

Test channel:

Middle channel

R enter Fi			SENSE:PU NO: Fast → Tri Sain:Low #A	g: Free Run tten: 20 dB	ALIGN AUTO #Avg Typ Avg Hold	e: RMS 1: 10/10	04:20:18 PM Sep 01, TRACE 2 3 TYPE MWW DET P NN
dB/div	Ref Offse Ref 12.	et 2.02 dB 02 dBm					Mkr1 2.440 5 G -9.661 dl
02	1-						
38	- <u>1</u> -						
.0							-25.0
.0							
.0							
		\diamond^3 \diamond^4	\$5			and the second states of the	
	a ser li se	\diamond^3 \diamond^4	\$			and the second second	
art 0.03	GHz 100 KHz	$\sqrt[4]{3}$	#VBW 30	0 kHz			Stop 26.50 C eep 2.530 s (30001
art 0.03 es BW	100 kHz		#VBW 30	0 KHz FUNCTION	FUNCTION WIDTH		Stop 26.50 C eep 2.530 s (30001 FUNCTION VALUE
art 0.03 es BW	100 kHz	2.440 5 GHz	#VBW 30				eep 2.530 s (30001
art 0.03 ces BW	100 kHz	2.440 5 GHz 26.125 9 GHz 4.804 3 GHz	#VBW 30 -9.661 dBm -53.018 dBm -67.074 dBm				eep 2.530 s (30001
art 0.03 es BW MODE TF	100 kHz	2.440 5 GHz 26.125 9 GHz 4.804 3 GHz 7.211 3 GHz	#VBW 30 -9.661 dBm -53.018 dBm -67.074 dBm -67.074 dBm				eep 2.530 s (30001
art 0.03 res BW R MODE TF N 1 N 1 N 1 N 1	100 kHz	2.440 5 GHz 26.125 9 GHz 4.804 3 GHz	#VBW 30 -9.661 dBm -53.018 dBm -67.074 dBm				eep 2.530 s (30001
art 0.03 es BW MOR TF N 1 N 1 N 1 N 1	100 kHz	2.440 5 GHz 26.125 9 GHz 4.804 3 GHz 7.211 3 GHz	#VBW 30 -9.661 dBm -53.018 dBm -67.074 dBm -67.074 dBm				eep 2.530 s (30001
art 0.03 les BW R MODE TF N 1 N 1 N 1 N 1	100 kHz	2.440 5 GHz 26.125 9 GHz 4.804 3 GHz 7.211 3 GHz	#VBW 30 -9.661 dBm -53.018 dBm -67.074 dBm -67.074 dBm				eep 2.530 s (30001
art 0.03 res BW R MODE TF N 1 N 1 N 1 N 1	100 kHz	2.440 5 GHz 26.125 9 GHz 4.804 3 GHz 7.211 3 GHz	#VBW 30 -9.661 dBm -53.018 dBm -67.074 dBm -67.074 dBm				eep 2.530 s (30001

30MHz~26.5GHz

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

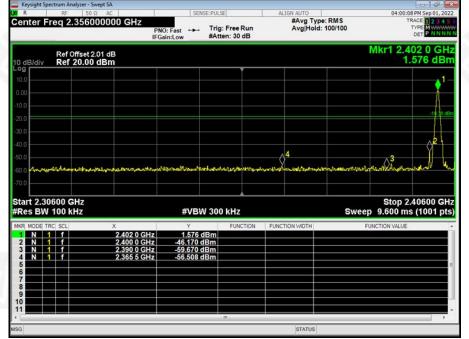


Test channel:

Center 2.4 #Res BW	800000 GHz 100 kHz		#VBW 30	0 kHz		Sweep	Span 1.5 2.000 ms (30	00 MHz 001 pts
ISG					STATUS			
Keysight Spe	ctrum Analyzer - Swept SA RF 50 Ω AC		SENSE:PUL	arl	ALIGN AUTO		04:21:48 PM S	
	eq 13.2650000	PNO	East Trig	g: Free Run tten: 20 dB	#Avg Typ Avg Hold	e: RMS : 10/10	TRACE TYPE	1 2 3 4 5 0 M WWWWW P NNNN
10 dB/div	Ref Offset 2.04 dB Ref 12.04 dBm						Mkr1 2.480 -5.46	2 GHz 1 dBm
2.04	1			Ĭ				
-7.96								
-28.0								-25,64 dBm
-48.0								²
-58.0		\$*	\$5	a a start with a first start with	-	and the local distribution of the local distribution of the local distribution of the local distribution of the		تقنه
-78.0	GHz						Stop 26.	50 GHz
#Res BW			#VBW 30	0 kHz		Swee	p 2.530 s (30	001 pts)
MKR MODE TR 1 N 1 2 N 1 3 N 1	f 20 f 21	2.480 2 GHz 5.785 3 GHz 4.999 3 GHz	Y -5.461 dBm -52.799 dBm -66.485 dBm	FUNCTION	FUNCTION WIDTH	FL	INCTION VALUE	
4 N 1 5 N 1 6 7		7.326 0 GHz 9.729 5 GHz	-65.684 dBm -67.780 dBm					
8 9 10								
				ш				
ISG					STATUS			

