

FCC ID: 2AITN-AURA

Report No.: LCSA052422040E

Test Model: 4116

Prepared for

Powerstick.com Inc. 2

2

è

2

2

2

:

29 Camelot Drive, Ottawa, Canada, K2G 5W6 2

Shenzhen LCS Compliance Testing Laboratory Ltd. 2 Room 101, 201, Building A and Room 301, Building C, 2 Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330 2

- (+86)755-82591332
- www.LCS-cert.com
- webmaster@LCS-cert.com

May 25, 2022

- 1
- A052422040
- : Prototype
- May 25, 2022 ~ May 30, 2022 :
- June 01, 2022 2

Address Tel Fax

Address

Prepared by

Web Mail

> Date of receipt of test sample Number of tested samples Sample No. Serial number Date of Test Date of Report

	: LCSA052422040E	
Date Of Issue	[:] June 01, 2022	
Festing Laboratory Name	· Shenzhen LCS Compliance Test	ing Laboratory Ltd.
	 Room 101, 201, Building A and Ro Industrial Park, Yabianxueziwei, Sh District, Shenzhen, Guangdong, Ch Full application of Harmonised star Partial application of Harmonised s Other standard testing method 	najing Street, Bao'an nina ndards ∎
Applicant's Name	[:] Powerstick.com Inc.	
Address	: 29 Camelot Drive, Ottawa, Canada	, K2G 5W6
Test Specification		
Standard	FCC 47 CFR Part 15 Subpart B, Cl C63.4 -2014	ass B(SDoC), ANSI
Test Report Form No	[:] LCSEMC-1.0	
TRF Originator	: Shenzhen LCS Compliance Testing	g Laboratory Ltd.
SHENZHEN LCS COMPLIANCE This publication may be reproduce as the SHENZHEN LCS COMP	CE TESTING LABORATORY LTD. A uced in whole or in part for non-com PLIANCE TESTING LABORATORY I	mercial purposes as long _TD. is acknowledged as
SHENZHEN LCS COMPLIANCE This publication may be reproduce as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's interview.	CE TESTING LABORATORY LTD. A uced in whole or in part for non-com	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages
SHENZHEN LCS COMPLIANCE This publication may be reproduce as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter context.	CE TESTING LABORATORY LTD. A uced in whole or in part for non-com PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages
SHENZHEN LCS COMPLIANCE This publication may be reproduce as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter- context. Test Item Description	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume rpretation of the reproduced material	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages
SHENZHEN LCS COMPLIANCE This publication may be reproduce as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter- context. Test Item Description	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume pretation of the reproduced material : Aura : N/A	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages
SHENZHEN LCS COMPLIANC This publication may be reprod as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter context. Test Item Description Trade Mark Test Model	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume rpretation of the reproduced material : Aura : N/A : 4116 : Input: 5V==1A	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages due to its placement and
SHENZHEN LCS COMPLIANCE This publication may be reproduce as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter- context. Test Item Description Trade Mark Test Model Ratings	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume rpretation of the reproduced material : Aura : N/A : 4116	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages due to its placement and
This publication may be reprod as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter context. Test Item Description Trade Mark Test Model Ratings Result	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume pretation of the reproduced material : Aura : N/A : 4116 : Input: 5V==1A DC 3.7V by Rechargeable Li-ion E : Positive	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages due to its placement and Battery, 330mAh
SHENZHEN LCS COMPLIANC This publication may be reprod as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter context. Test Item Description Trade Mark Test Model	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume pretation of the reproduced material : Aura : N/A : 4116 : Input: 5V===1A DC 3.7V by Rechargeable Li-ion E	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages due to its placement and
SHENZHEN LCS COMPLIANC This publication may be reprod as the SHENZHEN LCS COMP copyright owner and source of LABORATORY LTD. takes no resulting from the reader's inter context. Test Item Description Trade Mark Test Model Ratings Result	CE TESTING LABORATORY LTD. A uced in whole or in part for non-comp PLIANCE TESTING LABORATORY I the material. SHENZHEN LCS COM responsibility for and will not assume pretation of the reproduced material : Aura : N/A : 4116 : Input: 5V==1A DC 3.7V by Rechargeable Li-ion E : Positive Supervised by:	mercial purposes as long _TD. is acknowledged as PLIANCE TESTING liability for damages due to its placement and Battery, 330mAh

