I I I I I				
15.107	CONDUCTED EMISSION	PASS			
15.109	RADIATED EMISSION	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until
ESCI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
pre-amplifier	CDSI	PAP-1G18-38		08/19/2016	08/18/2017
System Controller	СТ	SC100	-	08/19/2016	08/18/2017
Bi-log Antenna	Chase	CBL6111C	2576	08/19/2016	08/18/2017
Spectrum analyzer	R&S	FSU26	200409	08/19/2016	08/18/2017
Horn Antenna	SCHWARZBECK	9120D	1141	08/19/2016	08/18/2017
Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

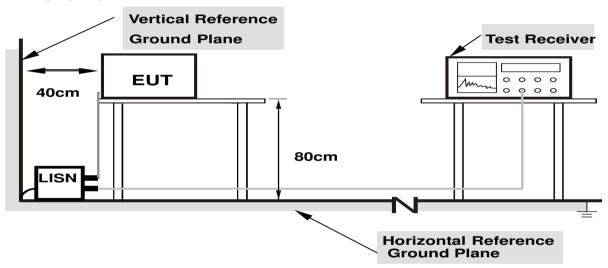
FREQUENCY (MHz)	Class A	(dBuV)	Class B	(dBuV)	Standard
FREQUENCY (MINZ)	Quasi-peak	Average	Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting				
Attenuation	10 dB				
Start Frequency	0.15 MHz				
Stop Frequency	30 MHz				
IF Bandwidth	9 kHz				


5.1.2 TEST PROCEDURE

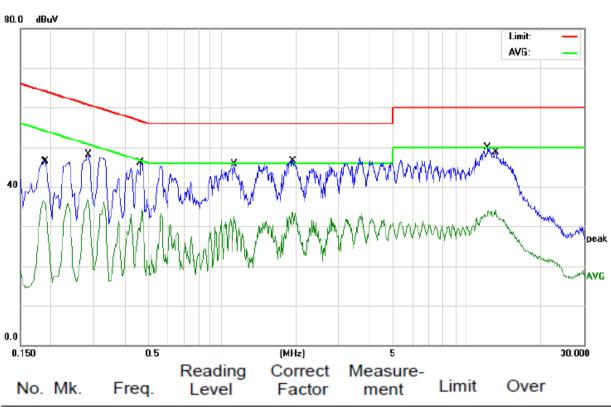
- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

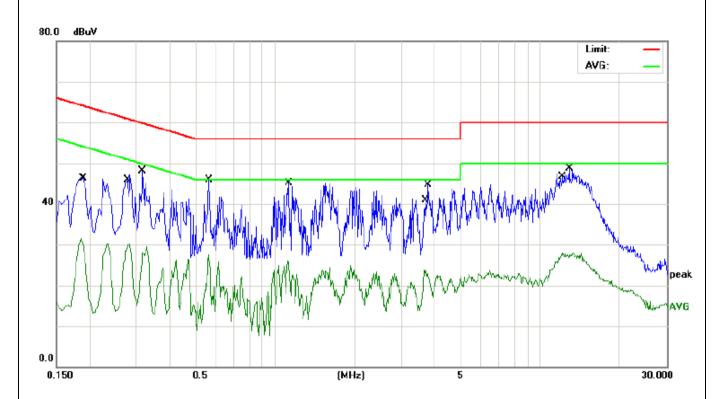
5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.


2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

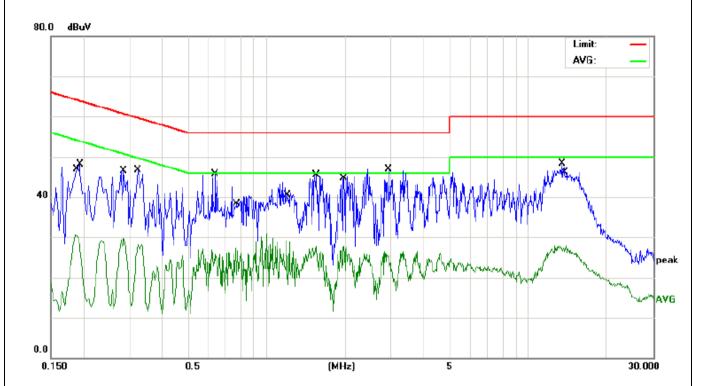
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


5.1.6 TEST RESULTS

EUT	Mobile phone	Model Name	X556
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	August 22, 2016	Test Mode	Mode 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1860	26.16	10.44	36.60	54.21	-17.61	AVG
2		0.1900	36.05	10.44	46.49	64.03	-17.54	QP
3		0.2819	26.51	10.42	36.93	50.76	-13.83	AVG
4		0.2860	37.70	10.42	48.12	60.64	-12.52	QP
5		0.4660	35.79	10.40	46.19	56.58	-10.39	QP
6		0.4700	23.63	10.40	34.03	46.51	-12.48	AVG
7	*	1.1220	35.36	10.33	45.69	46.00	-0.31	AVG
8		1.1220	22.16	10.33	32.49	46.00	-13.51	AVG
9		1.9380	23.31	10.29	33.60	46.00	-12.40	AVG
10		1.9420	36.14	10.29	46.43	56.00	-9.57	QP
11		12.1740	39.66	10.17	49.83	60.00	-10.17	QP
12		13.0740	23.94	10.17	34.11	50.00	-15.89	AVG

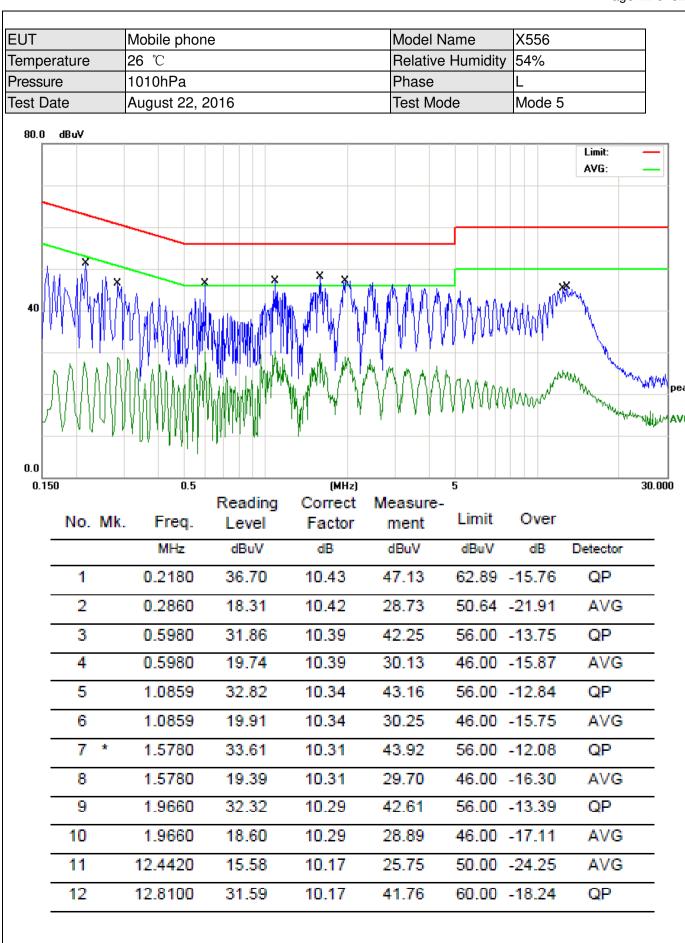
EUT	Mobile phone	Model Name	X556
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 22, 2016	Test Mode	Mode 1

