Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Echo Wei Edward Pan Harrs Hu

TEST REPORT

Report No. CHTEW20030098 Report verification :

Project No. SHT2002002920EW

FCC ID.....: 2AIV9-AC1C

Applicant's name.....: Beijing Visual World Technology Co.,Ltd.

District, Beijing

Manufacturer...... Beijing Visual World Technology Co.,Ltd.

District, Beijing

 Trade Mark
 +360

 Model/Type reference.....
 AC1C

AC1COC10, AC1CAS12, AC1CAS14, AC1CAS15, AC1CAS16,

AC1CAT00

Standard: 47 CFR FCC Part 15 Subpart B

Date of receipt of test sample............ Mar.04, 2020

Date of testing...... Mar.04, 2020- Mar.18, 2020

Date of issue...... Mar.19, 2020

Result...... Pass

Compiled by

(position+printed name+signature)..: File administrators Echo Wei

position printed name reignature/iii in addininatiatione zerio troi

Supervised by

(position+printed name+signature)..: Project Engineer Edward Pan

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No : CHTEW20030098 Page 2 of 21 Issued: 2020-03-19

Contents

Test Standards Report version information TEST DESCRIPTION		TEST STANDARDS AND REPORT VERSION	3
Report version information 3 TEST DESCRIPTION. 4 SUMMARY. 5 Client Information 5 Product Description 5 EUT operation mode 5 Configuration of Tested System 5 Support unit used in test configuration 5 TEST ENVIRONMENT 6 Address of the test laboratory 6 Test Facility 6 Environmental conditions 7 Statement of the measurement uncertainty 7 Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS 9 Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20		Tost Standards	2
SUMMARY	2.		
SUMMARY		TEST DESCRIPTION	4
Client Information 5 Product Description 5 EUT operation mode 5 Configuration of Tested System 5 Support unit used in test configuration 5 TEST ENVIRONMENT. 6 Address of the test laboratory 6 Test Facility 6 Environmental conditions 7 Statement of the measurement uncertainty 7 Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS 9 Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20		1201 D200KH 110K	···· ·
Product Description 5 EUT operation mode 5 Configuration of Tested System 5 Support unit used in test configuration 5 TEST ENVIRONMENT. 6 Address of the test laboratory 6 Test Facility 6 Environmental conditions 7 Statement of the measurement uncertainty 7 Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS 9 Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20		SUMMARY	<u>5</u>
EUT operation mode Configuration of Tested System Support unit used in test configuration TEST ENVIRONMENT 6 Address of the test laboratory Test Facility Find the measurement uncertainty Equipments Used during the Test TEST CONDITIONS AND RESULTS Conducted Emissions Test Radiated Emissions Test Radiated Emissions Test TEST SETUP PHOTOS OF THE EUT 20 5 5 TEST Configuration mode 5 5 5 5 TEST Configuration of Tested System 5 5 5 5 TEST Configuration of Tested System 5 5 6 6 6 7 7 8 7 8 8 TEST CONDITIONS AND RESULTS 9 8 8 TEST SETUP PHOTOS OF THE EUT 20 8			
Configuration of Tested System Support unit used in test configuration TEST ENVIRONMENT. Address of the test laboratory Test Facility 6 Environmental conditions 7 Statement of the measurement uncertainty Fquipments Used during the Test 8 TEST CONDITIONS AND RESULTS Conducted Emissions Test Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20			
Support unit used in test configuration 5 TEST ENVIRONMENT. 6 Address of the test laboratory 6 Test Facility 6 Environmental conditions 7 Statement of the measurement uncertainty 7 Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS 9 Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20			5
TEST ENVIRONMENT			5
Address of the test laboratory Test Facility Environmental conditions 7 Statement of the measurement uncertainty Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS Conducted Emissions Test Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20		Support unit used in test configuration	5
Test Facility 6 Environmental conditions 7 Statement of the measurement uncertainty 7 Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS 9 Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20		TEST ENVIRONMENT	6
Environmental conditions Statement of the measurement uncertainty Equipments Used during the Test TEST CONDITIONS AND RESULTS Conducted Emissions Test Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20		Address of the test laboratory	6
Statement of the measurement uncertainty Equipments Used during the Test TEST CONDITIONS AND RESULTS Conducted Emissions Test Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20			
Equipments Used during the Test 8 TEST CONDITIONS AND RESULTS 9 Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT 20			
TEST CONDITIONS AND RESULTS			
Conducted Emissions Test 9 Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT		Equipments Used during the Test	8
Radiated Emissions Test 14 TEST SETUP PHOTOS OF THE EUT		TEST CONDITIONS AND RESULTS	9
TEST SETUP PHOTOS OF THE EUT		Conducted Emissions Test	9
		Radiated Emissions Test	14
EXTERNAL AND INTERNAL PHOTOS OF THE EUT		TEST SETUP PHOTOS OF THE EUT	20
		EXTERNAL AND INTERNAL PHOTOS OF THE EUT	21