Test Report No. : LCSA052422040E

June 01, 2022 Date of issue

Test Model	: 4116
EUT	: Aura
Applicant	: Powerstick.com Inc.
Address	: 29 Camelot Drive, Ottawa, Canada, K2G 5W6
Telephone	:/
Fax	
Manufacturer	: Powerstick.com Inc.
Address	: 29 Camelot Drive, Ottawa, Canada, K2G 5W6
Telephone	
Fax	: /
Factory	
Address	: 29 Camelot Drive, Ottawa, Canada, K2G 5W6
Telephone	Los Test
Fax	:/

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

	Revis	sion History		
Report Version	Issue Date	Revision Content	Revised By	
000	June 01, 2022	Initial Issue		

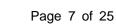
TABLE OF CONTENTS ;STesting Lab

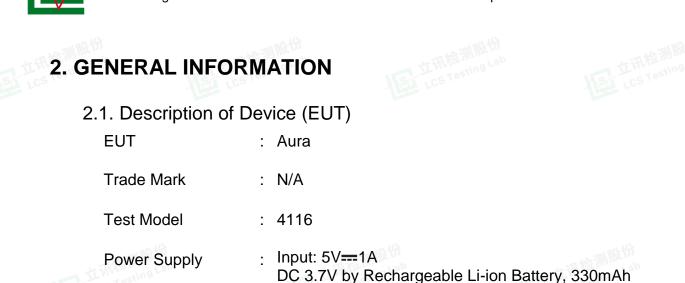
	TABLE OF CONTENTS	
Test Report Des	scription	Page
1. SUMMARY OF	STANDARDS AND RESULTS	
1.1. Description	of Standards and Results	6
2. GENERAL INFO	ORMATION	7
2.1. Description o	f Device (EUT)	7
	pment List	
	able f Test Facility	
	the Measurement Uncertainty	
2.5. Measuremen	t Uncertainty	9
3. TEST RESULTS	5	
	E CONDUCTED EMISSION MEASUREMENT	
	ssion Measurement	
5. EXTERNAL AN	D INTERNAL PHOTOS OF THE EUT	

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.


	EMISSION		
Description of Test Item	Standard	Limits	Results
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	PASS
Radiated disturbance	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	PASS
Intersting	Investing	1 I Winst	ing La


N/A is an abbreviation for Not Applicable.

Test mode:		
Mode 1	Normal operation	Record

Highest internal frequency (Fx)

: Fx ≤ 108 MHz

Highest internal frequency (Fx)	Highest measured frequency
Fx ≤ 108 MHz	1 GHz
108 MHz < Fx ≤ 500 MHz	2 GHz
500 MHz < Fx ≤ 1 GHz	5 GHz
Fx > 1 GHz	5 × Fx up to a maximum of 6 GHz
NOTE 1 For FM and TV broadcast receir frequency generated or used excluding t	vers, Fx is determined from the highest he local oscillator and tuned
frequencies. Where Fx is unknown, the radiated emis up to 6 GHz.	sion measurements shall be performed

2.2. Support Equipment List

		and the second se	All I have been	
Manufacturer	Description	Model	Serial Number	Certificate
OPPO 🌕	Adapter	OP52KAUH		OPPO
NULL A TITLE		L. LL . d L.L		

Note: Auxiliary equipment is provided by the laboratory.

2.3 External I/O Cable

I/O Port Description	Quantity	Cable
Power Port	1	N/A

2.4. Description of Test Facility

Site Description EMC Lab.

: NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

	Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)	
	Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	\pm 2.63 dB \pm 2.35 dB	± 3.8 dB ± 3.4 dB	
F	Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A	
F	Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB	
F	Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	\pm 5.2 dB	

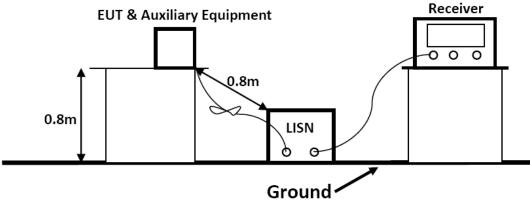
2.5. Measurement Uncertainty

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. TEST RESULTS

3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT


3.1.1. Test Equipment

Page 10 of 25

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	Farad	EZ	/	N/A	N/A
2	EMI Test Receiver	R&S	ESR3	102311	2022-03-15	2023-03-14
3	Artificial Mains	R&S	ENV216	101288	2021-06-21	2022-06-20
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2021-06-21	2022-06-20
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2021-12-01	2022-11-30

3.1.2.Block Diagram of Test Setup

3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

F	Frequency		Limit (dBµV)		
(MHz)		Quasi-peak Level Average Level			
0.15	ng Lab	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *	
0.50	~	5.00	56.0	46.0	
5.00	~	30.00	60.0	50.0	

NOTE1-The lower limit shall apply at the transition frequencies. NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

3.1.5. Operating Condition of EUT

- 3.1.5.1.Setup the EUT as shown on Section 3.1.2
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring Mode 1 and measure it.

3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

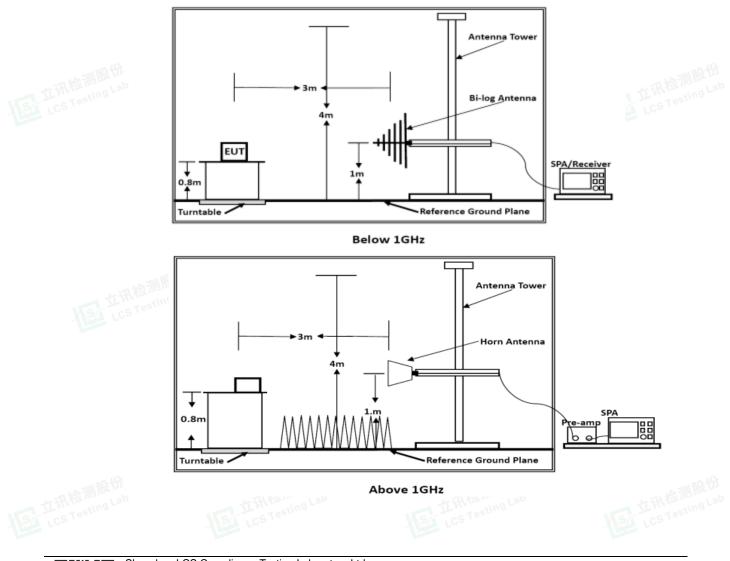
3.1.7.Test Results

PASS.

The test result please refer to the next page.