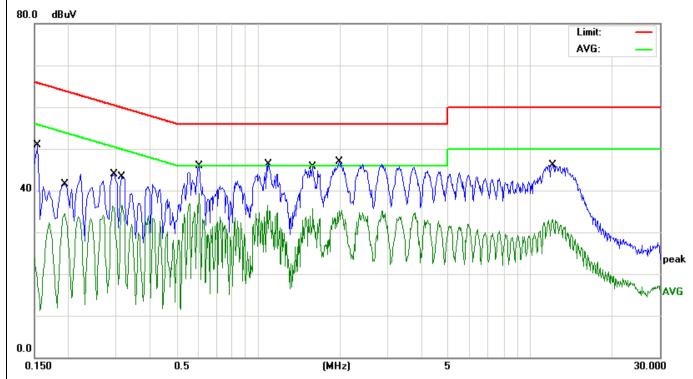

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over
		MHz	dBuV	dB	dBuV	dBu∨	dB
1		0.1860	21.03	10.44	31.47	54.21	-22.74
2		0.1900	35.93	10.44	46.37	64.03	-17.66
3		0.2819	19.90	10.42	30.32	50.76	-20.44
4		0.3180	37.60	10.42	48.02	59.76	-11.74
5	*	0.5660	35.60	10.39	45.99	56.00	-10.01
6		0.5660	17.06	10.39	27.45	46.00	-18.55
7		1.1220	15.70	10.33	26.03	46.00	-19.97
8		1.1300	34.74	10.33	45.07	56.00	-10.93
9		3.6420	13.72	10.26	23.98	46.00	-22.02
10		3.7820	34.51	10.25	44.76	56.00	-11.24
11		12.1780	17.92	10.17	28.09	50.00	-21.91
12		12.9060	38.60	10.17	48.77	60.00	-11.23

EUT	Mobile pho	ne		Model Na	me	X556	
Temperature	26 °C	110				54%	
Pressure	1010hPa			Relative Humidity Phase		I	
Test Date	August 22,	2016		Test Mod	 е	Mode 2	
Tool Balo	ragaot LL,	2010		1000 11100		INIOGO E	
80.0 dBuV						Lin	
						AV	'G:
40		, * ***********************************			NA ALAMANA	HAMIN APPARENCE WAY	
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ \/\/\	AVVVVVV	Manne	pe Av
0.0	7 11 11 11						
0.150	0.5		(MHz)	5			30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2660	37.42	10.43	47.85	61.24	-13.39	QP
2	0.2819	23.64	10.42	34.06	50.76	-16.70	AVG
3	0.3302	20.44	10.42	30.86	49.44	-18.58	AVG
4 *	0.3899	38.51	10.41	48.92	58.06	-9.14	QP
5	0.6180	19.69	10.39	30.08	46.00	-15.92	AVG
6	0.6380	32.60	10.38	42.98	56.00	-13.02	QP
7	1.1220	34.55	10.33	44.88	56.00	-11.12	QP
8	1.1260	21.13	10.33	31.46	46.00	-14.54	AVG
9	1.9500	21.46	10.29	31.75	46.00	-14.25	AVG
10	2.3500	35.17	10.28	45.45	56.00	-10.55	QP
11	12.6178	39.22	10.17	49.39	60.00	-10.61	QP
12	12.8099	23.01	10.17	33.18	50 00	-16.82	AVG

UT	Mobile phor	ne		Model Nan	ne	X556	
Temperature	26 ℃			Relative Humidity		54%	
Pressure	1010hPa			Phase		N	
Test Date	August 22,	2016		Test Mode		Mode 2	
40 dBuV					HAN HANDANAN	Limit: AVG:	- AV
0.0 0.150 No. Mk.	o.s Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1700	44.07	10.44	54.51	64.96	-10.45	QP
2	0.1860	19.50	10.44	29.94	54.21	-24.27	AVG
3	0.2860	17.99	10.42	28.41	50.64	-22.23	AVG
4	0.3100	39.77	10.42	50.19	59.97	-9.78	QP
5	0.4780	36.82	10.40	47.22	56.37	-9.15	QP
6	0.5700	20.01	10.39	30.40	46.00	-15.60	AVG
7	1.0020	19.12	10.34	29.46	46.00	-16.54	AVG
8 *	1.1420	38.01	10.33	48.34	56.00	-7.66	QP
9	1.5460	37.44	10.31	47.75	56.00	-8.25	QP
10	1.9140	18.04	10.29	28.33	46.00	-17.67	AVG
11	12.3660	17.40	10.17	27.57	50.00	-22.43	AVG
				46.81		-13.19	QP