30MHz~26.5GHz

200



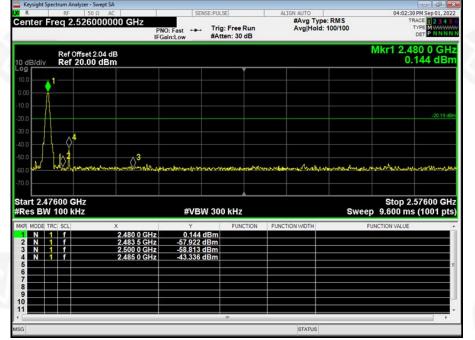
Highest channel

GFSK No-hopping Band edge-left side

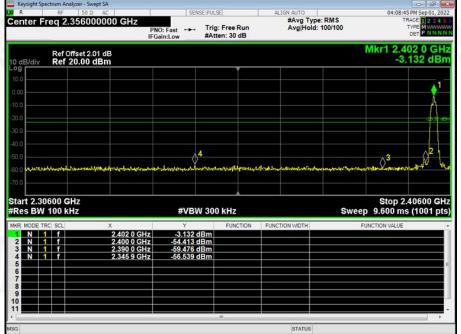
GFSK Hopping Band edge-left side

		aalyzer - Swept SA		1.0000000000				(10.000 APR - 20	
R Renter Fi	RF req 2	50 Ω AC .356000000	PN		SE g: Free Run tten: 30 dB	ALIGN AUTO #Avg Ty Avg Hol	pe: RMS d: 2000/2000	т	0 PM Sep 01, 20 RACE 1 2 3 4 TYPE M DET P N N N
) dB/div		0ffset 2.01 dB 20.00 dBm						Mkr1 2.4 1.	04 1 GH 704 dB
0.0 0.0									
									M
1.0									
0.0			_∆ <mark>4</mark>					3	\uparrow ²
0.0	n heren her	nenstannyhlannet	Wellemanner	and a second	مۇرومۇمىيىكەم رايورۇپ	national and the second	rrantement	in such the property	innal
tart 2.30 Res BW				#VBW 30	0 kHz		Swee	Stop 2 p 9.600 m	.40600 G s (1001 p
R MODE TR	RC SCL	X		Y	FUNCTION	FUNCTION WIDTH	1	FUNCTION VALUE	
2 N 1 3 N 1 4 N 1	f f f	2.	404 1 GHz 400 0 GHz 390 0 GHz 330 0 GHz	1.704 dBm -46.306 dBm -57.101 dBm -54.835 dBm					
9									
G					in .	STATUS			

Ð


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

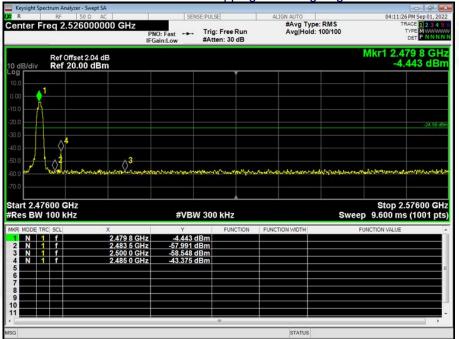
+86-400-000-9970


GFSK No-hopping Band edge-right side

GFSK Hopping Band edge-right side

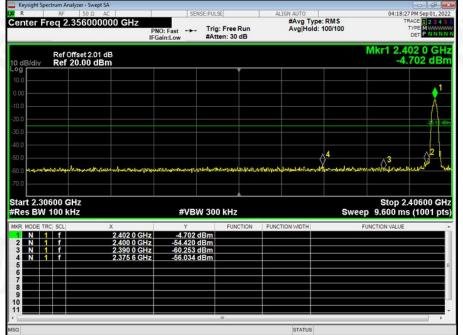
R R	pectrum A	nalyzer - Swept SA 50 Ω AC	1 1	SE	(SE:PULSE)	1	ALIGN AUTO	1	03:59	:22 PM Sep 01, 2
enter I	Freq 2	.52600000	PI	NO: Fast +++ Sain:Low	Trig: Free F #Atten: 30			Type: RMS old: 2000/2000		TRACE 1 2 3 4 TYPE MWWW DET PNNN
0 dB/div og r		Offset 2.04 dE 20.00 dBm								476 0 GI).015 dB
0.0										-19.51
0.0 0.0		∆ ⁴	3							
0.0 0.0	hite	z haran an a		Verninia	s. And the second	MAMAA	MANNA	MANAMA	Mahrunn	JAAAAAAA
tart 2.4 Res BV				#VB\	№ 300 kHz			Swe	Stop: ep 9.600 n	2.57600 G 1s (1001 p
KR MODE	TRC SCL		0.470.0.0115	Y	FUNC	TION	UNCTION WIDTH		FUNCTION VALUE	
2 N	1 1		2.476 0 GHz 2.483 5 GHz 2.500 0 GHz	0.015 -56.915 -56.427	dBm					
3 N 4 N	1 f 1 f		2.487 2 GHz	-54.199						
4 N 5 6 7	1 f									
4 N 5 6					dBm					
4 N 5 6 7 7 8 9 0							STATU	e		

$\pi/4\text{-}DQPSK$ No-hopping Band edge-left side



π /4-DQPSK Hopping Band edge-left side

enter	Fre				: Free Run en: 30 dB	ALIGN AUTO #Avg Type Avg Hold:		TF	PM Sep 01, 2 RACE 1 2 3 4 TYPE MWWW DET P N N N
0 dB/div		Ref Offset 2. Ref 20.00					ľ	/lkr1 2.4 -3.	05 0 GI 192 dB
10.0									
.00									al.
0.0									^r
0.0									-23.26
0.0									
0.0			↓						2
0.0	-origination	and a start of the		an Magalan Jahan Analy Balana Managa	an Jaio Mana Jugaria	Holomostic-patricity-meni			And the second se
		00 GHz 00 kHz		#VBW 300) kHz		Sweep	Stop 2. 9.600 ms	40600 G (1001 p
KR MODE	10000		Х	Y	FUNCTION	FUNCTION WIDTH	FUI	NCTION VALUE	
1 N 2 N	1	f	2.405 0 GHz 2.400 0 GHz	-3.192 dBm -54.235 dBm					
3 N	1	f	2.390 0 GHz 2.331 6 GHz	-57.163 dBm -55.242 dBm					
5			2.331 6 GHZ	-55.242 dBm					
6		_							
8									
0									
1									