Test Model		41	4116		Test	Test Mode		le 1
Environmental Conditions		1.10	23.4℃, 54.6% RH			Test Engineer		Zhu
Pol	Line			Test Voltage			120V/60Hz	
80.0 dBuV							-	
80.0 dBuV								
70								
60						CC PART 158 Cor	duction(QF	0
50					F	CC PART 158 Con	duction(AVI	i)
40								d
30 4000		3					11 	
20	MAN WWW	hand the program	Markenberrand	www.www.woman	When man what	warman warma	12	Www.www.peak
10	man	ward when	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	han	man 10	Muran	AVG
0								
-10								
0.150		500 0.80		(MHz)	5.000			30.000
No. Mk.	Freq.	leading Level	Correct Factor	Measure- ment	Limit	Margin		
LCST	MHz	dBuV	dB	dBuV	dBuV	dB D	etector	Comment
1	0.1500	17.42	19.63	37.05	66.00	-28.95	QP	
2	0.1516	3.98	19.63	23.61	55.91	-32.30	AVG	
3 *	0.7160	11.33	19.65	30.98	56.00	-25.02	QP	
4	0.7198	-0.52	19.65	19.13	46.00	-26.87	AVG	
5	1.4953	4.83	19.66	24.49	56.00	-31.51	QP	
6	1.5113	-6.71	19.67	12.96	46.00	-33.04	AVG	
7	3.2756	5.15	19.76	24.91	56.00	-31.09	QP	0
8	3.3105	-5.60	19.77	14.17	46.00	-31.83	AVG	P*
9	9.1073	5.94	19.85	25.79	60.00	-34.21	QP	
10	9.2043	-6.26	19.85	13.59	50.00	-36.41	AVG	
11	15.5523	11.19	19.90	31.09	60.00	-28.91	QP	
12	15.8014	-2.26	19.90	17.64	50.00	-32.36	AVG	

Test Model Environmental Conditions		41	4116 23.4℃, 54.6% RH		Test	Test Mode Test Engineer	Mode 1	The second	
		ions 23			Test		Bill Zhu		
Pol			N	eutral		Test	t Voltage	AC 120V/6	0Hz
	90.0 dBu 70 60 50 40 30 20 -10 -10 -20 0.150	AMAMA Man	0.500 0.8 Reading		(MHz)	\$ 5.000	FCC PART 158 Con	nduction(QP) duction(AVi)	b Sak VG
	No. Mk		Level	Factor	ment		Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB D	etector Comme	ent
	1	0.1500	16.48	19.63	36.11	66.00	-29.89	QP	;515
	2	0.1516	3.39	19.63	23.02	55.91	-32.89	AVG	
	3 *	0.7126	14.59	19.65	34.24	56.00	-21.76	QP	
	4	0.7171	2.65	19.65	22.30	46.00	-23.70	AVG	
	5	1.5271	7.88	19.67	27.55	56.00	-28.45	QP	
	6	1.5451	-4.86	19.67	14.81	46.00	-31.19	AVG	
	7	3.2551	7.36	19.76	27.12	56.00	-28.88	QP	
	8	3.3001	-4.28	19.76	15.48	46.00	-30.52	AVG	b
	9	5.2485	7.35	19.80	27.15	60.00	-32.85	QP	
	10	5.2666	-4.47	19.80	15.33	50.00	-34.67	AVG	
	11	19.2526	12.20	20.19	32.39	60.00	-27.61	QP	
		19.4685	-3.06	20.19	17.13			AVG	


3.2. Radiated emission Measurement

3.2.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	Farad	EZ	/	N/A	N/A
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-06-21	2022-06-20
3	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
6	EMI Test Receiver	R&S	ESR3	102312	2021-06-21	2022-06-20
7.0	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2021-11-16	2022-11-15
8	Broadband Preamplifier	/	BP-01M18G	P190501	2021-06-21	2022-06-20

3.2.2. Block Diagram of Test Setup

3.2.3. Radiated Emission Limit (Class B)

	LITTILS	UI Raulateu Dist	urbance below IV	JUZ			
FREQUENCY		DISTANCE	FIELD STRENGTHS LIMIT				
MHz		Meters	μV/m	dB(µV)/m			
30 ~ 88		3	100	40			
88 ~ 216		3	150	43.5			
216 ~ 960		3	200	46			
960 ~ 1000)	3	500	54			
Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m							
 (2) The smaller limit shall apply at the cross point between two frequency bands. (3) Distance is the distance in meters between the measuring 							
instrument, antenna and the closest point of any part of the							
device or system.							
	Limits for	r Radiated Emiss	sion Above 1GHz				
Frequency		Distance	Peak Limit	Average Limit			

(MHz)(Meters)(dBµV/m)(dBµV/m)Above 100037454***Note: The lower limit applies at the transition frequency.