UT	Mobile phone	е		Model Nan	ne	X556	
emperature	26 ℃			Relative Humidity		54%	
ressure	1010hPa			Phase		L	
est Date	August 22, 2	016		Test Mode		Mode 3	
80.0 dBuV						Lin AV	
40				** <u>\</u> *\ <u>*</u> *\	^	Marie and the state of the stat	The same of the sa
0.0	0.5	Reading	(MHz) Correct	Measure-			30.00
No. Mk	. Frea.				Limit	Over	
No. Mk	. Freq.	Level	Factor	ment dBuV	Limit dBuV	Over	Detector
No. Mk		Level	Factor	ment	dBuV		Detector
	MHz	Level dBuV	Factor dB	ment dBuV	dBuV 54.03	dB	
1	MHz 0.1900	dBuV 24.90	Factor dB 10.44	ment dBuV 35.34	dBuV 54.03 60.52	dB -18.69	AVG
1 2	0.1900 0.2900	dBuV 24.90 36.77	10.44 10.42	ment dBuV 35.34 47.19	dBuV 54.03 60.52 56.00	dB -18.69 ! -13.33	AVG QP
1 2 3	0.1900 0.2900 0.5660	dBuV 24.90 36.77 36.70	Factor dB 10.44 10.42 10.39	ment dBuV 35.34 47.19 47.09	dBuV 54.03 60.52 56.00 46.00	dB -18.69 -13.33 -8.91	AVG QP QP
1 2 3 4	0.1900 0.2900 0.5660 0.5740	Level dBuV 24.90 36.77 36.70 22.24	Tactor dB 10.44 10.42 10.39 10.39	ment dBuV 35.34 47.19 47.09 32.63	dBuV 54.03 60.52 56.00 46.00	dB -18.69 -13.33 -8.91 -13.37	QP QP QP AVG
1 2 3 4 5	0.1900 0.2900 0.5660 0.5740 1.5100	Level dBuV 24.90 36.77 36.70 22.24 24.26	Factor dB 10.44 10.42 10.39 10.39 10.31	ment dBuV 35.34 47.19 47.09 32.63 34.57	dBuV 54.03 60.52 56.00 46.00 56.00	dB -18.69 -13.33 -8.91 -13.37 -11.43	QP QP AVG AVG
1 2 3 4 5 6 *	0.1900 0.2900 0.5660 0.5740 1.5100 1.5140	Level dBuV 24.90 36.77 36.70 22.24 24.26 37.80	Factor dB 10.44 10.42 10.39 10.31 10.31	ment dBuV 35.34 47.19 47.09 32.63 34.57 48.11	dBuV 54.03 60.52 56.00 46.00 56.00	dB 3 -18.69 2 -13.33 3 -8.91 3 -13.37 4 -11.43 4 -7.89 4 -14.00	QP QP AVG AVG
1 2 3 4 5 6 *	MHz 0.1900 0.2900 0.5660 0.5740 1.5100 1.5140 2.3740	Level dBuV 24.90 36.77 36.70 22.24 24.26 37.80 21.72	Factor dB 10.44 10.42 10.39 10.31 10.31 10.28	ment dBuV 35.34 47.19 47.09 32.63 34.57 48.11 32.00	dBuV 54.03 60.52 56.00 46.00 56.00 56.00	dB 3 -18.69 2 -13.33 3 -8.91 3 -13.37 4 -11.43 4 -7.89 4 -14.00	AVG QP QP AVG QP AVG
1 2 3 4 5 6 * 7	MHz 0.1900 0.2900 0.5660 0.5740 1.5100 1.5140 2.3740 4.0939	Level dBuV 24.90 36.77 36.70 22.24 24.26 37.80 21.72 37.34	Factor dB 10.44 10.42 10.39 10.31 10.31 10.28 10.25	ment dBuV 35.34 47.19 47.09 32.63 34.57 48.11 32.00 47.59	dBuV 54.03 60.52 56.00 46.00 56.00 56.00	dB 3 -18.69 2 -13.33 3 -8.91 3 -13.37 4 -11.43 4 -7.89 6 -14.00 6 -8.41 6 -13.40	AVG QP QP AVG QP AVG
1 2 3 4 5 6 * 7 8	MHz 0.1900 0.2900 0.5660 0.5740 1.5100 1.5140 2.3740 4.0939 4.1620	Level dBuV 24.90 36.77 36.70 22.24 24.26 37.80 21.72 37.34 22.35	Factor dB 10.44 10.42 10.39 10.31 10.31 10.28 10.25 10.25	ment dBuV 35.34 47.19 47.09 32.63 34.57 48.11 32.00 47.59 32.60	dBuV 54.03 60.52 56.00 46.00 56.00 46.00 56.00	dB 3 -18.69 2 -13.33 3 -8.91 3 -13.37 4 -11.43 4 -7.89 6 -14.00 6 -8.41 6 -13.40	AVG QP AVG AVG QP AVG AVG


EUT	Mobile phone	Model Name	X556
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 22, 2016	Test Mode	Mode 3


No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1860	20.20	10.44	30.64	54.21	-23.57	AVG
2	0.1940	37.67	10.43	48.10	63.86	-15.76	QP
3	0.2860	19.21	10.42	29.63	50.64	-21.01	AVG
4	0.3220	36.33	10.42	46.75	59.65	-12.90	QP
5	0.6380	35.23	10.38	45.61	56.00	-10.39	QP
6	0.7660	16.99	10.37	27.36	46.00	-18.64	AVG
7	1.1940	18.81	10.33	29.14	46.00	-16.86	AVG
8	1.5500	35.14	10.31	45.45	56.00	-10.55	QP
9	1.9780	17.42	10.29	27.71	46.00	-18.29	AVG
10 *	2.9380	36.62	10.27	46.89	56.00	-9.11	QP
11	13.4540	38.08	10.16	48.24	60.00	-11.76	QP
12	13.9420	17.84	10.16	28.00	50.00	-22.00	AVG

EUT	Mobile phor	ie		Model Nan	ne l	X556	
Temperature	26 ℃			Relative H	umidity	54%	
Pressure	1010hPa			Phase		L	
Test Date	August 22, 2	2016		Test Mode		Mode 4	
80.0 dBuV							
							.imit: — AVG: —
40					N/L/IV/AA/APP	WWW. Town	
			kiku ng pipaling na ng	\	Many	Visterney Andrewson Mary	Andrew Property Company
0.0 0.150	0.5		(MHz)	5			30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1900	39.15	10.44	49.59	64.03	-14.44	QP
2	0.1900	23.76	10.44	34.20	54.03	-19.83	AVG
3	0.3260	36.11	10.42	46.53	59.55	-13.02	QP
4	0.3300	19.72	10.42	30.14	49.45	-19.31	AVG
5	0.5660	36.23	10.39	46.62	56.00	-9.38	QP
6	0.5660	17.99	10.39	28.38	46.00	-17.62	AVG
7	2.3060	16.89	10.28	27.17	46.00	-18.83	AVG
8	2.4420	37.99	10.28	48.27	56.00	-7.73	QP
9 *	3.3460	38.20	10.26	48.46	56.00	-7.54	QP
10	3.3460	17.38	10.26	27.64	46.00	-18.36	AVG
11	12.3780	39.48	10.17	49.65	60.00	-10.35	QP
12	13.7500	18.43	10.16	28.59	FO 00	-21.41	AVG

