

FCC PART 15.247

TEST REPORT

For

Neeuro Pte Ltd

79 Ayer Rajah Crescent, #02-19, Singapore

FCC ID: 2AIQC-SB-01

Report Type:		Product Type:
Original Report		Neeuro SenzeBand
Test Engineer:	Vincent Zheng	Vincent 24eng
Report Number:		-00
Report Date:	2016-06-17	
	Rocky Kang	Rocky Kang
Reviewed By:	RF Engineer	•
Prepared By:	6/F, the 3rd Pha	3320018 3320008

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	4
DESCRIPTION OF TEST CONFIGURATION	4
Equipment Modifications	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	7
FCC §15.203 - ANTENNA REQUIREMENT	8
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Neeuro Pte Ltd's* product, model number: *SB-01 (FCC ID: 2AIQC-SB-01)* in this report is a *Neeuro SenzeBand*, which was measured approximately: 19.2 cm (L) x 14.5 cm (W) x 10.1cm (H), rated with input voltage: DC 3.7V Li-ion battery.

* All measurement and test data in this report was gathered from production sample serial number 1606031. (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2016-06-03.

Objective

This report is prepared on behalf of *Neeuro Pte Ltd* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with RF radiated emission is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

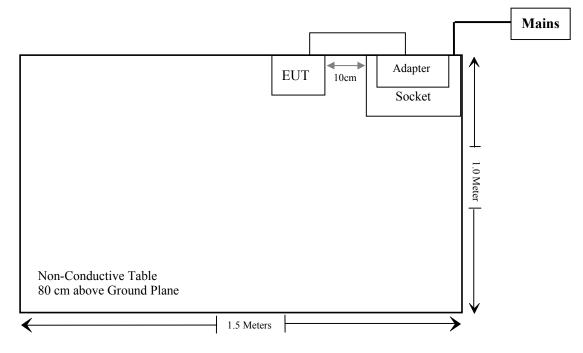
Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

No software was used :

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unnect	Adapter	CU-732	N/A
/	Receptacle	/	/

Report No.: RSZ160603811-00

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-Shielding Detachable USB Cable	1.0	EUT	Adapter

Block Diagram of Test Setup

FCC Part 15.247

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance*
§15.247(b)(3)	Maximum Conducted Output Power	Compliance*
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance*
§15.247(e)	Power Spectral Density	Compliance*

Note:

Compliance*:The EUT(Model: SB-01,FCC ID : 2AIQC-SB-01) utilize a Bluetooth module(FCC ID: 2AB359321-1) that was certificated by SGS-CSTC Standards Technical Services Ltd. The different test data between them are "\$15.207 (a) AC Line Conducted Emissions" and "\$15.205, \$15.209, \$15.247(d) Spurious Emissions", so all the other test data please referred to FCC ID: 2AB359321-1 granted on 2014-06-23, report No.: SZEM1402000543RF, which was tested by SGS-CSTC Standards Technical Services Ltd.

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	1 1 1		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	power (dBm)	power (mW)	(mm)	value	(1-g SAR)	Exclusion
2480	1.4	1.38	5	0.4	3.0	Yes

Result: No SAR test is required

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

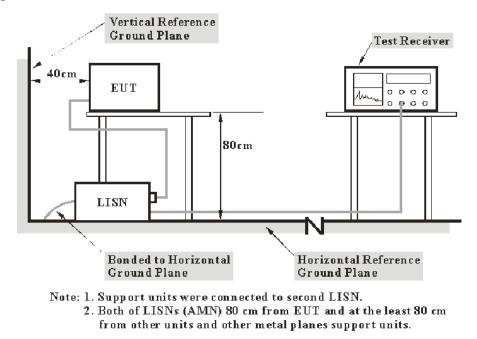
The EUT has an internal antenna arrangement, which was permanently attached and the antenna gain is 2.21dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Port	Expanded Measurement uncertainty
AC Mains	3.34 dB (k=2, 95% level of confidence)
CAT 3	3.72 dB (k=2, 95% level of confidence)
CAT 5	3.74 dB (k=2, 95% level of confidence)
CAT 6	4.54 dB (k=2, 95% level of confidence)

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

FCC Part 15.247

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2016-06-01	2017-05-31
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2015-12-15	2016-12-14
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2016-05-14	2017-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR
Ducommun technologies	Conducted Emission Cable	RG-214	CB031	2015-06-15	2016-06-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, the worst margin reading as below:

14.6 dB at 0.325170 MHz in the Neutral conducted

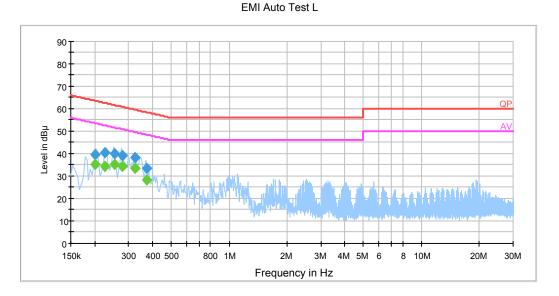
Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

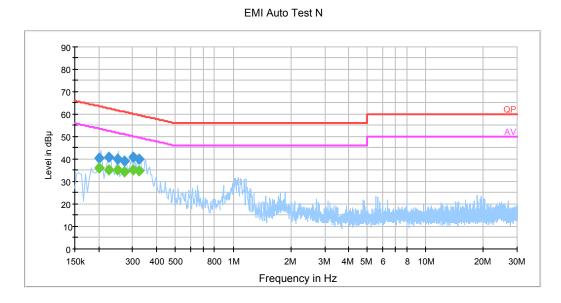
Test Data

Environmental Conditions


Temperature:	24 °C
Relative Humidity:	55.6 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zheng on 2016-06-13.

EUT operation mode: Transmitting


BLE Mode:

AC 120 V/60 Hz, Line:

Corrected Correction Frequency Limit Margin Detector Amplitude Factor (PK/Ave./QP) (MHz) (dBµV) (**dB**) (dBµV) (**dB**) 0.201500 39.6 20.0 63.5 23.9 QP 0.225500 22.3 40.3 20.0 62.6 QP 0.253500 19.9 40.1 61.6 21.5 QP 0.277500 39.3 19.9 60.9 21.6 QP 0.325170 38.3 19.9 59.6 21.3 QP 0.372450 33.5 19.9 58.4 24.9 QP 0.201500 35.4 53.5 20.0 18.1 Ave. 0.225500 34.5 20.0 52.6 18.1 Ave. 0.253500 35.0 19.9 51.6 16.6 Ave. 0.277500 34.3 19.9 50.9 16.6 Ave. 0.325170 33.4 19.9 49.6 16.2 Ave. 0.372450 28.5 19.9 48.4 19.9 Ave.

AC 120V/ 60 Hz, Neutral:

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.201500	40.6	20.0	63.5	22.9	QP
0.225500	40.8	20.0	62.6	21.8	QP
0.249500	40.2	20.0	61.8	21.6	QP
0.273500	39.1	19.9	61.0	21.9	QP
0.301500	40.7	19.9	60.2	19.5	QP
0.325170	39.8	19.9	59.6	19.8	QP
0.201500	36.0	20.0	53.5	17.5	Ave.
0.225500	35.2	20.0	52.6	17.4	Ave.
0.249500	35.2	20.0	51.8	16.6	Ave.
0.273500	34.4	19.9	51.0	16.6	Ave.
0.301500	35.3	19.9	50.2	14.9	Ave.
0.325170	35.0	19.9	49.6	14.6	Ave.

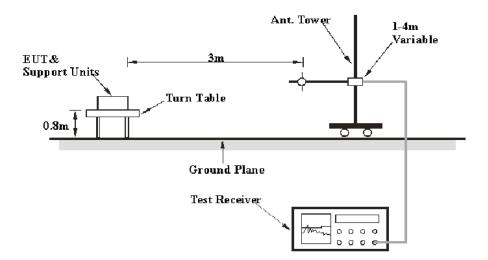
Note:

Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
Corrected Amplitude = Reading + Correction Factor
Margin = Limit - Corrected Amplitude

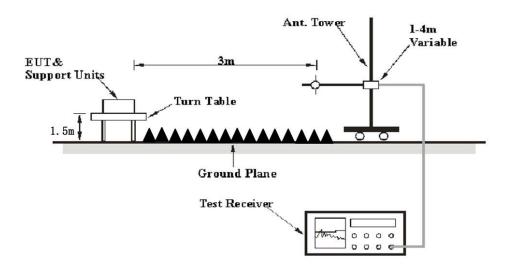
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement at antenna port. And the uncertainty will not be taken into consideration for the test data recorded in the report

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	РК
Above I GHZ	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
HP	Amplifier	HP8447E	1937A01046	2016-05-06	2017-05-06	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-12-15	2016-12-14	
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06	
Mini	Amplifier	ZVA-183-S+	5969001149	2016-04-23	2017-04-23	
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17	
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11	
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13	
TDK	Chamber	Chamber A	2#	2013-10-15	2016-10-15	
TDK	Chamber	Chamber B	1#	2015-07-23	2016-07-22	
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	991373-01	2015-08-03	2016-08-03	
R&S	Auto test Software	EMC32	V9.10	NCR	NCR	
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15	

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

6.10 dB at 4804.00 MHz in the Vertical polarization in Low channel

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55.6 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zheng on 2016-06-13.