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.2.5. Operating Condition of EUT

3.2.5.1. Setup the EUT as shown in Section 3.2.2.

3.2.5.2.Let the EUT work in test Mode 1 and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

3.2.7. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver

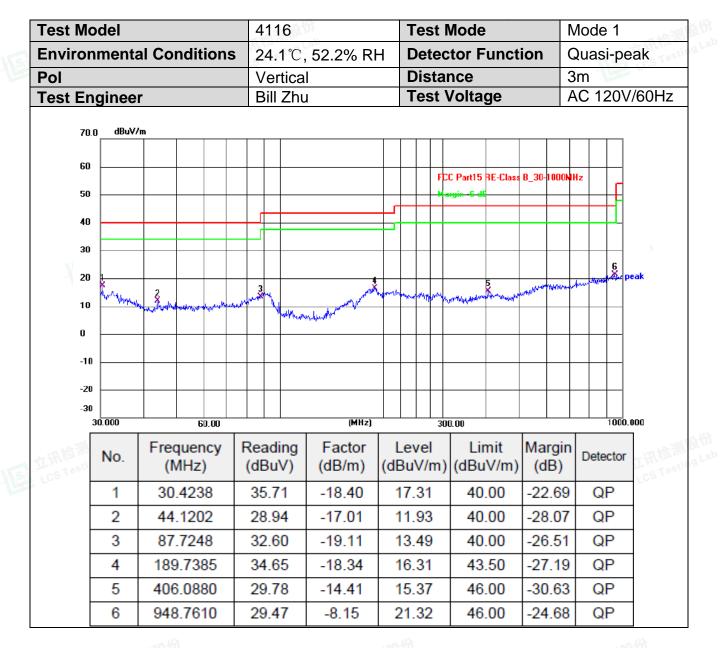
Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG				
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG				
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP				

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average			
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average			

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

3.2.8. Radiated Emission Noise Measurement Result

PASS.

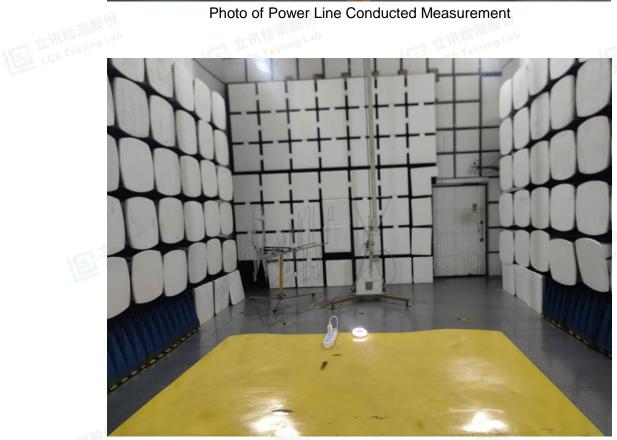

The scanning waveforms please refer to the next page.

上示Testing Lab

Test Model	4116	Test Mode	Mode 1 Quasi-peak	
Environmental Conditions	24.1℃, 52.2% RH	Detector Function		
Pol	Horizontal	Distance	3m	
Test Engineer	Bill Zhu	Test Voltage	AC 120V/60Hz	
70.0 dBuV/m				
60		FCC Part15 RE-Class B_30-100		
50		Margin -6-dE		
40			++++	
30			<u> </u>	
20			Hindry Water Peak	
10 mt / but have gen of man with the whole have	She and the second an	ast purpose the operation of the second		
0				
-10			+ + + +	
-20			+ + + +	
-30 30.000 60.00	(MHz)	300.00	1000.000	
		1 1		
NO. (MHz)	u	evel Limit Marg BuV/m) (dBuV/m) (dB	Detector	
1 45.5348	27.85 -16.91 1	0.94 40.00 -29.0	06 peak	
2 80.3619	31.25 -19.84 1	1.41 40.00 -28.5	59 peak	
3 199.9856	31.17 -17.39 1	3.78 43.50 -29.7	2 peak	
4 329.0390	27.94 -14.30 1	3.64 46.00 -32.3	36 peak	
5 603.5392	29.00 -10.52 1	8.48 46.00 -27.5	52 peak	
6 890.7278	30.52 -8.45 2	2.07 46.00 -23.9	3 peak	