EUT	-		Mobile ph	one		Model Na	me	X556	-
Tem	peratu	re	26 ℃			Relative H		54%	
Pres	sure		1010hPa			Phase		N	
Test	Date		August 22	, 2016		Test Mode)	Mode 4	
80.0	dBuV								mit: —
40		*				a M A h a	Monymente	AN THE STATE OF TH	peak
0.0 0.1	50		0.5		(MHz)	5			30.000
-	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
-	1		0.1539	39.43	10.44	49.87	65.78	-15.91	QP
	2		0.1900	26.23	10.44	36.67	54.03	-17.36	AVG
	3		0.2819	25.20	10.42	35.62	50.76	-15.14	AVG
	4		0.2860	36.86	10.42	47.28	60.64	-13.36	QP
	5		0.4660	21.48	10.40	31.88	46.58	-14.70	AVG
	6		0.5700	36.47	10.39	46.86	56.00	-9.14	QP
_	7		1.9580	37.59	10.29	47.88	56.00	-8.12	QP
-	8		1.9580	25.05	10.29	35.34	46.00	-10.66	AVG
_	9		3.6740	24.52	10.26	34.78	46.00	-11.22	AVG
_	10	*	3.7220	38.48	10.26	48.74	56.00	-7.26	QP
-	11		12.5620	39.65	10.17	49.82	60.00	-10.18	QP
_	12		12.5620	23.71	10.17	33.88	50.00	-16.12	AVG

EUT	Mobile phone	Model Name	X556
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 22, 2016	Test Mode	Mode 5

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1539	40.46	10.44	50.90	65.78	-14.88	QP
2	0.1940	24.15	10.43	34.58	53.86	-19.28	AVG
3	0.2940	33.42	10.42	43.84	60.41	-16.57	QP
4	0.3140	26.14	10.42	36.56	49.86	-13.30	AVG
5	0.6060	35.54	10.39	45.93	56.00	-10.07	QP
6 *	0.6060	28.82	10.39	39.21	46.00	-6.79	AVG
7	1.0820	26.21	10.34	36.55	46.00	-9.45	AVG
8	1.0900	36.02	10.34	46.36	56.00	-9.64	QP
9	1.5859	25.45	10.31	35.76	46.00	-10.24	AVG
10	1.9860	36.53	10.29	46.82	56.00	-9.18	QP
11	12.1140	22.94	10.17	33.11	50.00	-16.89	AVG
12	12.1380	35.97	10.17	46.14	60.00	-13.86	QP

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

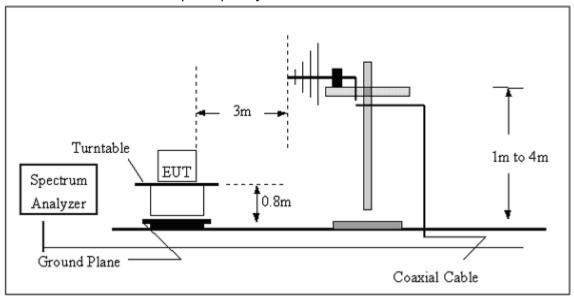
FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
FREQUENCY (MIDZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

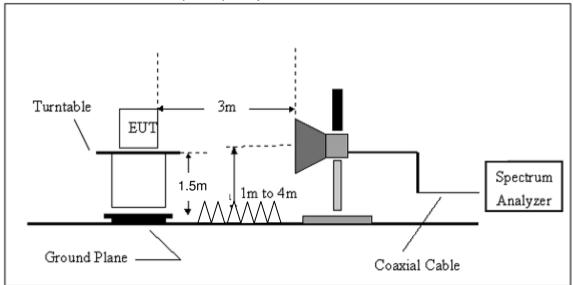
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	
band)		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


5.2.2 TEST PROCEDURE

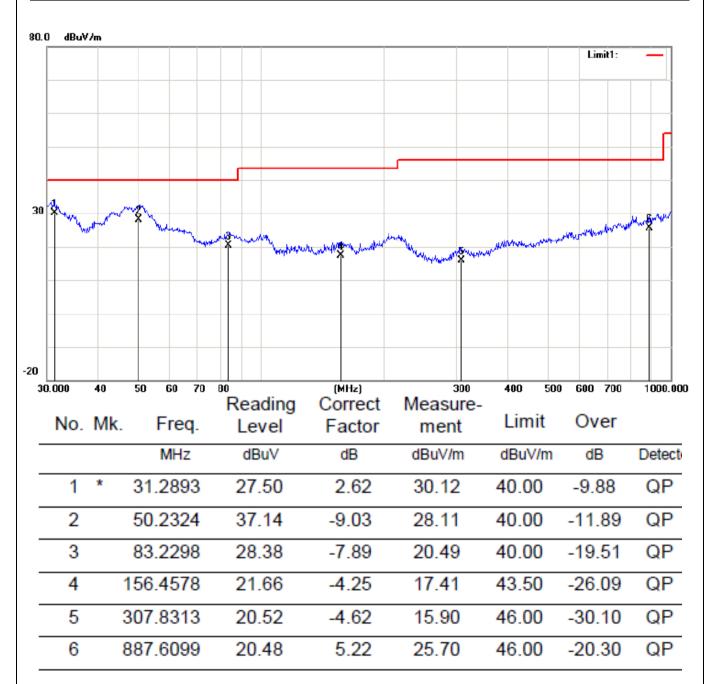
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.


e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement
performed. f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported
5.2.3 DEVIATION FROM TEST STANDARD No deviation