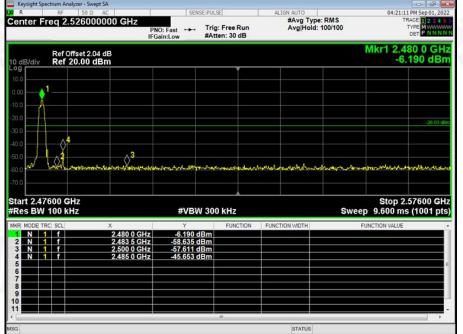
π /4-DQPSK Hopping Band edge-right side

_	Freq	50 Ω 2.5260000	AC 000 GHz	SENSE:PUL	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ALIGN AUTO #Avg Typ		TR	PM Sep 01, 2 ACE 2 3 4 TYPE M WWW
					g: Free Run ten: 30 dB	Avg Hold	: 2000/2000		DET P NNN
0 dB/div		ef Offset 2.04 (ef 20.00 dB						Mkr1 2.4 -4.	79 0 GI 255 dB
og 10.0									
0.00	1								
10.0	hn								
20.0									-24.29
30.0									
10.0	1.	¢ ⁴	3						
50.0	V	Indragan		hennerminen	Manualanara	and the second	mondelabelandera	Lupianno	madres
50.0									
0.0									
tart 2.				#VBW 30	0 kHz		Sweep	Stop 2. 9.600 ms	
tart 2. Res B	W 10	D KHZ	x	Y	0 KHZ	FUNCTION WIDTH			
tart 2. Res B	W 10	D KHZ	2.479 0 GHz 2.483 5 GHz	Y -4.255 dBm -55.578 dBm		FUNCTION WIDTH		9.600 ms	
tart 2. Res B KR MODE 1 N 2 N 3 N	W 10	D KHZ	2.479 0 GHz 2.483 5 GHz 2.500 0 GHz	Y -4.255 dBm -55.578 dBm -55.054 dBm		FUNCTION WIDTH		9.600 ms	
tart 2. Res B Res B N N N N N S	W 10	D KHZ	2.479 0 GHz 2.483 5 GHz	Y -4.255 dBm -55.578 dBm		FUNCTION WIDTH		9.600 ms	
5 6 7	W 10	D KHZ	2.479 0 GHz 2.483 5 GHz 2.500 0 GHz	Y -4.255 dBm -55.578 dBm -55.054 dBm		FUNCTION WIDTH		9.600 ms	57600 G (1001 p
itart 2. Res B IKR MODE 1 N 2 N 3 N 4 N 5 6 6 7 8 9	W 10	D KHZ	2.479 0 GHz 2.483 5 GHz 2.500 0 GHz	Y -4.255 dBm -55.578 dBm -55.054 dBm		FUNCTION WIDTH		9.600 ms	
itart 2, Res B IKR MODE 1 N 2 N 3 N 4 N 5 6 6 7 8	W 10	D KHZ	2.479 0 GHz 2.483 5 GHz 2.500 0 GHz	Y -4.255 dBm -55.578 dBm -55.054 dBm		FUNCTION WIDTH		9.600 ms	

8-DPSK No-hopping Band edge-left side

8-DPSK Hopping Band edge-left side

	Spectr		halyzer - Swept S									
R		RF	50 Q A			SENSE:PUL	SE		ALIGN AUTO #Avg Ty	DA: DMS		04 PM Sep 01, 20
enter	Fre	q Z	.3560000		PNO: Fast IFGain:Low		g: Free Ru ten: 30 dE		Avg Hold	1: 2000/2000		
0 dB/div			Offset 2.01 o 20.00 dB								Mkr1 2.4 -4	103 8 GH .359 dB
og 10.0												
		_										
0.0		_										- M
0.0												-2432)
0.0												
0.0				Å ⁴								12
0.0	وينهده		and the second second	Lawrenter	man man	and the second	- marine	nluingn	wienstern	nginaniantani	manument	marian
0.0		_										
tart 2.												.40600 G
Res B	W 1	UU K	HZ			#VBW 30	0 KHZ			Swee	ep 9.600 m	s (1001 p
KR MODE	TRC	SCL		Х		Y	FUNCTION	DN FU	NCTION WIDTH		FUNCTION VALUE	
1 N 2 N	1	+		2.403 8 GH 2.400 0 GH		.359 dBm .995 dBm						
3 N	1	f		2.390 0 GH	z -56	.738 dBm						
4 N	1	f		2.325 9 GH	z -54	.891 dBm						
5 <u> </u>												
7												
8		-										
0								0				
1												
							111					
u	_	_					0.0					



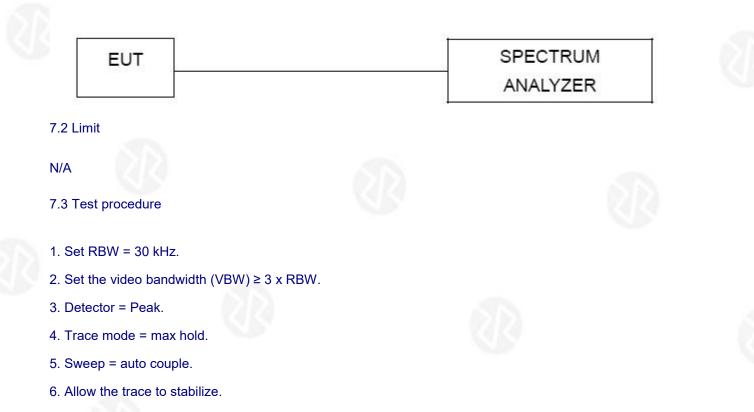
8-DPSK No-hopping Band edge-right side

8-DPSK Hopping Band edge-right side

R	RF	alyzer - Swept SA 50 Ω AC		SENSE:PULS	SE	ALIGN AUTO			5PM Sep 01, 2
enter F	req 2.	526000000 GHz	PNO: Fast IFGain:Low		: Free Run en: 30 dB	#Avg Tyj Avg Hold	be: RMS i: 2000/2000	т	TYPE MWAAVA DET P N N N
0 dB/div		ffset 2.04 dB 20.00 dBm						Mkr1 2.4 -5.	78 8 GI 639 dB
og 10.0									
0.0									-25.89
0.0	11.3								
0.0	121		n marana	lan normaniant	ر استر رو میشور است. ا	and a sub-	umententon	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manashing
	2000 0							0 1 0	57000 0
tart 2.47 Res BW			#	VBW 300) kHz		Swee	p 9.600 m	57600 G s (1001 p
R MODE T	RC SCL	х		Y	FUNCTION	FUNCTION WIDTH	1	FUNCTION VALUE	
		2.478 8 (639 dBm 254 dBm					
		2.500 0 0		120 dBm					
3 N	f	2.500 0 0							
	1 f 1 f	2.485 0 0		146 dBm					
5	1 f 1 f	2.485 0 0		146 dBm					
5		2.485 0 0		146 dBm					
5 6 7 8 9		2.485 0 (146 dBm					
		2.485 0 (146 dBm					
5 6 7 8		2,300 0 2,485 0 (146 dBm	m				

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8



7. 20DB&99% BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013

7.1 Test Setup

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.4 DEVIATION FROM STANDARD

No deviation.

