

FCC Test Report

APPLICANT	: Beijing Xiaomi Electronics Co., Ltd.
EQUIPMENT	: Xiaomi Mesh System AC1200
BRAND NAME	: Xiaomi
MODEL NAME	: RD13
FCC ID	: 2AIMRRD13
STANDARD	: 47 CFR Part 15 Subpart B
CLASSIFICATION	: Certification
TEST DATE(S)	: May 24, 2024 ~ May 27, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	EVISION HISTORY			
SU	MMAR	Y OF TEST RESULT	.4	
1.	GENE	RAL DESCRIPTION	5	
	1.1.	Applicant		
	1.2.	Manufacturer		
	1.3.	Product Feature of Equipment Under Test		
	1.4.	Product Specification of Equipment Under Test	5	
	1.5.	Modification of EUT	6	
	1.6.	Test Location	6	
	1.7.	Test Software	6	
	1.8.	Applicable Standards	6	
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7	
	2.1.	Test Mode	7	
	2.2.	Connection Diagram of Test System	7	
	2.3.	Support Unit used in test configuration and system	8	
	2.4.	EUT Operation Test Setup	8	
3.	TEST	RESULT	9	
	3.1.	Test of AC Conducted Emission Measurement	9	
	3.2.	Test of Radiated Emission Measurement1	3	
4.	LIST	OF MEASURING EQUIPMENT1	8	
5.	MEAS	SUREMENT UNCERTAINTY1	9	

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC442207	Rev. 01	Initial issue of report	Jul. 17, 2024

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
					Under limit
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	12.93 dB at
					0.535 MHz
					Under limit
3.2	15.109	Radiated Emission	< 15.109 limits	PASS	5.15 dB at
					39.70 MHz

Conformity Assessment Condition:

The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. Please refer to each test results in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1. Applicant

Beijing Xiaomi Electronics Co., Ltd.

Room 802, Floor 8, Building 5, No.15 KeChuang 10th Road, Beijing Economic and Technological Development Zone, Beijing City, China.

1.2. Manufacturer

Beijing Xiaomi Electronics Co., Ltd.

Room 802, Floor 8, Building 5, No.15 KeChuang 10th Road, Beijing Economic and Technological Development Zone, Beijing City, China.

1.3. Product Feature of Equipment Under Test

	Product Feature
Equipment	Xiaomi Mesh System AC1200
Brand Name	Xiaomi
Model Name	RD13
FCC ID	2AIMRRD13
	WLAN 2.4GHz 802.11b/g/n HT20/HT40
EUT supports Radios application	WLAN 5GHz 802.11a/n HT20/HT40
	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80
SN Code	56838/A4Q400085
HW Version	1.0
SW Version	1.0.5
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4. Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx Frequency	802.11b/g/n: 2400 MHz ~ 2483.5 MHz 802.11a/n/ac: 5150 MHz ~ 5250 MHz;	
Rx Frequency 802.11b/g/n: 2400 MHz ~ 2483.5 MHz 802.11a/n/ac: 5150 MHz ~ 5250 MHz;		
Antenna Type WLAN : Dipole Antenna		
Type of Modulation802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QA		

1.5. Modification of EUT

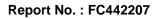
No modifications are made to the EUT during all test items.

1.6. Test Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	CO01-KS 03CH02-KS	CN1257	314309		

1.7. Test Software

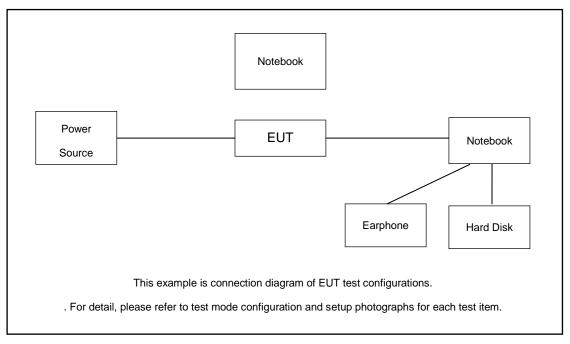

ltem	Site	Manufacturer	Name	Version
1.	03CH02-KS	AUDIX	E3	6.2009-8-24al
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.