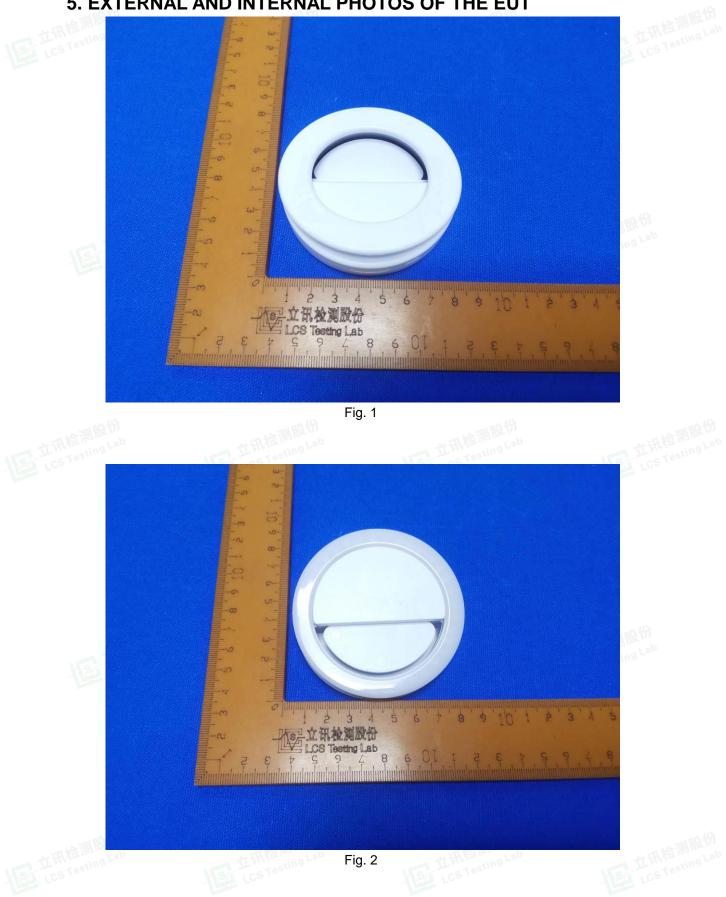
LCS Testing Lab

LCS Testing Lab

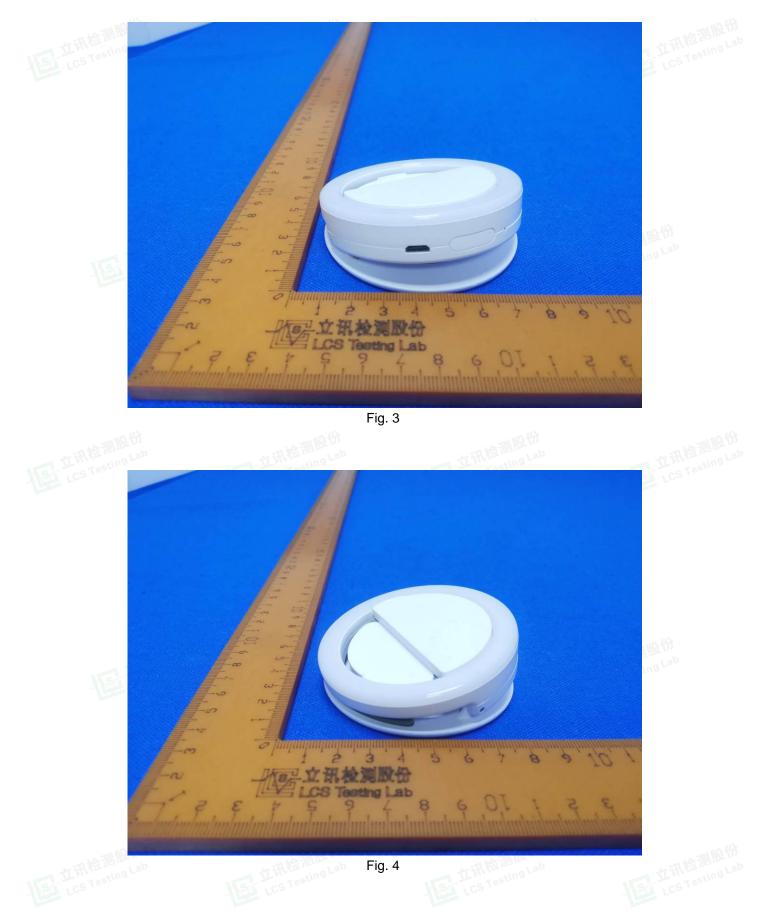