Report No : CHTEW20030098 Page 3 of 21 Issued: 2020-03-19

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

ANSI C63.4: 2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2020-03-19	Original

Report No : CHTEW20030098 Page 4 of 21 Issued: 2020-03-19

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Emissions	15.107(a)	PASS	Jianquan Wu
Radiated Emissions	15.109(a)	PASS	Pan Xie

Note: The measurement uncertainty is not included in the test result.

Report No : CHTEW20030098 Page 5 of 21 Issued: 2020-03-19

3. **SUMMARY**

3.1. Client Information

Applicant:	Beijing Visual World Technology Co.,Ltd.
Address:	501 & 5F,102 No, Building No. 2, No 6 Jiuxianqiao Rd, Chaoyang District, Beijing
Manufacturer:	Beijing Visual World Technology Co.,Ltd.
Address:	501 & 5F,102 No, Building No. 2, No 6 Jiuxianqiao Rd, Chaoyang District, Beijing

3.2. Product Description

Name of EUT:	360 Smart Camera little drop AI version		
Trade Mark:	+360		
Model No.:	AC1C		
Listed Model(s)	AC1CAS51, AC1CEU00, AC1CNA19, AC1CAS11, AC1CAS18, AC1COC10, AC1CAS12, AC1CAS14, AC1CAS15, AC1CAS16, AC1CAT00		
Power supply:	DC 5V from adapter		
	Model: A18A-050100U-US2		
Adapter Information 1:	Input: 100-240Va.c.,50/60Hz 0.2A		
	Output: 5Vd.c.,1.0A		
	Model: TEKA006-0501000UK		
Adapter Information 2:	Input: 100-240Va.c.,50/60Hz 0.3A MAX		
	Output: 5Vd.c.,1000mA		
Hardware version:	HI3518EV300_V360P6_GC2053_D903		
Software version:	AC1CA1_B_20200302.7.2.1		

3.3. EUT operation mode

Test mode	Describe
Camera recording mode	The EUT works at video recording status

3.4. Configuration of Tested System

N/A

3.5. Support unit used in test configuration

N/A.

Report No: CHTEW20030098 Page 6 of 21 Issued: 2020-03-19

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.
Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No: CHTEW20030098 Page 7 of 21 Issued: 2020-03-19

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emissions	30~1000MHz	4.90 dB	(1)
Radiated Emissions	1~18GHz	4.96 dB	(1)
Conducted Disturbance	0.15~30MHz	3.02 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : CHTEW20030098 Page 8 of 21 Issued: 2020-03-19

4.5. Equipments Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2019/10/23	2020/10/22
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