7.5 Test Result

Mode	Test channel	20dB Emission Bandwidth (MHz)	99%Bandwidth (MHz)	Result
	Lowest	0.8568	0.8205	
GFSK	Middle	0.8736	0.8373	Pass
	Highest	0.8582	0.8292	
1912	Lowest	1.4120	1.3361	
π/4-DQPSK	Middle	1.4220	1.3381	Pass
	Highest	1.4140	1.3470	
	Lowest	1.4380	1.3395	
8-DPSK	Middle	1.4640	1.3403	Pass
	Highest	1.4250	1.3495	

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

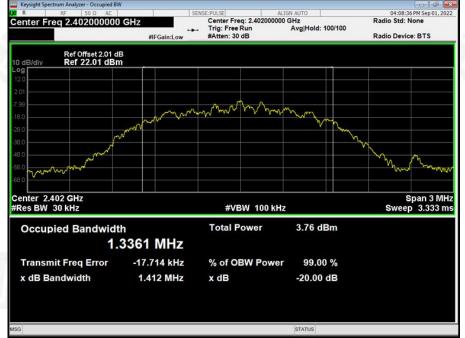
Test plots

STATUS

Project No.: ZKT-2208226004E Page 51 of 80

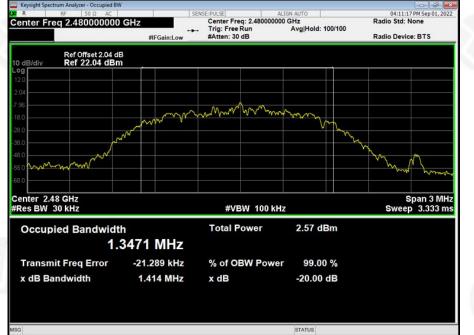
GFSK Middle Channel

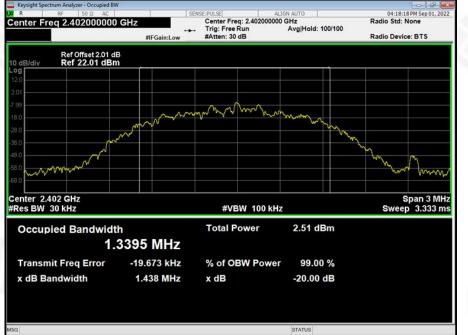
GFSK High Channel



Project No.: ZKT-2208226004E Page 52 of 80

π/4-DQPSK Low Channel


π/4-DQPSK Middle Channel



π/4-DQPSK High Channel

8-DPSK Low Channel

8-DPSK Middle Channel

8-DPSK High Channel

8. Maximum Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Limit:	GFSK:30 dBm π/4-DQPSK & 8-DPSK:20.97 dBm

8.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

8.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W.

8.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

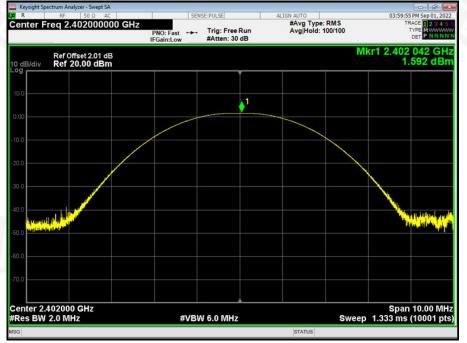
8.4 DEVIATION FROM STANDARD

No deviation.

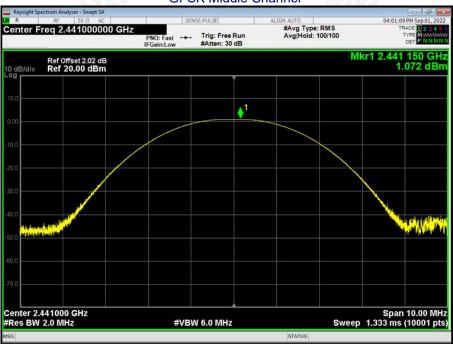
8.5 Test Result

Test channel	Peak Output Power (dBm)	FCC Limit (dBm)	Result
Lowest	1.592		
Middle	1.072	30.00	Pass
Highest	0.185		
Lowest	-1.195		
Middle	-1.742	21.00	Pass
Highest	-2.427		
Lowest	-2.259		
Middle	-2.738	21.00	Pass
Highest	-3.525		
	Lowest Middle Highest Lowest Middle Highest Lowest Middle	Test channel(dBm)Lowest1.592Middle1.072Highest0.185Lowest-1.195Middle-1.742Highest-2.427Lowest-2.259Middle-2.738	Test channel (dBm) (dBm) Lowest 1.592 (dBm) Middle 1.072 30.00 Highest 0.185 30.00 Lowest -1.195 21.00 Middle -2.427 21.00 Highest -2.738 21.00