2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest frequency or to 40 GHz, whichever is lower).

Test Items	Function Type
AC Conducted Emission	Mode 1: WIFI Idle + LAN1 Link(1G)+ Lan2 Link(1G)+ Power from Adapter
Radiated Emissions	Mode 1: WIFI Idle + LAN1 Link(1G)+ Lan2 Link(1G)+ Power from Adapter

2.2. Connection Diagram of Test System

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application

2.3. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	V130-15IKB005	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
2.	Notebook	acer	N20C5	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
3.	Notebook	ThinkPad	E15 Gen2	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Notebook	Lenovo	V130-15IKB005	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Hard disk*2	WD	Elements	N/A	N/A	N/A
6.	Hard DISK*2	WD	C6B	N/A	N/A	N/A
7.	Earphone*2	N/A	N/A	N/A	N/A	N/A

2.4. EUT Operation Test Setup

1. EUT Lan link with notebook.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

3.1.1 Limits of AC Conducted Emission

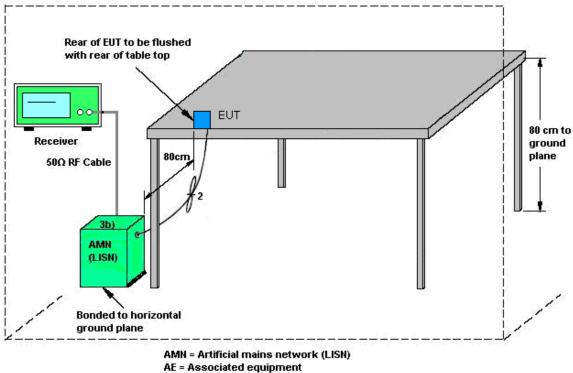
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B Limit>

Frequency of emission	quency of emission Conducted limit (dBuV)	
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments

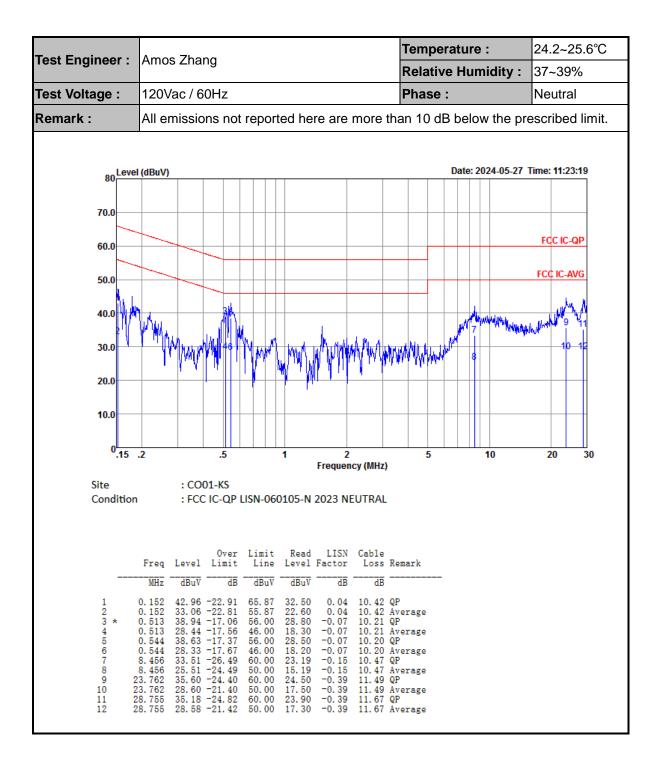

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup

EUT = Equipment under test


ISN = Impedance stabilization network

Temperature : 24.2~25.6°C Test Engineer : Amos Zhang 37~39% **Relative Humidity :** Test Voltage : 120Vac / 60Hz Phase : Line Remark : All emissions not reported here are more than 10 dB below the prescribed limit. 80 Level (dBuV) Date: 2024-05-27 Time: 11:18:35 70.0 FCC IC-QP 60.0 FCC IC-AVG 50.0 40.0 30.0 www 20.0 10.0 ⁰.15 .2 .5 1 2 5 10 20 30 Frequency (MHz) Site : CO01-KS Condition : FCC IC-QP LISN-060105-L 2023 LINE Read LISN Over Limit Cable Level Limit Line Level Factor Loss Remark Freq MHz dBuV dB dBuV dBuV dB dB 41. 66 -23. 59 31. 96 -23. 29 40. 64 -23. 29 32. 54 -21. 39 39. 37 -16. 63 33. 07 -12. 93 31. 48 -28. 52 24. 18 -25. 82 35. 03 -24. 97 27. 83 -22. 17 34. 91 -25. 09 27. 61 -22. 39 65.25 31.20 0.04 0.164 10.42 QP 1 0. 164 0. 192 0. 192 55.25 63.93 53.93 21.50 30.20 22.10 0.04 0.03 0.03 10.42 Average 10.41 QP 10.41 Average 2 3 4 Average 22.10 29.21 22.91 21.20 13.90 23.80 16.60 23.60 53.93 56.00 46.00 60.00 50.00 60.00 50.00 60.00 50.00-0.03 -0.04 -0.15 -0.15 -0.29 -0.29 -0.37 -0.37 0.535 0.535 8.192 10.20 QP 10.20 Average 10.43 QP 5 6 7 10.43 Average 10.43 Average 11.52 QP 11.52 Average 11.68 QP 8 8.192 24. 790 24. 790 28. 908 ğ 10 11 12 28.908 50.00 16.30 11.68 Average

3.1.5 Test Result of AC Conducted Emission

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

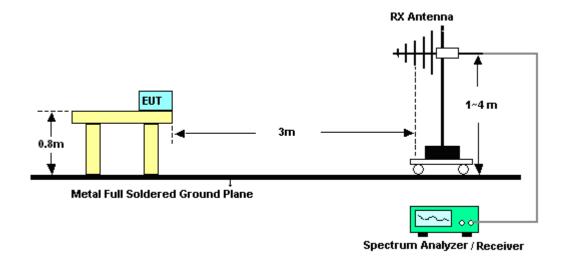
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B Limit>

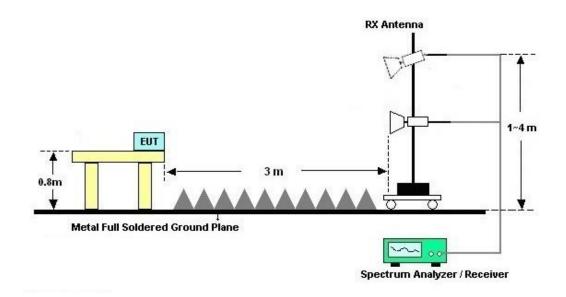
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

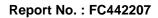
3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3. Test Procedures

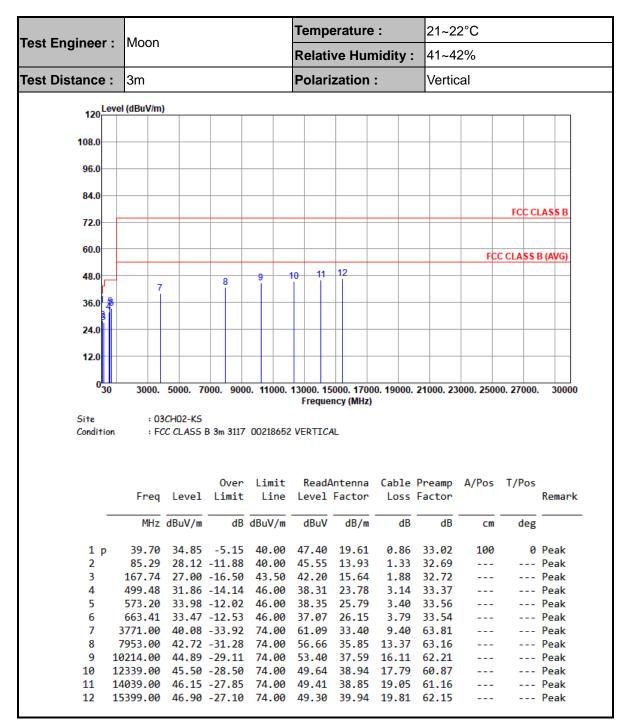
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 10. Exploratory radiated emissions testing of handheld and/or body-worn devices shall include rotation of the EUT through three orthogonal axes (X/Y/Z Plane) to determine the orientation (attitude) that maximizes the emissions.