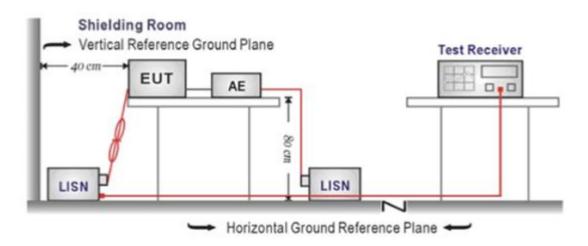
•	Radiated emission-6th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2017/04/05	2020/04/04
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2019/11/14	2020/11/13
•	RF Connection Cable	HUBER+SUHNER	HTWE0062- 01	N/A	N/A	2019/08/21	2020/08/20
•	RF Connection Cable	HUBER+SUHNER	HTWE0062- 02	SUCOFLEX 104	501184/4	2019/05/27	2020/05/26
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emission-7th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2017/04/01	2020/03/31
•	Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	25841	2017/03/27	2020/03/26
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2019/11/14	2020/11/13
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/05/09
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Report No: CHTEW20030098 Page 9 of 21 Issued: 2020-03-19

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions Test


LIMIT

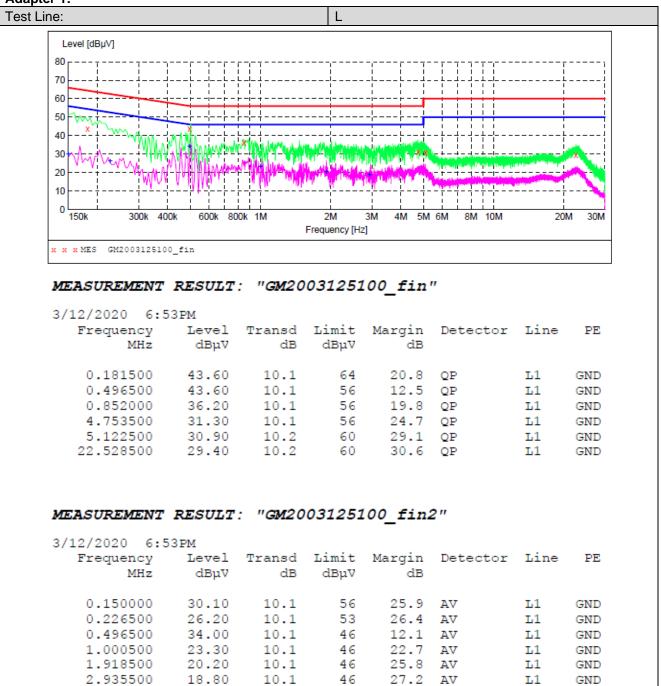
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

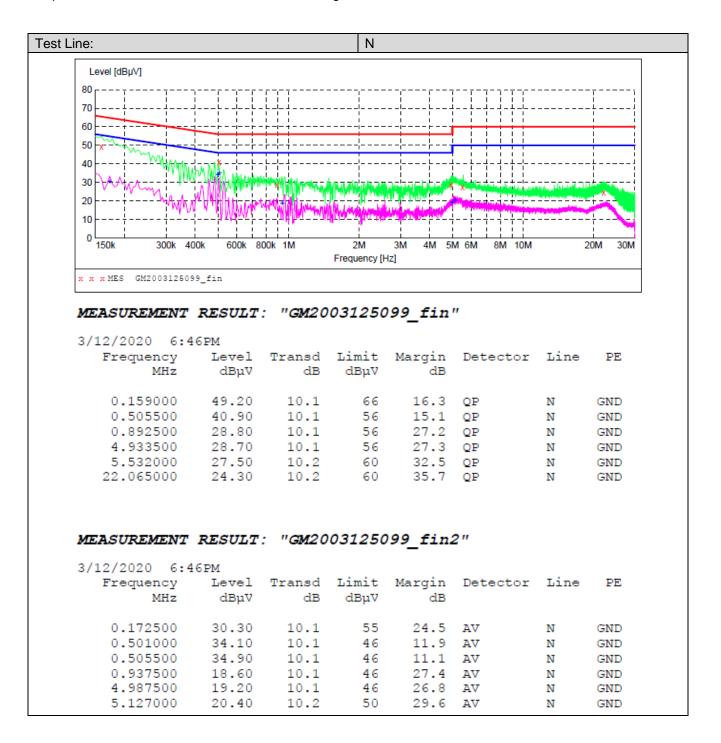
Fraguency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