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

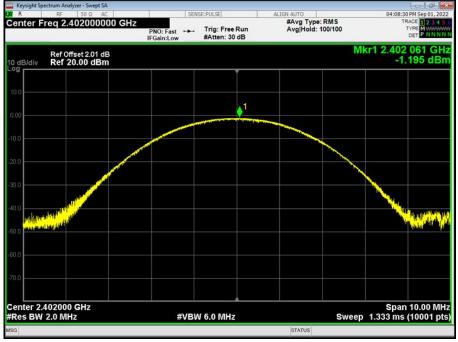
www.zkt-lab.com



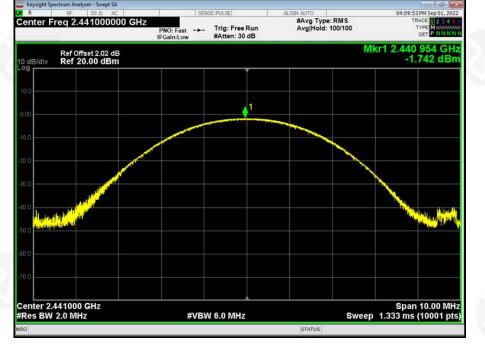
Test plots

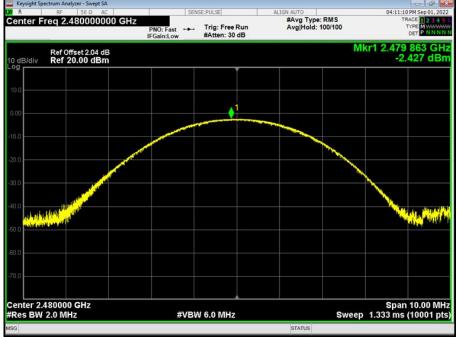
GFSK Low Channel


GFSK Middle Channel



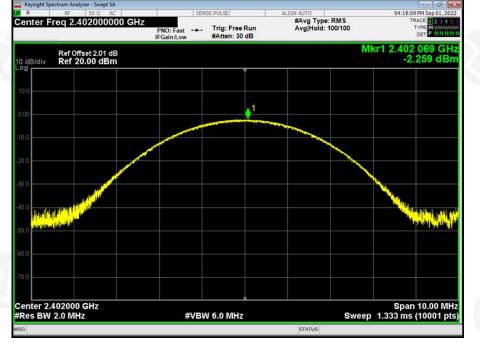
GFSK High Channel


π/4-DQPSK Low Channel

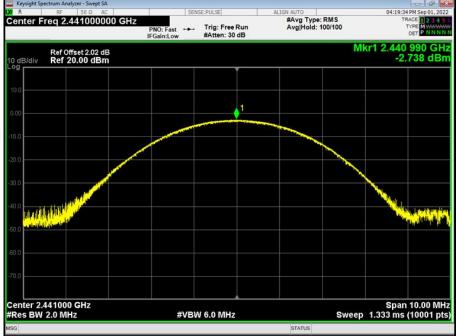


Project No.: ZKT-2208226004E Page 59 of 80

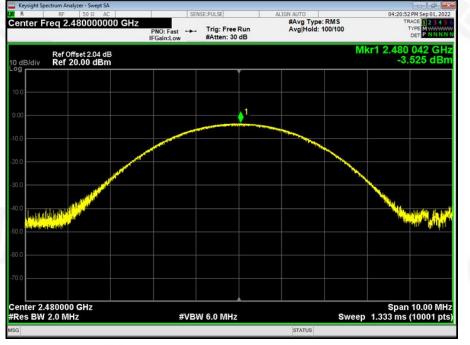
π/4-DQPSK Middle Channel



π/4-DQPSK High Channel



8-DPSK Low Channel


8-DPSK Middle Channel

9. HOPPING CHANNEL SEPARATION

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=30KHz, VBW=100KHz, detector=Peak
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)

9.1 Test Setup

UT	SPECTRUM
55000	ANALYZER

9.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

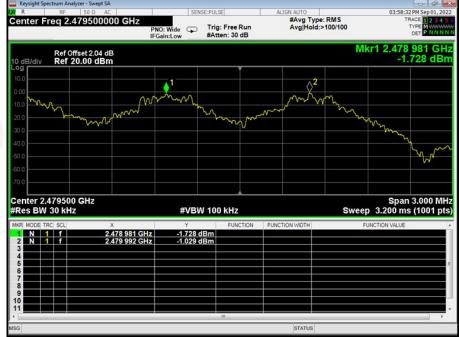
9.3 DEVIATION FROM STANDARD No deviation.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔊 www.zkt-lab.com

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1.173	0.857	PASS
GFSK	Middle	1.026	0.871	PASS
GFSK	High	1.011	0.862	PASS
π/4-DQPSK	Low	1.146	0.919	PASS
π/4-DQPSK	Middle	1.164	0.955	PASS
π/4-DQPSK	High	1.158	0.951	PASS
8-DPSK	Low	1.002	0.957	PASS
8-DPSK	Middle	0.984	0.958	PASS
8-DPSK	High	0.975	0.971	PASS

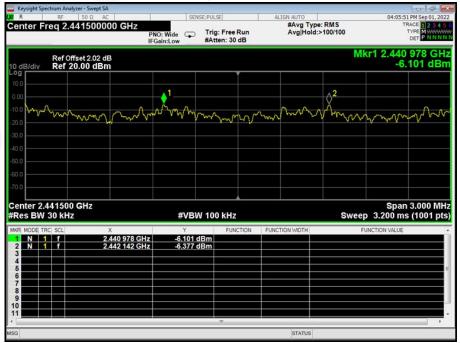

Test plots GFSK Low Channel



Project No.: ZKT-2208226004E Page 64 of 80

GFSK Middle Channel

GFSK High Channel



4:04:22 PN E:PULSE #Avg Type: RMS Avg|Hold:>100/100 eq 2.402500000 GHz Center F PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 999 GHz -4.868 dBm Ref Offset 2.01 dB Ref 20.00 dBm <u>1</u> M monomo mm www m Center 2.402500 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) #VBW 100 kHz 2.401 999 GHz 2.403 145 GHz N 1 f N 1 f -4.868 dBm -5.824 dBm

π/4-DQPSK Low Channel

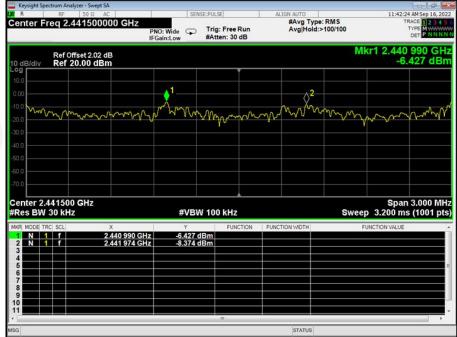
12:54:39 PM Sep 16

m

SE:PULSE #Avg Type: RMS Avg|Hold:>100/100 Center Freq 2.479500000 GHz PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.478 993 GHz -5.882 dBm Ref Offset 2.04 dB Ref 20.00 dBm 02 man Center 2.479500 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) #VBW 100 kHz 2.478 993 GHz 2.480 151 GHz -5.882 dBm -7.142 dBm N 1 f N 1 f