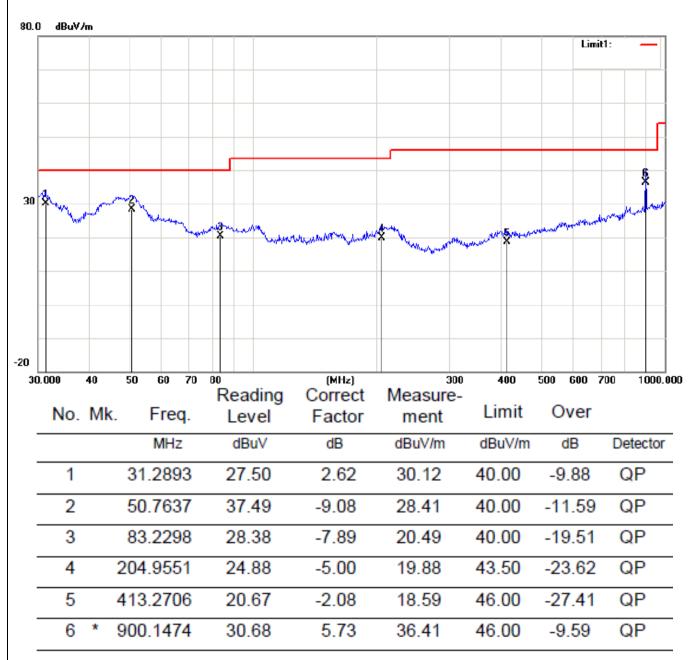
5.2.4 TEST SETUP

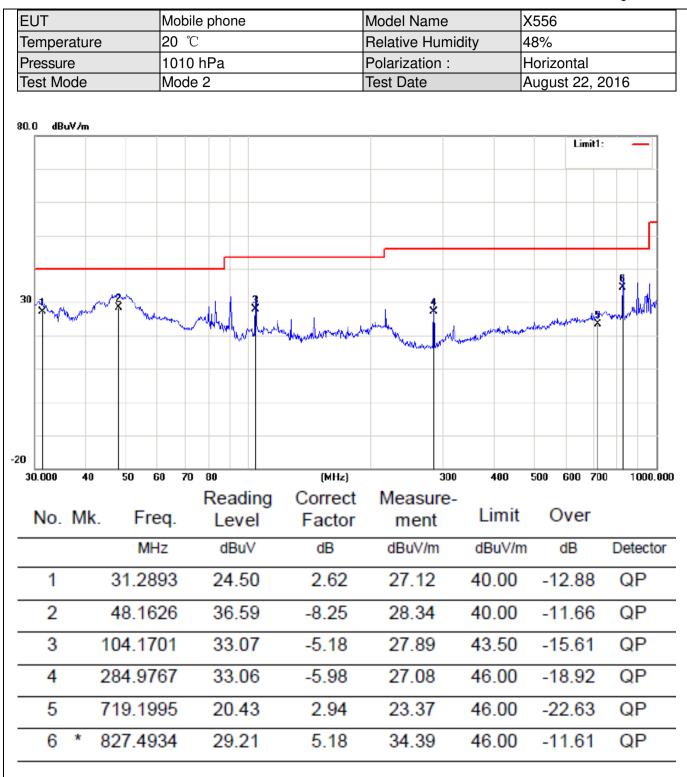
(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

(B) Radiated Emission Test-Up Frequency Above 1GHz

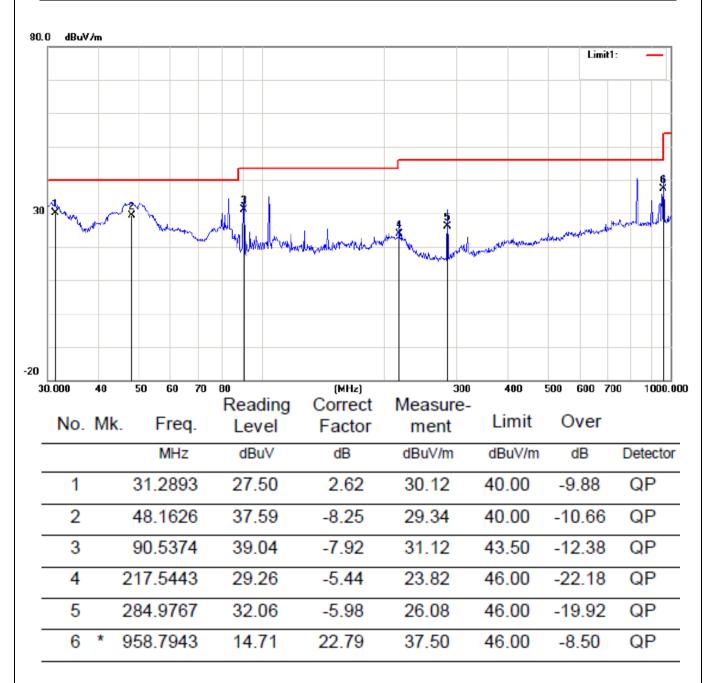


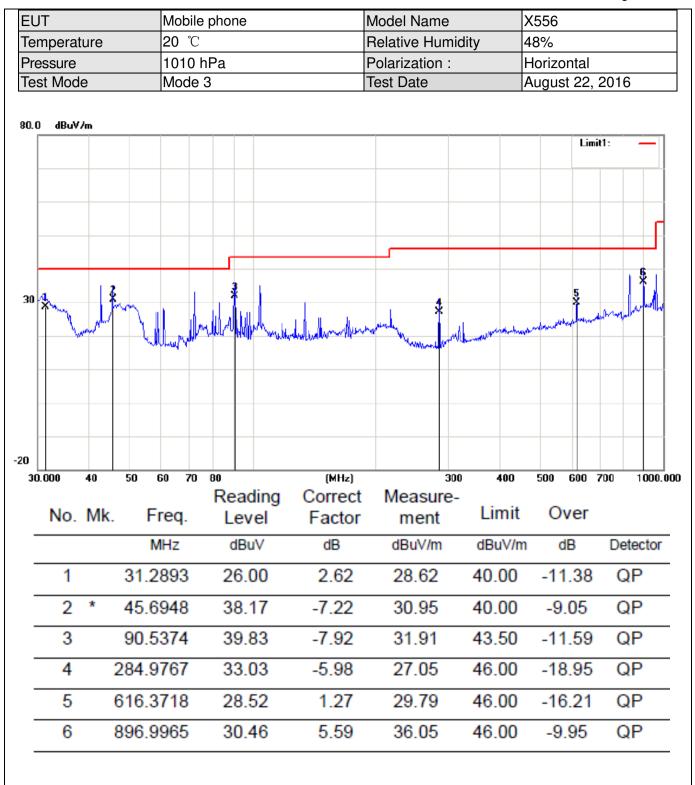
5.2.5 EUT OPERATING CONDITIONS

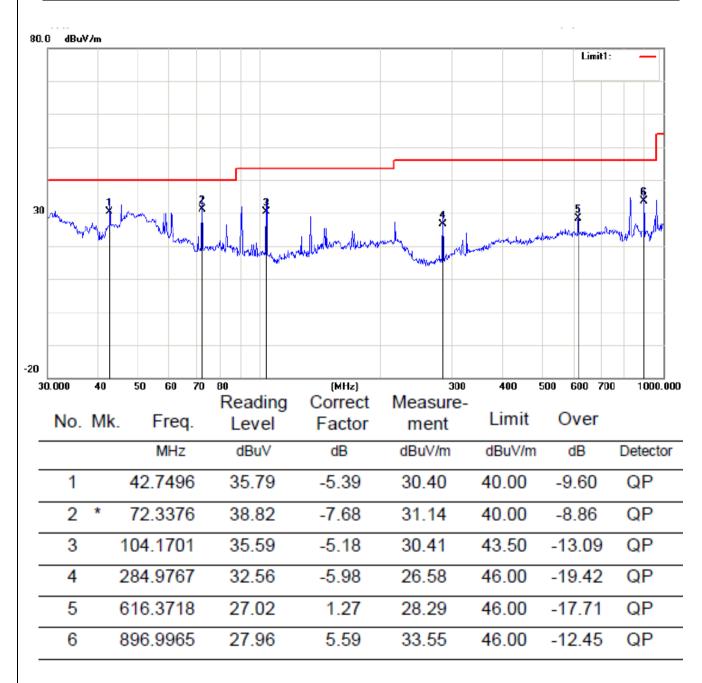

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)