3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



oot Englisher					Temp	erature	:	21~2	2°C			
est Engineer	: Moon	Moon				Relative Humidity :			41~42%			
est Distance	: 3m	3m Polarization :			Horizontal							
120	evel (dBuV/m)										
108.0												
96.0												
84.0												
72.0										FCC CI	ASSB	
60.0												
49.0				a 10		11 12	2		FC	C CLASS I	B (AVG)	
48.0	7		8									
36.0	6											
24.0												
24.0												
12.0												
030) 3000.	5000. 7	000. 900	0. 11000.			0. 19000.	21000. 23	000. 2500	0. 27000.	30000	
			000. 900	0. 11000.		000. 1700 ncy (MHz)		21000. 23	000. 2500)0. 27000.	30000	
Site	: 03	3CH02-KS			Freque	ncy (MHz)		21000. 23	000. 2500	00. 27000.	30000	
	: 03				Freque	ncy (MHz)		21000. 23	000. 2500	00. 27000.	30000	
Site	: 03	3CH02-KS			Freque	ncy (MHz)		21000. 23	6000. 2500	00. 27000.	30000	
Site	: 03	3CH02-KS	B 3m 3117	00218652	Freque 2 HORIZO	NTAL					30000	
Site	:03 n :FC	3CH02-KS	B 3m 3117 Over	00218652 Limit	Freque 2 HORIZO ReadA	ncy (MHz) 'NTAL Intenna		Preamp			30000 Remark	
Site	:03 n :FC Freq	CH02-KS CCCLASS	B 3m 3117 Over Limit	00218652 Limit Line	Freque HORIZO ReadA Level	ncy (MHz) NTAL ntenna Factor	Cable Loss	Preamp Factor	A/Pos	T/Pos		
Site	:03 n :FC Freq	CH02-K5 C CLASS	B 3m 3117 Over Limit	00218652 Limit	Freque 2 HORIZO ReadA	ncy (MHz) 'NTAL Intenna	Cable	Preamp				
Site	:03 n :FC Freq MHz	CH02-KS CCCLASS	B 3m 3117 Over Limit dB	00218652 Limit Line dBuV/m	Freque 2 HORIZO ReadA Level dBuV	ncy (MHz) NTAL ntenna Factor dB/m	Cable Loss dB	Preamp Factor	A/Pos	T/Pos 		
Site Conditio	:03 n :FC Freq MHz 37.76	CH02-KS CCCLASS Level	B 3m 3117 Over Limit 	00218652 Limit Line dBuV/m 40.00	Freque 2 HORIZC ReadA Level dBuV 37.24	ncy (MHz) NTAL Intenna Factor dB/m 20.70	Cable Loss dB 0.82	Preamp Factor 	A/Pos cm	T/Pos 	Remark	
Site Conditio - 1	:03 n :FC Freq MHz 37.76 86.26	Level dBuV/m 25.76	B 3m 3117 Over Limit -14.24 -9.15	00218652 Limit Line dBuV/m 40.00 40.00	Freque 2 HORIZC ReadA Level dBuV 37.24 48.16	ncy (MHz) NTAL Intenna Factor dB/m 20.70 14.06	Cable Loss dB 0.82 1.33	Preamp Factor dB 33.00	A/Pos cm	T/Pos 	Remark Peak	
Site Conditio - 1 2 p	:03 n :FC Freq MHz 37.76 86.26 278.32	CH02-KS C CLASS Level dBuV/m 25.76 30.85	B 3m 3117 Over Limit 	00218652 Limit Line dBuV/m 40.00 40.00 46.00	Freque 2 HORIZC Read/ Level dBuV 37.24 48.16 45.62	ncy (MHz) NTAL INTAL Antenna Factor dB/m 20.70 14.06 18.62	Cable Loss dB 0.82 1.33 2.35	Preamp Factor dB 33.00 32.70	A/Pos 	T/Pos 	Remark Peak Peak	
Site Conditio 1 2 p 3	:03 n :FC Freq MHz 37.76 86.26 278.32 499.48	Level dBuV/m 25.76 30.85 33.66 34.11	0ver Limit 	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00	Freque 2 HORIZC Read/ Level dBuV 37.24 48.16 45.62 40.56	ncy (MHz) INTAL Intenna Factor dB/m 20.70 14.06 18.62 23.78	Cable Loss dB 0.82 1.33 2.35	Preamp Factor dB 33.00 32.70 32.93 33.37	A/Pos 	T/Pos 	Remark Peak Peak Peak	
Site Conditio 1 2 p 3 4	: 03 n : FC Freq MHz 37.76 86.26 278.32 499.48 553.80	Level dBuV/m 25.76 30.85 33.66 34.11 33.75	0ver Limit -14.24 -9.15 -12.34 -11.89 -12.25	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00 46.00	Freque 2 HORIZC Read/ Level dBuV 37.24 48.16 45.62 40.56 38.22	ncy (MHz) NTAL INTAL Antenna Factor dB/m 20.70 14.06 18.62 23.78 25.87	Cable Loss dB 0.82 1.33 2.35 3.14	Preamp Factor dB 33.00 32.70 32.93 33.37 33.56	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak	