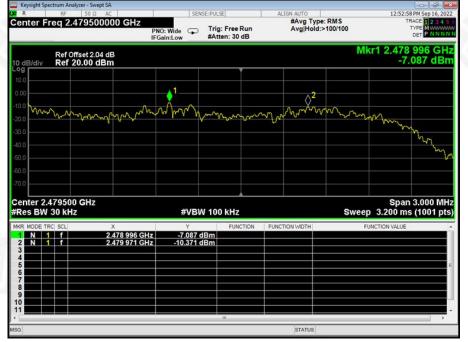
π/4-DQPSK High Channel

STATUS



8-DPSK Low Channel

8-DPSK Middle Channel



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🕄 www.zkt-lab.com

8-DPSK High Channel

10.NUMBER OF HOPPING FREQUENCY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels

10.1 Test Setup

10.2 Test procedure

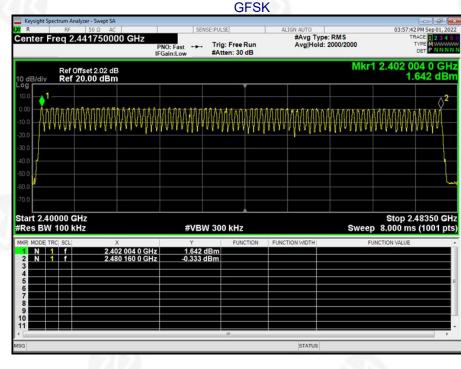
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

10.3 DEVIATION FROM STANDARD


No deviation.

Test Plots: 79 Channels in total

Tride-DQPSk

8-DPSK

STATUS

^R RF enter Freq 2.44	P		g: Free Run ten: 30 dB	ALIGN AUTO #Avg Type Avg Hold:		04:06:27 PM Sep 01, 20 TRACE 2 3 4 TYPE MWWW DET P NN N
	et 2.02 dB .00 dBm		Ţ		Mkr1	2.401 837 0 GH -5.444 dBr
	Annan Manna	Ann Mar	anan	hangereaped	appannaa	ANA MANA
tart 2.40000 GHz Res BW 100 kHz		#VBW 30	0 kHz		Sweep	Stop 2.48350 GF 8.000 ms (1001 pt
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3	X 2.401 837 0 GHz 2.480 076 5 GHz	Y -5.444 dBm -4.807 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
4 5 6 7 8 9						
			ш			

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

1

11. DWELL TIME

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second

11.1 Test Setup

EUT	SPECTRUM
	ANALYZER

11.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0Hz;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.3 DEVIATION FROM STANDARD

No deviation.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

📢 www.zkt-lab.com

11.4 Test Result

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	121.600	400	Pass
2441MHz	DH3	261.760	400	Pass
2441MHz	DH5	307.627	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow

CH:2441MHz time slot=0.380(ms)*(1600/ (2*79))*31.6=121.600ms

CH:2441MHz time slot=1.636(ms)*(1600/ (4*79))*31.6=261.760ms

CH:2441MHz time slot=2.884(ms)*(1600/ (6*79))*31.6=307.627ms

π/4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	124.480	400	Pass
2441MHz	2DH3	262.560	400	Pass
2441MHz	2DH5	308.160	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow

CH:2441MHz time slot=0.389(ms)*(1600/ (2*79))*31.6=124.480ms

CH:2441MHz time slot=1.641(ms)*(1600/ (4*79))*31.6=262.560ms

CH:2441MHz time slot=2.889(ms)*(1600/ (6*79))*31.6=308.160ms

8-DPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	124.480	400	Pass
2441MHz	3DH3	262.400	400	Pass
2441MHz	3DH5	308.373	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2441MHz time slot=0.389(ms)*(1600/ (2*79))*31.6=124.480ms CH:2441MHz time slot=1.640(ms)*(1600/ (4*79))*31.6=262.400ms CH:2441MHz time slot=2.891(ms)*(1600/ (6*79))*31.6=308.373ms

🔊 www.zkt-lab.com

Test Plots

GFSK DH1 2441MHz

R R	UF 50 Ω AC			SENSE	PULSE	1	ALIGN AUTO		03:57:48	PM Sep 01, 2
nter Freq	2.4410000		PNO: Fas FGain:Lo	a 🔸	Trig Delay Trig: Video #Atten: 30	, · ·	#Avg Type	RMS	TF	ACE 1 2 3 4 TYPE WWWW DET P N N N
	ef Offset 2.02 di ef 20.00 dBn								ΔMkr1	380.0 -1.40 c
	1∆2									
X2										TRIG
0										
and a state of the	Man William dida	ALC: NOT THE OWNER OF THE OWNER O	in some as	J. Alicente	diam'r alla d	A PROPERTY OF	ALL	busheses and the state	A general days of	IN THE TAX
			Contraction of the second		<mark>dhad-adad</mark> Taggigge e			halan tilin ha Marin dan dan da		
nter 2.4410	000000 GHz	international and the	pair	pens hittige e				ndrifte fritten ope		Span 0
nter 2.4410 s BW 1.0 M	000000 GHz //Hz	×	pinit.«	#VBW	3.0 MHz	n here a		Sweep	n an	Span 0
nter 2.4410 s BW 1.0 M	000000 GHz VHz	niki na jedina i		pens hittige e	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0
nter 2.4410 s BW 1.0 Ν MODE TRC SC Δ2 1 t	000000 GHz VHz	× 380.0 us		#VBW	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0
nter 2.4410 s BW 1.0 Ν MODE TRC SC Δ2 1 t	000000 GHz VHz	× 380.0 us		#VBW	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0
nter 2.4410 s BW 1.0 M	000000 GHz VHz	× 380.0 us		#VBW	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0
nter 2.4410 s BW 1.0 M	000000 GHz VHz	× 380.0 us		#VBW	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0
nter 2.4410 s BW 1.0 M	000000 GHz VHz	× 380.0 us		#VBW	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0
nter 2.4410 s BW 1.0 Ν	000000 GHz VHz	× 380.0 us		#VBW	3.0 MHz	n here a	lou que lo de lo d	Sweep	10.00 ms	Span 0

