FCC ID: 2AITNWAVE

Maximum Permissible Exposure (MPE)

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)							
(A) Limits for Occupational/Controlled Exposure											
0.3-3.0	614	1.63	*100	6							
3.0-30	1842/	4.89/1	*900/f ²	6							
30-300	61.4	0.163	1.0	6							
300-1,500			f/300	6							
1,500-100,000			5	6							
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure								
0.3-1.34	614	1.63	*100	30							
1.34-30	824/	2.19/1	*180/f ²	30							
30-300	27.5	0.073	0.2	30							
300-1,500			f/1500	30							
1,500-100,000			1.0	30							

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30*P*G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 * P * G}{377 * D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Measurement Result

Operation Frequency: WIFI 802.11b/g/n HT20: 2412-2462MHz, WIFI 802.11n HT40:2422-2452MHz

Power density limited: 1mW/ cm²

Antenna Type: Antenna 1:Rod antenna Antenna 2: PCB Antenna

WIFI antenna gain: Antenna 1: 2.5dBi
Antenna 2: 2.5dBi

R=20cm

 $mW=10^{(dBm/10)}$

WLAN2.4G MIMO MODE

	Antenna	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(c m)	S (mW/cm²)	MPE Limit (mW/cm ²)	Conclusion
	Ant 1	13.33	2.5	15.83	38.282	20	0.0126	1	Pass
Ī	Ant 2	12.14	2.5	14.64	29.11	20	0.0058	1	1 433

WLAN5.2G MIMO MODE

Antenna	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(c m)	S (mW/cm ²)	MPE Limit (mW/cm²)	Conclusion
Ant 1	11.961	2.5	14.461	27.932	20	0.0092	1	Door
Ant 2	9.877	2.5	12.377	17.29	20	0.0034	1	Pass

WLAN5.2G MIMO MODE

Antenna	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(cm)	S (mW/cm2)	MPE Limit (mW/cm2)	Conclusion
Ant 1	8.968	2.5	11.468	14.022	20	0.0046	1	Door
Ant 2	9.951	2.5	12.451	17.58	20	0.0035	1	Pass

SIMULTANEOUS TRANSMISSIONS

When a number of sources at different frequencies, and/or broadband sources, contribute to the total exposure, it becomes necessary to weigh each contribution relative to the MPE. To comply with the MPE, the fraction of the MPE in terms of E^2 , H^2 (or power density) incurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity. In order to ensure compliance with the MPE for a controlled environment, the sum of the ratios of the power density to the corresponding MPE should not exceed unity. That is

$$\sum_{i=1}^{n} \frac{S_{i}}{MPE_{i}} \leq 1$$

WLAN2.4G MIMO MODE

Antenr	a Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(c m)	S (mW/cm ²)	MPE Limit (mW/cm²)	Calculation result	Conclusion
Ant 1	13.33	2.5	15.83	38.282	20	0.0126	1	0.0184	Pass
Ant 2	12.14	2.5	14.64	29.11	20	0.0058	1	0.0101	1 400

WLAN5.2G MIMO MODE

Antenna	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(c m)	S (mW/cm ²)	MPE Limit (mW/cm²)	Calculation result	Conclusion
Ant 1	11.961	2.5	14.461	27.932	20	0.0092	1	0.0426	Doos
Ant 2	9.877	2.5	12.377	17.29	20	0.0034	1	0.0126	Pass

WLAN5.2G MIMO MODE

Antenna	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(cm)	S (mW/cm2)	MPE Limit (mW/cm2)	Calculation result	Conclusion
Ant 1	8.968	2.5	11.468	14.022	20	0.0046	1	0.0001	Door
Ant 2	9.951	2.5	12.451	17.58	20	0.0035	1	0.0081	Pass

Conclusion:

For the max result : 0.02510≤ 1.0 for Max Power Density, Compliance the RF Exposure requirement.

The 2.4Gwifi module 2 has the maximum Power Density value 0.0184 mW/cm2 in 2.4G MIMO transmitting mode;

The 5Gwifi module 2 has the maximum Power Density value 0.0126 mW/cm2 in 5G MIMO transmitting mode;

Transmitting Mode	R(cm)	S (mW/cm2)	Total S (mW/cm2)	MPE Limit (mW/cm2)	Conclusion	
Wifi 2.4G MIMO Mode		0.0184				
Wifi 5G MIMO Mode	20	0.0126	0.031	1.0	Pass	

Conclusion:

For the max result: 0.0031≤ 1.0 for Max Power Density, compliance the RF Exposure.

Alex

Note:

- 1. The Output power is the maximum eirp power of this EUT, and the data comes from the RF report for this EUT.
- 2. The assess distance is 20cm.

Signature:

Date: 2021-02-03

NAME AND TITLE (Please print or type): alex li/Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.