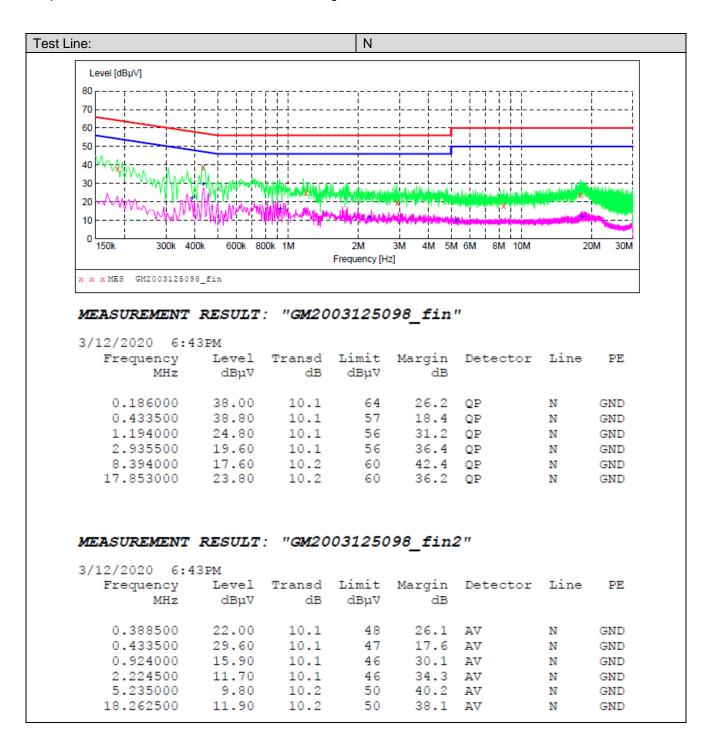
TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


TEST MODE:

Please refer to the clause 3.3

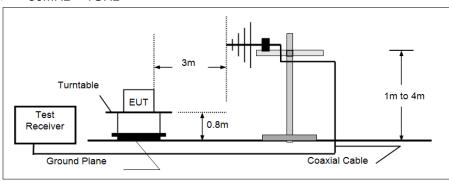
TEST RESULTS


Adapter 1:

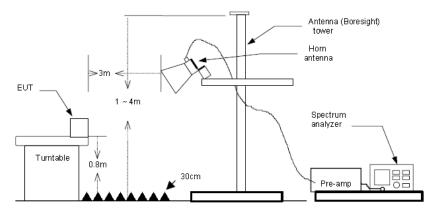
Adapter 2:

e:			L				
Level [dBµV]							
. Lever [авру] 80 г. – - т. – - т. –							
i i i							· i
70							·¦
50			<u>i</u>	<u></u>	 	 	
50		├ <i>-</i> ╎- ┤	¦	-¦	1 1 1 1	İ	
40	-,	!				<u></u>	
30 L VV WWW WWW V	A			i i i	_ i _ i _ i _ i _ i	<u>-</u>	i
20 24 4 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M	Makinda "Habita	nd the bearing with the	والمنتعوب والماويا	يسراط والطاهر والمطار	pulsed by John	ا احداد عدا
1. A AND VAVIN A A A	M. 100 M.	M Hill How you had be grown	addination of the		1 1 1 X	Minori XIII	
10	 	hrdir is a cartilla a .	altitut c. paracett	1 1 1	1 1 1 1	The second section is a second	
150k 300k 40	0k 600k 80	Ok 1M	2M	3M 4M 5M	6M 8M 10M	20M	30M
			Frequency [Hz			20	
x x MES GM200312509	7 fin						
MEASUREMENT	RESIILT	· "GM20	031250	197 fin	"		
	10001	. 02120		,,,			
3/12/2020 6:4	0PM						
Frequency	Level	Transd	T.imit	Marcin	Detector	Line	PE
			11 1 III 1 C	Margin	Defector	птпе	PE
MHz	dΒμV	dB	dBµV	dB	Detector	птие	PE
MHz	dΒμ∇				Decector	TIME	PE
MHz 0.181500	dΒμV 39.00					L1	GND
		dB	dΒμ∇	dB			
0.181500	39.00	dB 10.1	dBµV 64	dB 25.4	QP	L1	GND
0.181500 0.433500	39.00 38.00	dB 10.1 10.1	dВµ∇ 64 57	dB 25.4 19.2	QP QP	L1 L1	GNE GNE GNE
0.181500 0.433500 0.933000	39.00 38.00 24.00	dB 10.1 10.1 10.1	dBµV 64 57 56	dB 25.4 19.2 32.0	QP QP QP	L1 L1 L1	GND GND
0.181500 0.433500 0.933000 2.359500	39.00 38.00 24.00 20.30	dB 10.1 10.1 10.1 10.1	dBμV 64 57 56 56	25.4 19.2 32.0 35.7	QP QP QP QP	L1 L1 L1 L1	GND GND GND
0.181500 0.433500 0.933000 2.359500 10.437000	39.00 38.00 24.00 20.30 17.40	dB 10.1 10.1 10.1 10.1 10.2	dBµV 64 57 56 56 60	25.4 19.2 32.0 35.7 42.6	QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND GND
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000	39.00 38.00 24.00 20.30 17.40 19.50	dB 10.1 10.1 10.1 10.1 10.2 10.2	dBμV 64 57 56 56 60	dB 25.4 19.2 32.0 35.7 42.6 40.5	QP QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND GND
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000	39.00 38.00 24.00 20.30 17.40 19.50	dB 10.1 10.1 10.1 10.1 10.2 10.2	dBμV 64 57 56 56 60 60	dB 25.4 19.2 32.0 35.7 42.6 40.5	QP QP QP QP QP QP	L1 L1 L1 L1	GNE GNE GNE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000	39.00 38.00 24.00 20.30 17.40 19.50 RESULT	dB 10.1 10.1 10.1 10.2 10.2	dBμV 64 57 56 56 60 60	25.4 19.2 32.0 35.7 42.6 40.5	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GNE GNE GNE GNE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 MEASUREMENT /12/2020 6:4 Frequency	39.00 38.00 24.00 20.30 17.40 19.50 RESULT	dB 10.1 10.1 10.1 10.2 