Site Conditio 1 2 p 3 4 5	: 03 n : FC Freq MHz 37.76 86.26 278.32 499.48 553.80	Level dBuV/m 25.76 30.85 33.66 34.11 33.75 33.31	B 3m 3117 Over Limit -14.24 -9.15 -12.34 -11.89 -12.25 -12.69	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00 46.00 46.00	Freque 2 HORIZC 2 HOR	ncy (MHz) NTAL INTAL Antenna Factor dB/m 20.70 14.06 18.62 23.78 25.87 26.15	Cable Loss dB 0.82 1.33 2.35 3.14 3.22 3.81	Preamp Factor dB 33.00 32.70 32.93 33.37 33.56	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak	
Site Conditio 1 2 p 3 4 5 6	: 03 n : FC Freq MHz 37.76 86.26 278.32 499.48 553.80 667.29	Level dBuV/m 25.76 30.85 33.66 34.11 33.75 33.31 40.08	B 3m 3117 Over Limit -14.24 -9.15 -12.34 -11.89 -12.25 -12.69 -33.92	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00 46.00 46.00 74.00	Freque 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 400 37.24 48.16 45.62 40.56 38.22 36.89 61.09	ncy (MHz) INTAL INTAL Intenna Factor dB/m 20.70 14.06 18.62 23.78 25.87 26.15 33.40	Cable Loss dB 0.82 1.33 2.35 3.14 3.22 3.81 9.40	Preamp Factor dB 33.00 32.70 32.93 33.37 33.56 33.54 63.81	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak	
Site Conditio 1 2 p 3 4 5 6 7	: 03 n : FC Freq MHz 37.76 86.26 278.32 499.48 553.80 667.29 3771.00 7766.00 9653.00	Level dBuV/m 25.76 30.85 33.66 34.11 33.75 33.31 40.08 42.01 44.79	B 3m 3117 Over Limit -14.24 -9.15 -12.34 -11.89 -12.25 -12.69 -33.92 -31.99 -29.21	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00 46.00 74.00 74.00 74.00	Freque 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 400 4 48.16 45.62 40.56 38.22 36.89 61.09 55.67 54.07	ncy (MHz) INTAL INTAL Antenna Factor dB/m 20.70 14.06 18.62 23.78 25.87 26.15 33.40 35.87 36.95	Cable Loss dB 0.82 1.33 2.35 3.14 3.22 3.81 9.40 13.89 15.96	Preamp Factor dB 33.00 32.70 32.93 33.37 33.56 33.54 63.81 63.42 63.42 62.19	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak	
Site Conditio 1 2 p 3 4 5 6 7 8	: 03 n : FC Freq MHz 37.76 86.26 278.32 499.48 553.80 667.29 3771.00 7766.00	Level dBuV/m 25.76 30.85 33.66 34.11 33.75 33.31 40.08 42.01 44.79	B 3m 3117 Over Limit -14.24 -9.15 -12.34 -11.89 -12.25 -12.69 -33.92 -31.99 -29.21	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00 46.00 74.00 74.00 74.00	Freque 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 400 4 48.16 45.62 40.56 38.22 36.89 61.09 55.67 54.07	ncy (MHz) INTAL INTAL Antenna Factor dB/m 20.70 14.06 18.62 23.78 25.87 26.15 33.40 35.87 36.95	Cable Loss dB 0.82 1.33 2.35 3.14 3.22 3.81 9.40 13.89 15.96	Preamp Factor dB 33.00 32.70 32.93 33.37 33.56 33.54 63.81 63.42 63.42 62.19	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Conditio 1 2 p 3 4 5 6 7 8 9 10	: 03 n : FC Freq MHz 37.76 86.26 278.32 499.48 553.80 667.29 3771.00 7766.00 9653.00	Level dBuV/m 25.76 30.85 33.66 34.11 33.75 33.31 40.08 42.01 44.79 45.62	B 3m 3117 Over Limit -14.24 -9.15 -12.34 -11.89 -12.25 -12.69 -33.92 -31.99 -29.21 -28.38	00218652 Limit Line dBuV/m 40.00 40.00 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00	Freque 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 HORIZCO 2 40 37.24 48.16 45.62 40.56 38.22 36.89 61.09 55.67 54.07 51.80	ncy (MHz) INTAL INTAL Antenna Factor dB/m 20.70 14.06 18.62 23.78 25.87 26.15 33.40 35.87 36.95 38.32	Cable Loss dB 0.82 1.33 2.35 3.14 3.22 3.81 9.40 13.89 15.96 17.12	Preamp Factor dB 33.00 32.70 32.93 33.37 33.56 33.54 63.81 63.42 62.19 61.62	A/Pos 	T/Pos deg 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	