Page 19 of 25

FCC ID: 2AITN-AURA

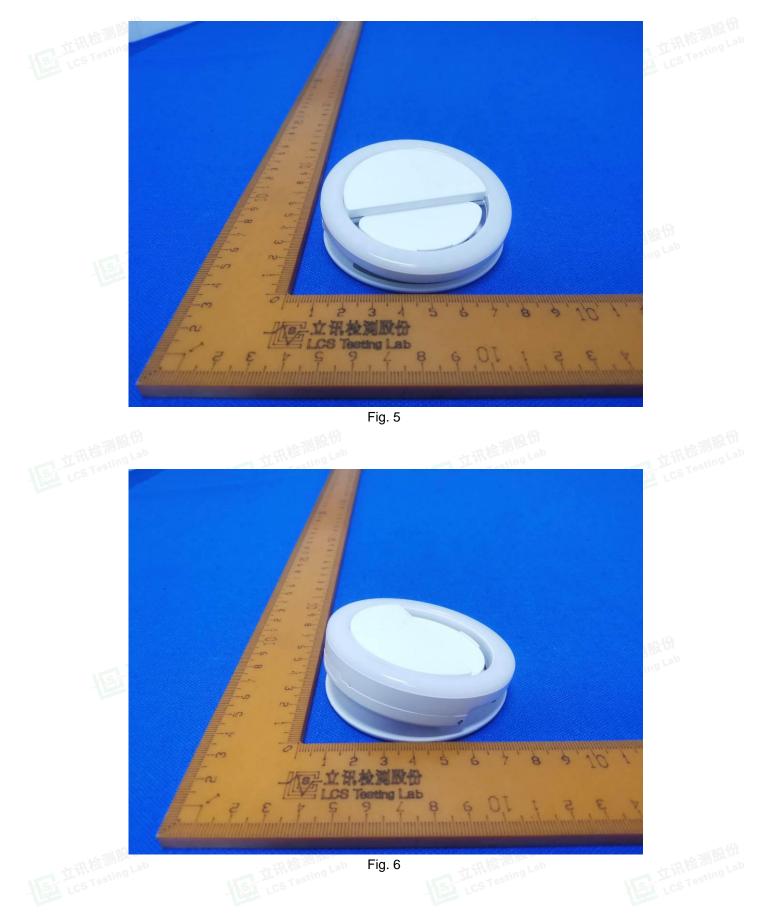
Photo of Power Line Conducted Measurement