GFSK DH3 2441MHz

Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC enter Freq 2.44100000	00 GHz	PNO: Fast ↔	Trig: Vide		ALIGN AUTO #Avg Type	RMS	TF	5PM Sep 01, 202 RACE 1 2 3 4 TYPE WWWWW
Ref Offset 2.02 dE dB/div Ref 20.00 dBm	1	FGain:Low	#Atten: 3	0 dB			ΔMkr1	1.636 m -5.88 d
	1∆2							TRIGL
0.0								
lo <mark>han</mark>	<mark>hallen sinder Briteren sinder</mark>				<mark>publich nublich</mark>		<mark>den des piels</mark>	
enter 2.441000000 GHz		de al par		dilings, kep l		an an an an	10.00 ms	
enter 2.441000000 GHz s BW 1.0 MHz R MODE TRC SCL		#VI #VI	BW 3.0 MH	z		Sweep	den frederike	
R MODE TRC SCL 2 F 1 t (Δ)	1.636 ms	#VI #VI	BW 3.0 MH	z	ile politi Alda ile più	Sweep	10.00 ms	
α 1 t 1 α 1 t (Δ) 7 β 3 1 t (Δ) F 1 t 1 1	1.636 ms	#VI #VI	BW 3.0 MH	z	ile politi Alda ile più	Sweep	10.00 ms	
enter 2.441000000 GHz es BW 1.0 MHz R MODE TRC SCL 27 A2 1 t (A)	1.636 ms	#VI #VI	BW 3.0 MH	z	ile politi Alda ile più	Sweep	10.00 ms	Span 0 I (10001 pr

GFSK DH5 2441MHz

Center Freq 2.441	PNC	D: Fast +++ Tr	ig Delay-500.0 µ ig: Video tten: 30 dB		/pe: RMS		RACE 1 2 3 4 5 TYPE WWWWWW DET PNNNN
Ref Offset						ΔMkr1	2.884 ms 1.23 dB
10.0		▲1∆2					
10.0 X2							TRIG LVL
20.0							
10.0 40.0							
0.0		also yele timeninga y			un de la tarde est		
50.0 N P. I					<mark>e frajúlieres esterais</mark> anning estanopaus		
enter 2.441000000	GHz	anne aithean the	atomic politica pi		<mark>4114901-00-1-00-00-00-00-00-00-00-00-00-00-00</mark>	hden per danne	Span 0 Hz
enter 2.441000000		#VBW 3.	0 MHz	are a filler aller a sea a	Sweep	10.00 ms	
enter 2.441000000	GHz 2.884 ms (/ 498.0 µs	#VBW 3.	0 MHz		Sweep	hden per danne	Span 0 Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.884 ms (Δ	#VBW 3.	0 MHz	are a filler aller a sea a	Sweep	10.00 ms	Span 0 Hz
enter 2.44 1000000 es BW 1.0 MHz RF MODE TRC ScL 1 Δ2 1 t (Δ) 2 F 1 t (Δ) 3 4	2.884 ms (Δ	#VBW 3.	0 MHz	are a filler aller a sea a	Sweep	10.00 ms	Span 0 Hz

π/4-DQPSK 2DH1 2441MHz

Keysight Spec						1.200								
R enter Fro	_R ⊧ eq 2	50 s .4410		GHz	PNO: F	ast 🔸	ISE:PULSE Trig Del Trig: Vid #Atten:			IGN AUTO #Avg Ty	pe: RMS		04:06	34 PM Sep 01, TRACE 1 2 3 TYPE WWW DET P NN
dB/div		Offset 2 20.00											ΔMkr	1 389.0 1.02
00	1/	∆2												
														TR
10														
10 111	er på Vitte	eelimitti H ^{el} kshi	1								te de la compañía de Compañía de la compañía		<mark>l fartsti</mark> r New Josef	
no <mark>1114</mark>	4100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ipi III ni ut			<mark>J<mark>i</mark>lin Mine</mark>		id deal days			ya hirika a n	ind i	<mark>la la matter</mark>	
nter 2.4 es BW 1.	4100 .0 MH	00000 (Hz	ipi III ni ut	Baditin ni	//i/ mi	יווי #vвv ץ	N 3.0 MF	id deal days	in ni i i li i		ya hirika a n	ep	<mark>la la matter</mark>	Span (s (10001
Conter 2.4 conter 2.4 conte	4100 .0 MH	00000 (Hz	GHz		IS (Δ)	יווי #vвv ץ	W 3.0 MH	iz	in ni i i li i	ib k I fille	ya hirika a n	ep	10.00 m	Span (s (10001
Conter 2.4 Conter	4100 .0 MH	00000 (Hz	GHz	389.0 u	IS (Δ)	11 11 11 11 11 11 11 11 11 11 11 11 11 	W 3.0 MH	iz	in ni i i li i	ib k I fille	ya hirika a n	ep	10.00 m	Span (s (10001
	4100 .0 MH	00000 (Hz	GHz	389.0 u	IS (Δ)	11 11 11 11 11 11 11 11 11 11 11 11 11 	W 3.0 MH	iz	in ni i i li i	ib ertiji lje	ya hirika s a	ep	10.00 m	Span (s (10001