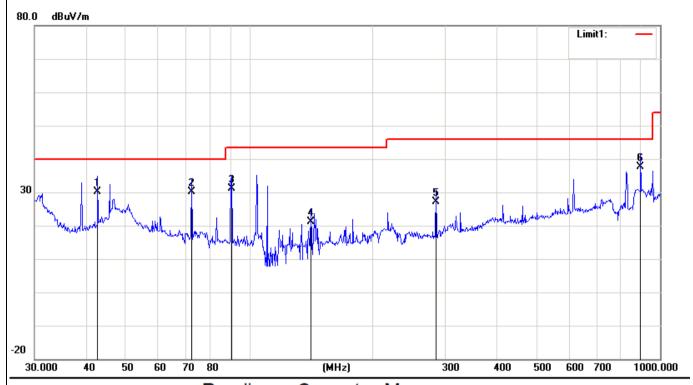
EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Horizontal
Test Mode	Mode 1	Test Date	August 22, 2016



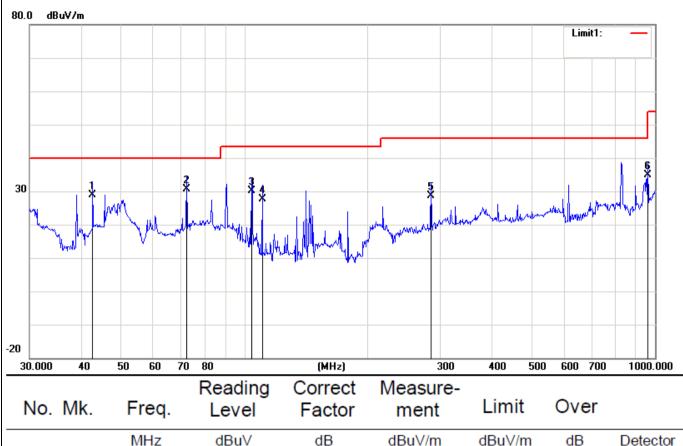

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 1	Test Date	August 22, 2016



EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 2	Test Date	August 22, 2016

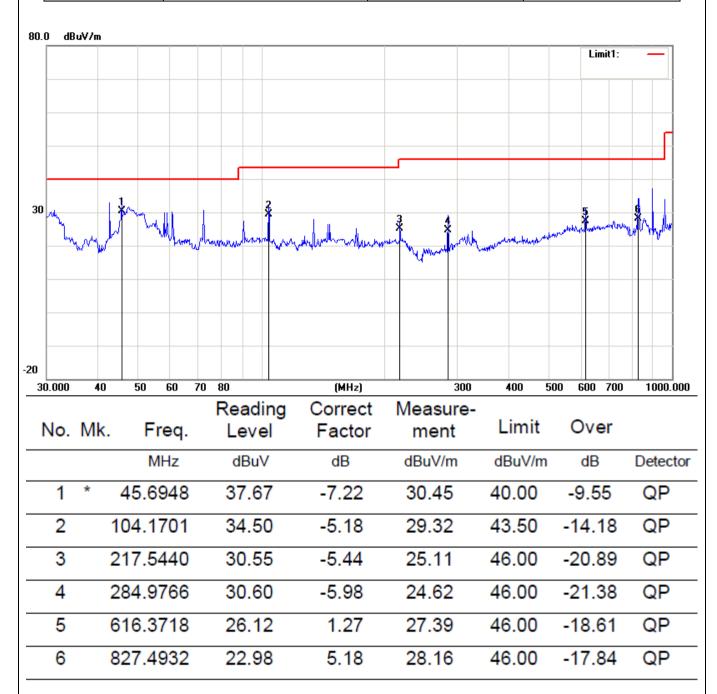


EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 3	Test Date	August 22, 2016



EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Horizontal
Test Mode	Mode 4	Test Date	August 22, 2016

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1		42.7496	35.48	-5.39	30.09	40.00	-9.91	QP
2		72.3375	37.82	-7.68	30.14	40.00	-9.86	QP
3		90.5374	39.15	-7.92	31.23	43.50	-12.27	QP
4	•	141.3298	24.33	-3.16	21.17	43.50	-22.33	QP
5	2	284.9766	33.06	-5.98	27.08	46.00	-18.92	QP
6	* {	396.9964	31.96	5.59	37.55	46.00	-8.45	QP


EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 4	Test Date	August 22, 2016

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
	1		42.7496	34.29	-5.39	28.90	40.00	-11.10	QP
	2	*	72.3376	38.32	-7.68	30.64	40.00	-9.36	QP
	3	•	104.1701	35.29	-5.18	30.11	43.50	-13.39	QP
_	4	•	110.5687	31.23	-3.48	27.75	43.50	-15.75	QP
	5	2	284.9767	34.56	-5.98	28.58	46.00	-17.42	QP
-	6	(958.7943	12.10	22.79	34.89	46.00	-11.11	QP

EUT	Mobile phone		Model Name	X	(556	
Temperature	20 ℃		Relative Humidity 4		48%	
Pressure	1010 hPa		Polarization:	H	Horizontal	
Test Mode	Mode 5		Test Date	А	ugust 22, 20)16
30 dBuV/m		Jana Jana Jana Jana	ward was the same of the same	and the special of the same of	Limit1:	
30.000 40 50	60 70 80	(MHz)	300	400	500 600 700	1000.00
30.000 40 50	60 70 80 Readi	(MHz)	300 Measure-		500 600 700	1000.00
30.000 40 50	Readireq. Leve	ng Correct	Measure- ment		500 600 700 Over	1000.00
30.000 40 50 No. Mk. F	Readi	ng Correct el Factor	Measure-		Over	1000.00
30.000 40 50 No. Mk. F	Readi req. Leve	ng Correct el Factor	Measure- ment	Limit	Over dB	
30.000 40 50 No. Mk. F	Readi req. Leve Hz dBu\ 893 24.5	ng Correct Factor dB 0 2.62	Measure- ment	Limit dBuV/m	Over dB	Detecto
30.000 40 50 No. Mk. From M 1 * 31.2	Readi Leve Hz dBu\ 893 24.5 948 33.4	ng Correct Factor dB 0 2.62 4 -7.22	Measure- ment dBuV/m 27.12	Limit dBuV/m	Over dB -12.88	Detecto
30.000 40 50 No. Mk. From M 1 * 31.2 2 45.6	Readi Leve Hz dBu\ 893 24.5 948 33.4 374 35.2	ng Correct Factor dB 2.62 4 -7.22 3 -7.92	Measure- ment dBuV/m 27.12 26.22	Limit dBuV/m 40.00 40.00	Over dB -12.88 -13.78	Detecto QP QP
30.000 40 50 No. Mk. From M 1 * 31.2 2 45.6 3 90.5	Readi Leve Hz dBu\ 893 24.5 948 33.4 374 35.2 882 28.4	ng Correct Factor dB 0 2.62 4 -7.22 3 -7.92 3 -2.88	Measure- ment dBuV/m 27.12 26.22 27.31	Limit dBuV/m 40.00 40.00 43.50	Over dB -12.88 -13.78 -16.19	Detecto QP QP QP