10.2	dBµV 64 57 56 56 60 60 DO31250	25.4 19.2 32.0 35.7 42.6 40.5	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GNE GNE GNE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000	39.00 38.00 24.00 20.30 17.40 19.50 RESULT	dB 10.1 10.1 10.1 10.2 10.2	dBμV 64 57 56 56 60 60	25.4 19.2 32.0 35.7 42.6 40.5	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GNI GNI GNI GNI GNI
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 MEASUREMENT /12/2020 6:4 Frequency MHz	39.00 38.00 24.00 20.30 17.40 19.50 RESULT	dB 10.1 10.1 10.1 10.2 10.2 : "GM20 Transd dB	dBµV 64 57 56 56 60 60 Limit dBµV	25.4 19.2 32.0 35.7 42.6 40.5 97_fin.	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GNE GNE GNE GNE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 MEASUREMENT /12/2020 6:4 Frequency MHz 0.370500	39.00 38.00 24.00 20.30 17.40 19.50 RESULT OPM Level dBµV 26.30	dB 10.1 10.1 10.1 10.2 10.2	dBµV 64 57 56 56 60 60 DO31250	25.4 19.2 32.0 35.7 42.6 40.5	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GNE GNE GNE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 EASUREMENT /12/2020 6:4 Frequency MHz	39.00 38.00 24.00 20.30 17.40 19.50 RESULT	dB 10.1 10.1 10.1 10.2 10.2 : "GM20 Transd dB	dBµV 64 57 56 56 60 60 Limit dBµV	25.4 19.2 32.0 35.7 42.6 40.5 97_fin.	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GNI GNI GNI GNI FE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 EASUREMENT /12/2020 6:4 Frequency MHz 0.370500	39.00 38.00 24.00 20.30 17.40 19.50 RESULT OPM Level dBµV 26.30	dB 10.1 10.1 10.1 10.2 10.2 : "GM20 Transd dB 10.1	dBµV 64 57 56 56 60 60 Limit dBµV 49	25.4 19.2 32.0 35.7 42.6 40.5 Margin dB	QP QP QP QP QP QP AV	L1 L1 L1 L1 L1 L1 L1	GNE GNE GNE GNE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 EASUREMENT /12/2020 6:4 Frequency MHz 0.370500 0.429000	39.00 38.00 24.00 20.30 17.40 19.50 RESULT OPM Level dBµV 26.30 32.60	dB 10.1 10.1 10.1 10.2 10.2 : "GM20 Transd dB 10.1 10.1	dBµV 64 57 56 56 60 60 Limit dBµV 49 47	25.4 19.2 32.0 35.7 42.6 40.5 Margin dB 22.2 14.7	QP QP QP QP QP QP AV	L1 L1 L1 L1 L1 L1 L1 L1 L1	GNE GNE GNE GNE FE GNE
0.181500 0.433500 0.933000 2.359500 10.437000 15.387000 EASUREMENT /12/2020 6:4 Frequency MHz 0.370500 0.429000 0.973500	39.00 38.00 24.00 20.30 17.40 19.50 RESULT OPM Level dBµV 26.30 32.60 18.60	dB 10.1 10.1 10.1 10.2 10.2 : "GM20 Transd dB 10.1 10.1 10.1	dBµV 64 57 56 56 60 60 2031250 Limit dBµV 49 47 46	25.4 19.2 32.0 35.7 42.6 40.5 Margin dB 22.2 14.7 27.4	QP QP QP QP QP QP AV AV AV	L1 L	GNE GNE GNE GNE GNE GNE GNE GNE