EUT operation mode: Transmitting

Report No.: RSZ160603811-00

30 MHz-25 GHz

BLE Mode:

Frequency	Receiver		Turntable	Rx Antenna			Corrected	FCC Part 15.247/205/209		
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel (2402 MHz)										
491.86	41.69	QP	355	1.2	Н	-8.60	33.09	46	12.91	
2402.00	96.29	РК	195	1.7	Н	-6.46	89.83	/	/	
2402.00	89.62	Ave.	195	1.7	Н	-6.46	83.16	/	/	
2402.00	98.15	РК	195	1.7	Н	-6.46	91.69	/	/	
2402.00	91.06	Ave	195	1.7	Н	-6.46	84.60	/	/	
2353.76	42.84	РК	282	1.6	V	-6.46	36.38	74	37.62	
2353.76	30.68	Ave.	282	1.6	V	-6.46	24.22	54	29.78	
2374.92	42.82	PK	135	1.9	V	-6.46	36.36	74	37.64	
2374.92	33.26	Ave.	135	1.9	V	-6.46	26.80	54	27.20	
2497.75	40.64	РК	48	1.5	V	-4.74	35.90	74	38.10	
2497.75	27.46	Ave.	48	1.5	V	-4.74	22.72	54	31.28	
4804.00	46.65	РК	270	1.5	V	3.79	50.44	74	23.56	
4804.00	44.11	Ave.	270	1.5	V	3.79	47.90	54	6.10	
	1		Middle C	hannel	(2440 N	MHz)		11		
491.86	42.17	QP	284	1.5	Н	-8.60	33.57	46	12.43	
2440.00	96.74	РК	195	1.7	Н	-6.46	90.28	/	/	
2440.00	88.59	Ave.	120	2.1	Н	-6.46	82.13	/	/	
2440.00	97.35	PK	195	1.7	Н	-6.46	90.89	/	/	
2440.00	89.94	Ave.	279	1.9	V	-6.46	83.48	/	/	
2351.84	41.07	PK	286	2.0	V	-6.46	34.61	74	39.39	
2351.84	28.67	Ave.	286	2.0	V	-6.46	22.21	54	31.79	
2356.17	41.17	РК	108	2.4	V	-6.46	34.71	74	39.29	
2356.17	29.04	Ave.	108	2.4	V	-6.46	22.58	54	31.42	
2493.15	40.39	PK	281	1.4	V	-4.74	35.65	74	38.35	
2493.15	29.39	Ave.	281	1.4	V	-4.74	24.65	54	29.35	
4880.00	47.05	РК	64	1.0	V	3.56	50.61	74	23.39	
4880.00	44.29	Ave.	64	1.0	V	3.56	47.85	54	6.15	

Report No.: RSZ160603811-00

Frequency	Receiver		Turntable	Rx Antenna			Corrected	FCC Part 15.247/205/209		
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)		Margin (dB)	
High Channel (2480 MHz)										
491.86	42.04	QP	1	1.8	Н	-8.60	33.44	46	12.56	
2480.00	98.29	РК	195	1.7	Н	-6.46	91.83	/	/	
2480.00	85.21	Ave.	57	1.3	Н	-4.74	80.47	/	/	
2480.00	97.61	РК	195	1.7	Н	-6.46	91.15	/	/	
2480.00	87.65	Ave.	78	1.2	V	-4.74	82.91	/	/	
2351.84	40.73	РК	224	1.3	V	-6.46	34.27	74	39.73	
2351.84	30.38	Ave.	224	1.3	V	-6.46	23.92	54	30.08	
2483.51	44.97	РК	55	1.2	V	-4.74	40.23	74	33.77	
2483.51	41.52	Ave.	55	1.2	V	-4.74	36.78	54	17.22	
2483.73	43.79	РК	21	2.2	V	-4.74	39.05	74	34.95	
2483.73	39.16	Ave.	21	2.2	V	-4.74	34.42	54	19.58	
4960.00	46.21	РК	112	1.3	V	3.19	49.40	74	24.60	
4960.00	41.69	Ave.	112	1.3	V	3.19	44.88	54	9.12	

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

***** END OF REPORT *****