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 5	Test Date	August 22, 2016

5.2.5.2 TEST RESULTS(1GHZ TO 6GHZ)

EUT	Mobile phone	Model Name	X556
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1
Test Date	August 22, 2016		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)		3m(dBuV/m)	
	H/V	PK	AV	PK	AV	PK	AV
1632.45	V	60.68	39.61	74	54	-13.32	-14.39
2829.27	V	59.90	40.39	74	54	-14.10	-13.61
1684.52	Н	58.05	39.46	74	54	-15.95	-14.54
2831.6	Н	59.65	40.65	74	54	-14.35	-13.35

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2
Test Date	August 22, 2016		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)		BuV/m)	
	H/V	PK	AV	PK	AV	PK	AV
1583.35	V	58.79	40.94	74	54	-15.21	-13.06
2641.52	V	59.93	40.27	74	54	-14.07	-13.73
1628.42	Н	58.31	39.22	74	54	-15.69	-14.78
2810.39	Н	59.25	40.25	74	54	-14.75	-13.75

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name X556	
Temperature	20 ℃	Relative Humidity 48%	
Pressure	1010 hPa	Test Mode 3	
Test Date	August 22, 2016		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)		3m(dBuV/m)	
	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	59.77	40.83	74	54	-14.23	-13.17
2652.38	V	59.23	40.32	74	54	-14.77	-13.68
1699.33	Н	59.74	40.33	74	54	-14.26	-13.67
2739.42	Н	58.34	39.34	74	54	-15.66	-14.66

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4
Test Date	August 22, 2016		

Freq.	Ant.		ssion	Limit		(- /	
(MHz)	Pol.	Level(abuv)	3111(aBu	3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
1583.35	V	59.32	39.45	74	54	-14.68	-14.55
2641.52	V	59.10	39.75	74	54	-14.90	-14.25
1628.42	Н	59.52	40.31	74	54	-14.48	-13.69
2810.39	Н	58.26	39.26	74	54	-15.74	-14.74

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

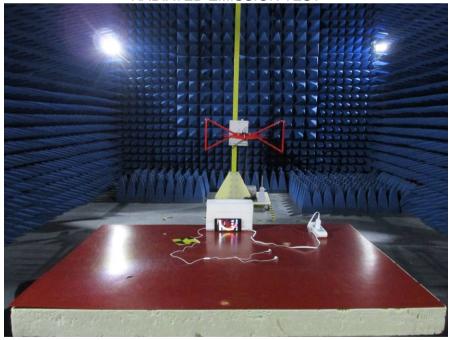
All the x/y/z orientation has been investigated, and only worst case is presented in this report.

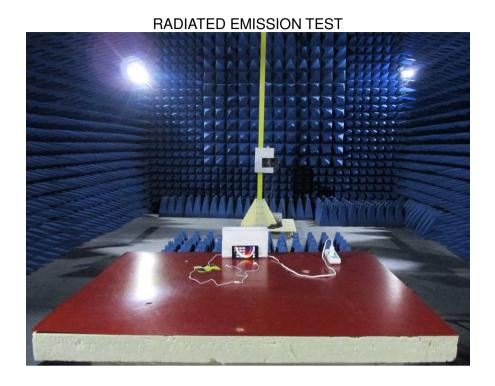
EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5
Test Date	August 22, 2016		

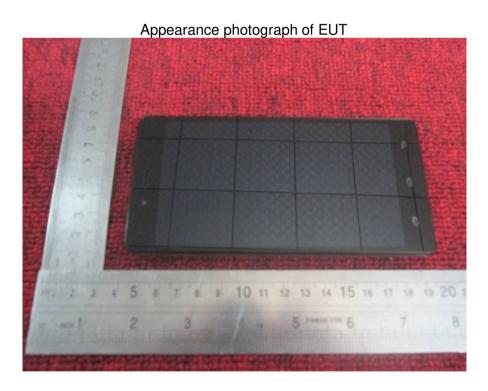
Freq. (MHz)	Ant. Pol.	Emission Level(dBuV) 3		Limit 3m(dBuV/m)		Over(dB)	
()	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	58.80	39.86	74	54	-15.20	-14.14
2652.38	V	59.36	39.09	74	54	-14.64	-14.91
1699.33	Н	60.00	39.55	74	54	-14.00	-14.45
2739.42	Н	59.57	40.57	74	54	-14.43	-13.43

Remark:

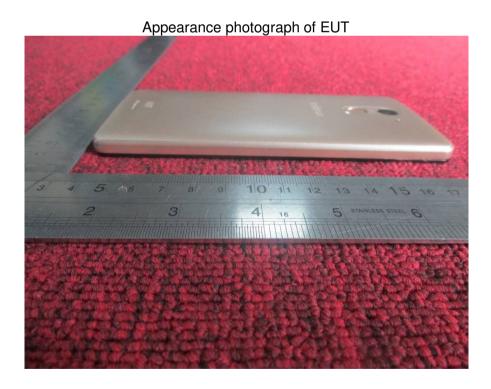
All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