5.2. Radiated Emissions Test


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
ABOVE TOTIZ	74.00	Peak

TEST CONFIGURATION

30MHz ~ 1GHz

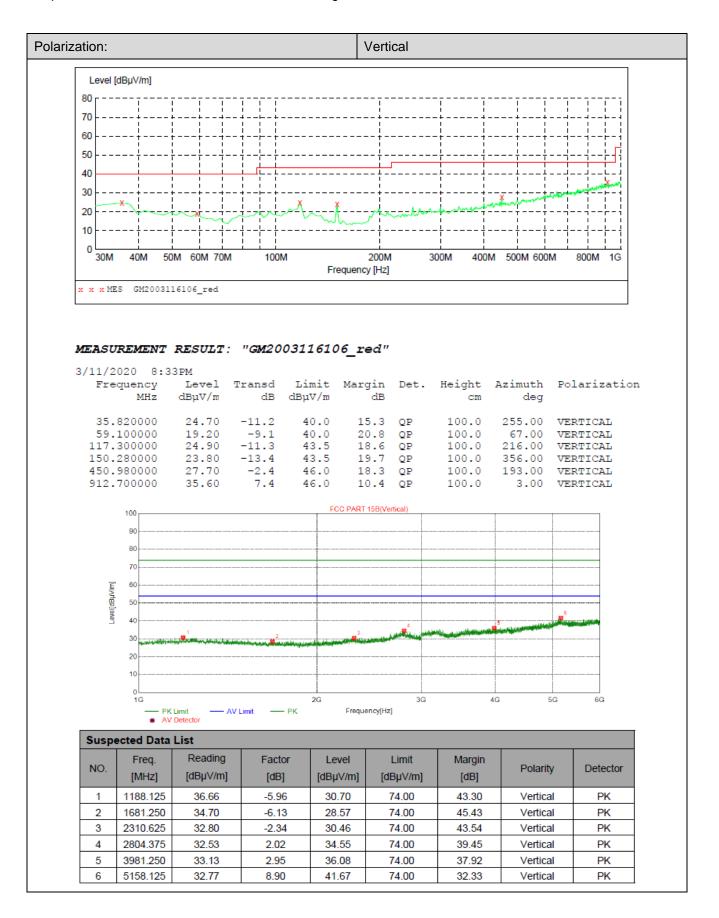
Above 1GHz

TEST PROCEDURE

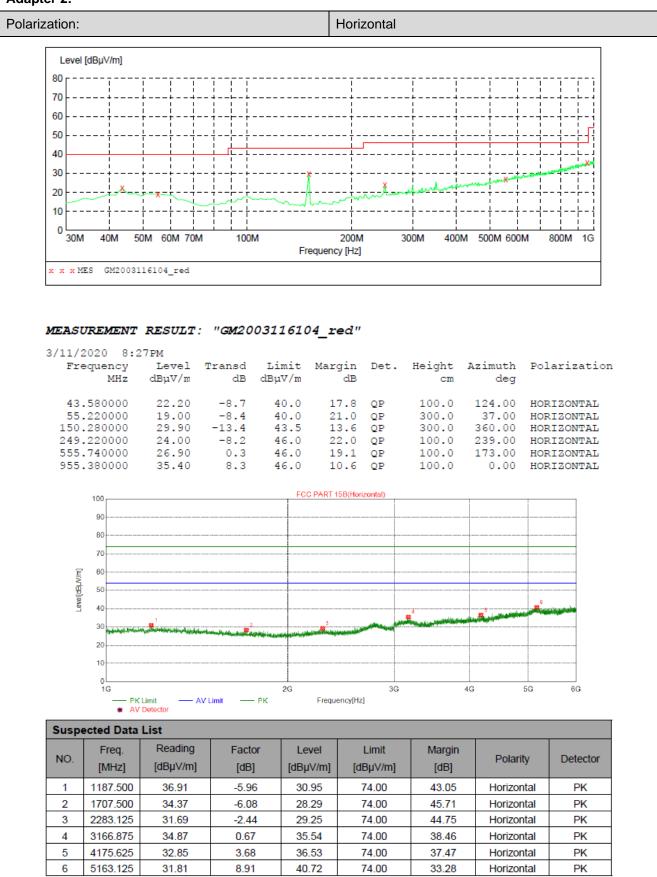
- The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

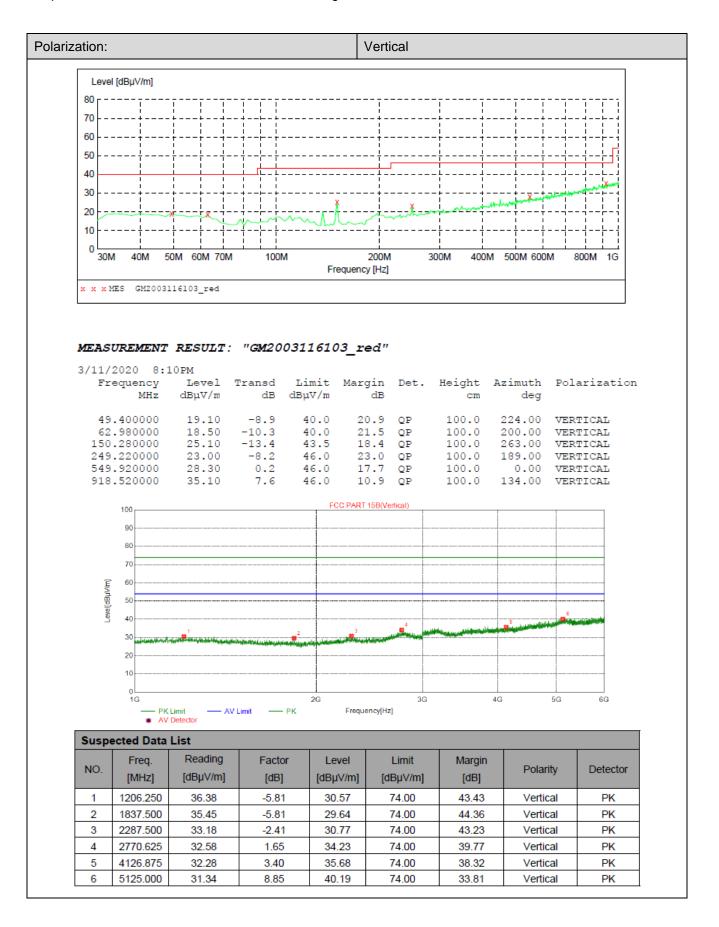
Report No: CHTEW20030098 Page 15 of 21 Issued: 2020-03-19

TEST		\sim	$\overline{}$	
1 -> 1	IVI	()		┍.