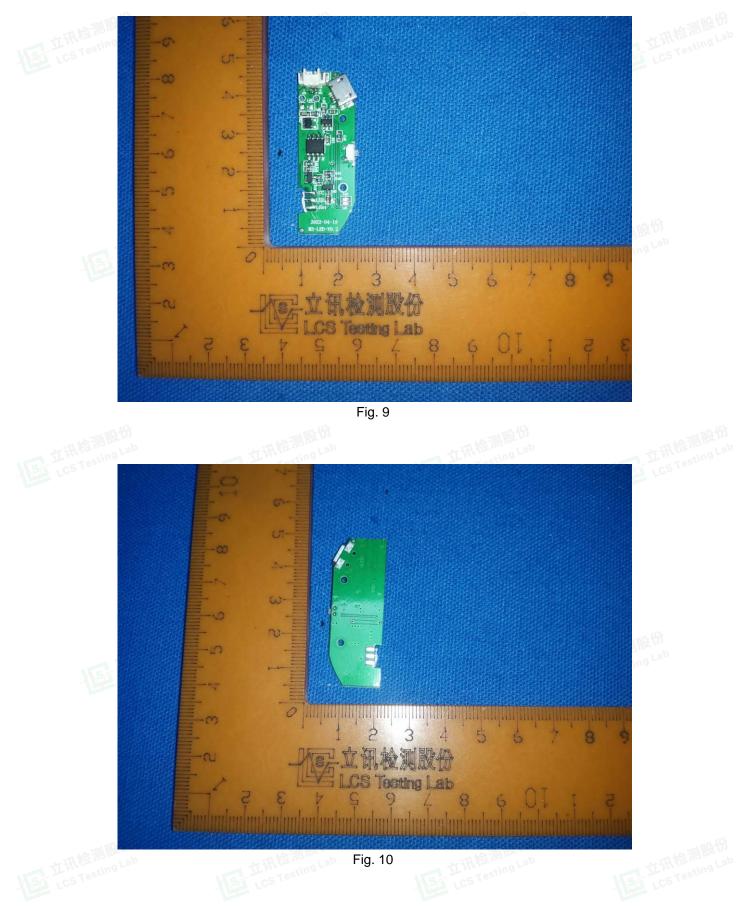
Testing Lab Photo of Radiated Measurement



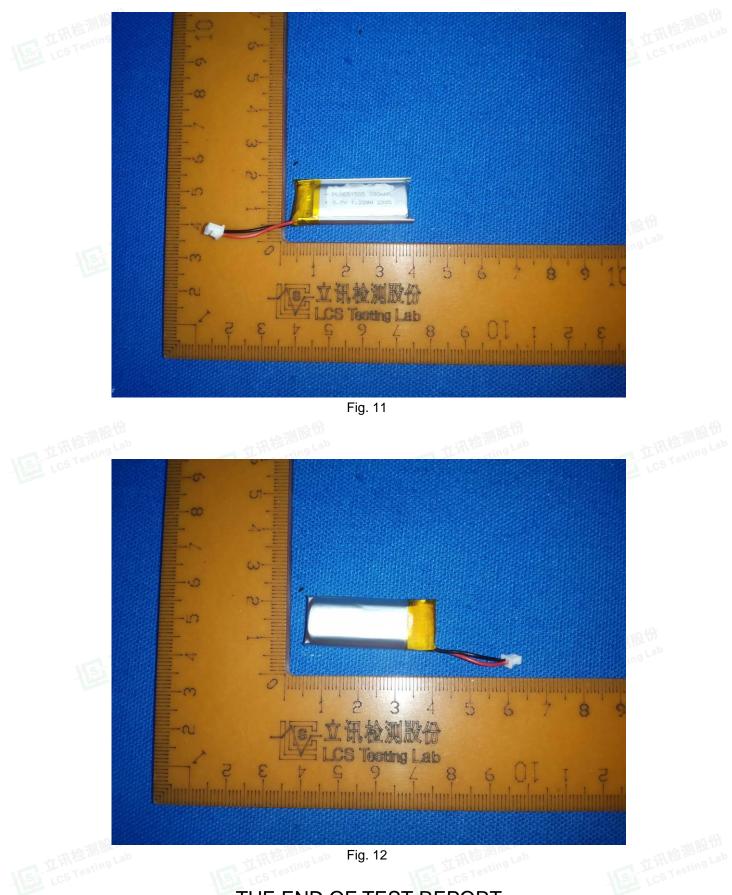
5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT



Page 22 of 25



Page 23 of 25



-----THE END OF TEST REPORT------