3.2.5. Test Result of Radiated Emission

Note:

- Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB) Preamp Factor(dB)
- 2. Over $Limit(dB) = Level(dB\mu V/m) Limit Line(dB\mu V/m)$

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Oct. 10, 2023	May 24, 2024	Oct. 09, 2024	Radiation (03CH02-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G,MAX 30dB	Oct. 10, 2023	May 24, 2024	Oct. 09, 2024	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 21, 2023	May 24, 2024	Dec. 20, 2024	Radiation (03CH02-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 23, 2024	May 24, 2024	Nov. 22, 2024	Radiation (03CH02-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2024	May 24, 2024	Jan. 04, 2025	Radiation (03CH02-KS)
Amplifier	EM	EM18G40GGA	060852	18~40GHz	Jan. 05, 2024	May 24, 2024	Jan. 04, 2025	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 06, 2023	May 24, 2024	Jul. 05, 2024	Radiation (03CH02-KS)
Amplifier	EM	EM01G18G	060806	1GHz~18GHz	Oct. 10, 2023	May 24, 2024	Oct. 09, 2024	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	61601000247 3	N/A	NCR	May 24, 2024	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	May 24, 2024	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	May 24, 2024	NCR	Radiation (03CH02-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 18, 2024	May 27, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 11, 2023	May 27, 2024	Oct. 10, 2024	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Apr. 18, 2024	May 27, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 11, 2023	May 27, 2024	Oct. 10, 2024	Conduction (CO01-KS)

NCR: No Calibration Required

5. Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.84 dB
of 95% (U = 2Uc(y))	2.04 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.04 dB
of 95% (U = 2Uc(y))	0.04 08

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.12 dB
of 95% (U = 2Uc(y))	5.12 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.30 dB
of 95% (U = 2Uc(y))	5.30 UB

----- THE END ------