Please refer to the clause 3.3

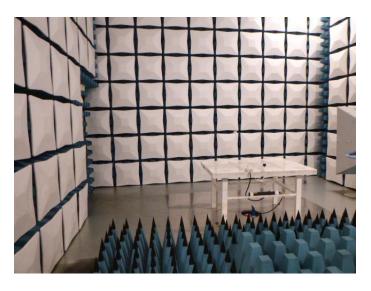
TEST RESULTS


Note: Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.


Adapter 1:

ation:					Horizontal			
Level	[dBµV/m]							
80 F	<u>-</u>							
70					‡			
60	-	· 	· i i i		;			
50	i	<u> </u>	<u> </u>		i i	<u> </u>	<u> </u>	
	<u> </u>	ŢŢ <u>Ţ</u>	Ţ <u>-</u>				<u> </u>	
40	-							
30	i	· † † †	† 	x	· †			
20	! -x	<u> </u>	t			when the work		
10	¦				·			
ما	i	<u>i i i</u>	<u> </u>		i	<u>i i</u>	<u>i i</u>	
30M	40M 5	60M 60M 70M	100M	_	200M	300M 400M	500M 600N	M 800M 1G
				Frequen	icy [Hz]			
икки	ES GM20031	116105_red						
3/11/2	2020 8:3			_				
Fre	equency MHz	Level ? dBµV/m		imit Ma: µV/m	rgin Det. dB	Height .	Azımuth deq	Polarizatio:
	PILL	αυμν/ ΙΙΙ	ab ab	pt v / Iti	CLD .	Cin	acg	
	580000	19.50			20.5 QP	100.0	105.00	HORIZONTAL
	220000	19.50 28.20			20.5 QP	100.0	0.00	HORIZONTAL
	280000	28.20			15.3 QP 22.8 QP	300.0 100.0	3.00 255.00	HORIZONTAL HORIZONTAL
	040000	28.00			18.0 QP	100.0	78.00	HORIZONTAL
957.	320000	35.80	8.3	46.0	10.2 QP	100.0	313.00	HORIZONTAL
	100			FCC PART	15B(Horizontal)			
	90							
	80							
	70							
Ē	60							
[dBµVim]	50							
Lewel	40				<u> </u>		5	6
	30	1	2	3	8 ⁴	AND SHEET SHEET SHEET SHEET	S. S	
	20		Paradelinitin Belleville and	ringeridation and states				
	10							
	0 1G			2G	3G	40	3 5	G 6G
		Limit — AV Detector	Limit — PK	Frequ	iency[Hz]			
Suspe	ected Data							
NO	Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
NO	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
NO.		35.47	-5.96	29.51	74.00	44.49	Horizont	al PK
	1187.500		0.00		74.00	45.55	Horizont	
1	1187.500 1684.375		-6.13	28.45			. IOIIZOIII	111
1 2	1684.375	34.58	-6.13 -2.41	28.45		_	Horizont	al PK
1 2 3	1684.375 2287.500	34.58 31.43	-2.41	29.02	74.00	44.98	Horizont	
1 2 3 4	1684.375 2287.500 2743.750	34.58 31.43 30.28	-2.41 1.25	29.02 31.53	74.00 74.00	44.98 42.47	Horizont	al PK
1 2 3	1684.375 2287.500	34.58 31.43	-2.41	29.02	74.00	44.98	 	al PK al PK

Adapter 2:


6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions

Report No : CHTEW20030098 Page 21 of 21 Issued: 2020-03-19

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: CHTEW20030097

-----End of Report-----