π/4-DQPSK 2DH3 2441MHz

R RF 50 Ω A		4 12						
R RF 50 Ω A enter Freq 2.4410000	00 GHz	PNO: Fast +			ALIGN AUTO s #Avg 1	ype: RMS		36 PM Sep 01, 202 RACE 1 2 3 4 9 TYPE WWWWWW DET PNNN
Ref Offset 2.02 d dB/div Ref 20.00 dBi	iB						ΔMkr1	1.641 m 2.04 d
	1Δ2							
								TRICLA
.0 0 0	_							
	and a solid st	-	R. Michelly		t at should	attle at an 14 m	dial of a diame	. In
	anti attiliate Appletiticate		<mark>i i i na l</mark> issa)	10.61	da bahanda Tupbahipapa	un de la compañía de la compañía A la compañía de la c	adial-adam diation 1976-1997 - Alexandra diate	
	<mark>selbululu</mark> a		linder in the second	10.61	THE CONTRACT OF THE	a second second second	alini alemetriki Marangarti padle	ill y hoy to the
enter 2.441000000 GHz	<mark>selbululuu</mark> ta	. 	BW 3.0 M	locality Labor	THE CONTRACT OF THE	underse free and and a second	listen of the state of the stat	Span 0 H
nter 2.441000000 GHz s BW 1.0 MHz	× X	Y	BW 3.0 M	locality Labor	THE CONTRACT OF THE	Sweep	listen of the state of the stat	Span 0 H
C (10) C (10)	<mark>dipirpirpirpirpirpirpirpirpirpirpirpirpir</mark>	γ s (Δ) 2	BW 3.0 M	Hz	an perioda participation of the second s	Sweep	10.00 ms	Span 0 H
C (10) The control of the control	× 1.641 ms	γ s (Δ) 2	BW 3.0 M	Hz	an perioda participation of the second s	Sweep	10.00 ms	Span 0 H
C (10) mter 2.441000000 GH2 s BW 1.0 MH2 R MODE TRC SCL Δ2 1 t (Δ) F 1 t	× 1.641 ms	γ s (Δ) 2	BW 3.0 M	Hz	an perioda participation of the second s	Sweep	10.00 ms	Span 0 H
C (10) There 2.44 10000000 GHz S BW 1.0 MHz R MODE TRC SCL A2 1 t (A) F 1 t (A)	× 1.641 ms	γ s (Δ) 2	BW 3.0 M	Hz	an perioda participation of the second s	Sweep	10.00 ms	Span 0 H
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	× 1.641 ms	γ s (Δ) 2	BW 3.0 M	Hz	an perioda participation of the second s	Sweep	10.00 ms	Span 0 H
a trois a constraint of the second se	× 1.641 ms	γ s (Δ) 2	BW 3.0 M	Hz	an perioda participation of the second s	Sweep	10.00 ms	Span 0 H

π/4-DQPSK 2DH5 2441MHz

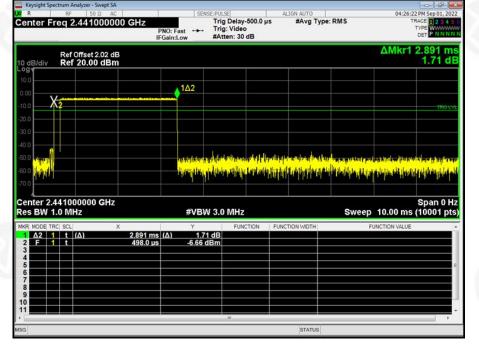
	ilde ählenned staden.							
						in di padaja Mili paga di ti		inter the
enter : es BW	000000 G MHz	Hz	#VBW 3	.0 MHz		Sweep	10.00 ms	Span 0 H (10001 pt

8-DPSK 3DH1 2441MHz

enter Fi	req 2.4	410000		PNO: Fast ↔ FGain:Low	T		is #Avg	Type: RI	WS	Т	RACE 1 2 3 4 5 TYPE WWWWWW DET P NNNN
0 dB/div og √		fset 2.02 di 0.00 dBn								ΔMkr1	389.0 µs -3.60 dB
10.0 3.00											
10.0 20.0 X	142										TRIO LVL
10.0											
				a second			als is a second		and the last		I mark
			al management al management		<mark>relational</mark> Relational		tilder der beitere Anterfahrung ist	<mark>digelline</mark> n	harden der Maria (Maria)	ale estimitie Activities (
50.0 50.0 70.0		000 GHz	ang	ila trippication in con	ырала 1 - Профессионала 3 - Маралана 3 - Мараланананананананананананананананананан	it state	the state of the second		al all all a	ale ta chall the	Span 0 Hz (10001 pts
enter 2.4 es BW 1	.0 MHz	000 GHz	×	#tipp_dipper #VE	3W 3.0 M	it state		ul osti (toda	Sweep	ale ta chall the	
enter 2.4 es BW 1 1 A2 1 2 F 1 3	.0 MHz	000 GHz	al matta ana	#τήμι	анарии зw 3.0 м	Hz	a ^{na} thuithuadh	ul osti (toda	Sweep	10.00 ms	
enter 2.4 es BW 1 kR MODE TR 2 F 1 3 4 5	.0 MHz	000 GHz	× 389.0 us	#τήμι	3W 3.0 M	Hz	a ^{na} thuithuadh	ul osti (toda	Sweep	10.00 ms	
enter 2.4 es BW 1 4 A2 1 2 F 1 3 4 5 6 6	.0 MHz	000 GHz	× 389.0 us	#τήμι	3W 3.0 M	Hz	a ^{na} thuithuadh	ul osti (toda	Sweep	10.00 ms	
enter 2.4 es BW 1 kR MODE TR 1 A2 1 3 4	.0 MHz	000 GHz	× 389.0 us	#τήμι	3W 3.0 M	Hz	a ^{na} thuithuadh	ul osti (toda	Sweep	10.00 ms	

8-DPSK 3DH3 2441MHz

© R RF 50 Center Freq 2.4410	PNO	Fast Trig: V	elay-500.0 µs ïdeo : 30 dB	ALIGN AUTO #Avg Type	RMS	TF	PM Sep 01, 2022 ACE 1 2 3 4 5 TYPE WWWWWWW DET P N N N N
Ref Offset	2.02 dB					ΔMkr1	1.640 ms -6.57 dE
10.0 0.00 .10.0 X2	162						TRIOLO
-30.0 -40.0 -50.0	at zal with a strain day	shadh daugh stáit is tean a dhu st 1990.	en waaddaa afr	kalat, utat modeliti		. U lavatil a taltata	ะสมเปลามีโรการ
-60.0 10 10 10 10 10 10 10 10 10 10 10 10 10	diate and pr	introduction of the second	all as fighter	nimi nyana	a a la		and a first
of blace.	<mark>desette det sette by</mark> ne	#VBW 3.0 N	hill an first of	nova, Alexanov	<mark>editer and a sum</mark>	10.00 ms	Span 0 H (10001 pt
70.0	<mark>desette det sette by</mark> ne	#VBW 3.0 M	in estida en IHz		Sweep		



8-DPSK 3DH5 2441MHz

12. Antenna Requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antennas is 3.49 dBi, reference to the appendix II for details

Reference to the appendix I for details.

14. EUT Constructional Details

Reference to the appendix II for details.

***** END OF REPORT ****

🕄 www.zkt-lab.com