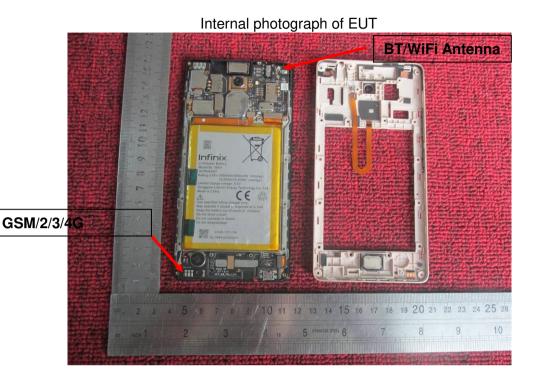

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

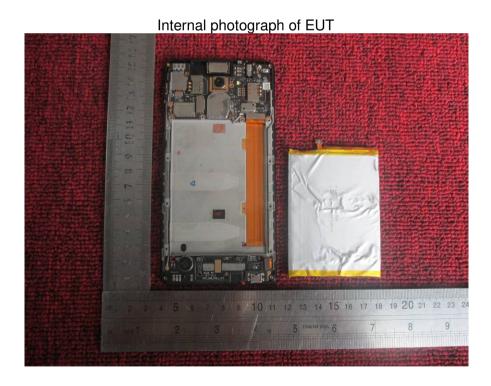

6. EUT TEST PHOTO

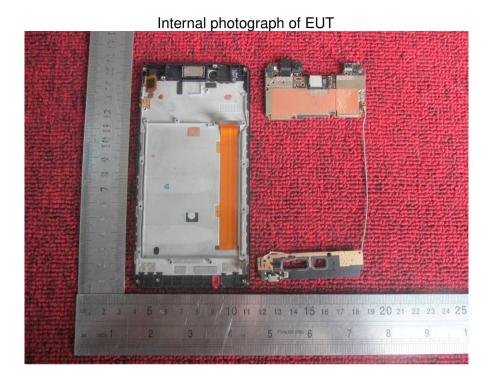

RADIATED EMISSION TEST

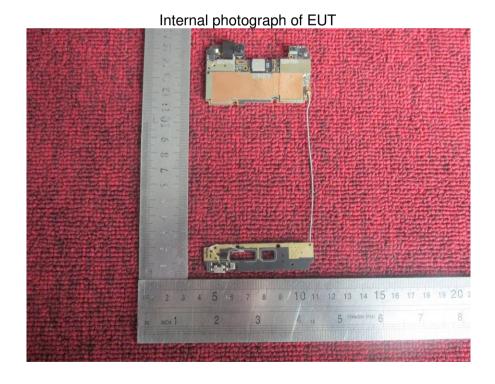
7. PHOTOGRAPHS OF EUT

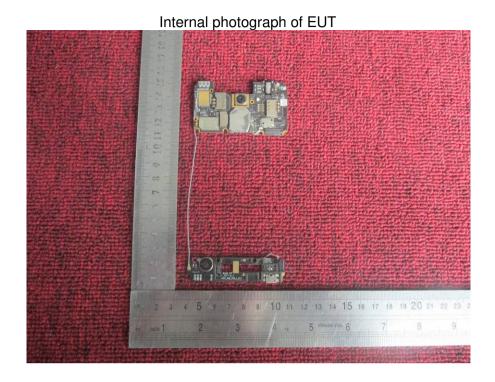


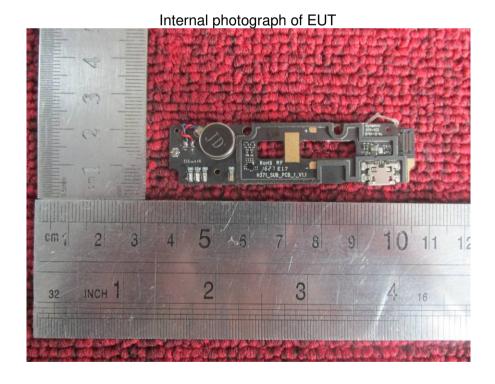


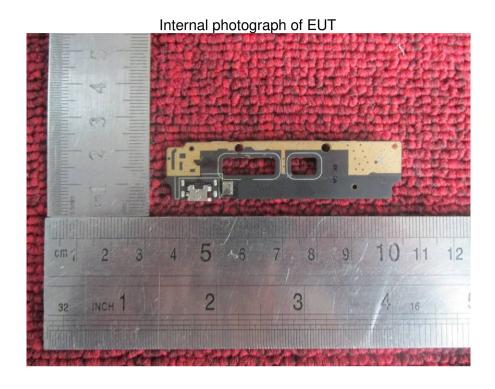


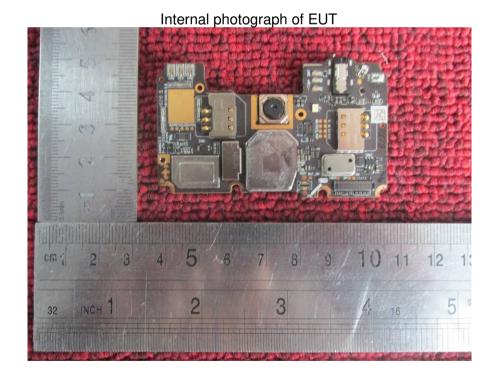


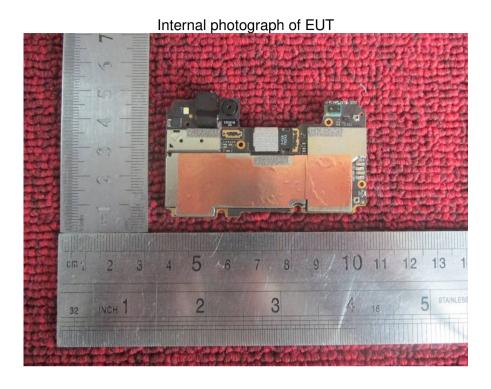


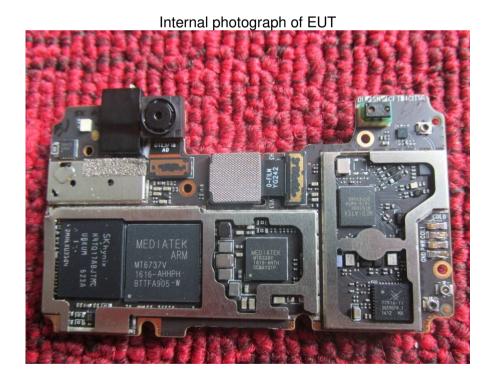


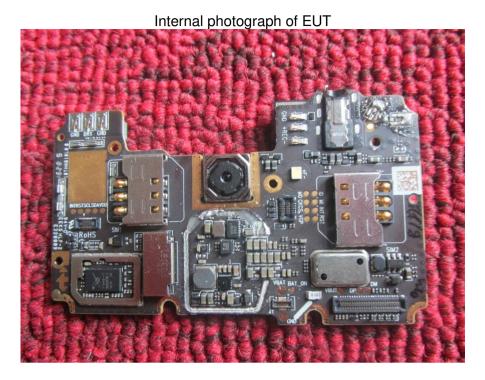












---END OF REPORT---