

FCC DFS Test Report

FCC ID: 2AIMRRD12

This report concerns: Original Grant

Report No.	:	eLab-FCCP-3-2312C025B
Equipment	:	Xiaomi Router AX1500
Brand Name	:	Xiaomi
Test Model	:	RD12
Series Model	:	N/A
Applicant	:	Beijing Xiaomi Electronics Co., Ltd.
Address	:	Room 802, Floor 8, Building 5, No.15 KeChuang 10th Road, Beijing Economic and Technological Development Zone, Beijing City, China.
Radio Function	:	RLAN 5 GHz (U-NII 2A, U-NII 2C)
FCC Rule Part(s) Measurement Procedure(s)	:	FCC CFR Title 47, Part 15, Subpart E (15.407) ANSI C63.10-2013
Date of Receipt	:	2024/03/11
Date of Test	:	2024/03/11 ~ 2024/03/18
Issued Date	:	2024/03/27

The above equipment has been tested and found compliance with the requirement of the relative standards by eLab Inc.

hlang

Prepared by

Hunter Chiang

Sam Chuang

Approved by

eLab Inc.

10F., No. 167, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan Tel: +886-2-8692-6160 Fax: +886-2-8692-6170

Page 1 of 58

Declaration

eLab represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

eLab's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **eLab** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **eLab** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

eLab's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

eLab is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Page

REPORT ISSUED HISTORY	4
1. SUMMARY OF TEST RESULTS	5
2. TEST FACILITY	5
3. TEST ENVIRONMENT CONDITIONS	5
4. GENERAL INFORMATION	6
4.1 GENERAL DESCRIPTION OF EUT	6
4.2 MAXIMUM OUTPUT POWER AND E.I.R.P.	9
4.3 TRANSMIT POWER CONTROL (TPC)	10
4.4 DESCRIPTION OF TEST MODES	11
5 . U-NII DFS RULE REQUIREMENTS	12
5.1 WORKING MODES AND REQUIRED TEST ITEMS	12
5.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS	13
6 . MEASUREMENT INSTRUMENTS LIST	16
7 . DYNAMIC FREQUENCY SELECTION (DFS)	17
7.1 DFS MEASUREMENT SYSTEM	17
7.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL	20
7.3 DEVIATION FROM TEST STANDARD	20
8. TEST RESULTS	21
8.1 SUMMARY OF DFS TEST RESULT	21
8.2 DFS DETECTION THRESHOLD	22
8.3 CHANNEL AVAILABILITY CHECK TIME	26
8.4 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	35
8.5 STATISTICAL PERFORMANCE CHECK	39
8.6 NON-OCCUPANCY PERIOD	51
8.7 U-NII DETECTION BANDWIDTH	53
9 . EUT TEST PHOTO	58
10 . EUT PHOTO	58

eTest certification Laboratory Inc. www.btl.com.tw

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
eLab-FCCP-3-2312C025B	R00	Original Report.	2024/03/25	Invalid
eLab-FCCP-3-2312C025B	R01	Updated the description of antenna.	2024/03/27	Valid

eTest certification Laboratory Inc. www.btl.com.tw

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart E					
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
FCC 15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)		PASS		

2. TEST FACILITY

The test facilities used to collect the test data in this report:

No.64, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

The test sites and facilities are covered under FCC RN: 681248 and DN: TW4045.

⊠ TR01

3. TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Dynamic Frequency Selection (DFS)	21°C	64%	AC 120V/60Hz	Cheng Tsai

4. GENERAL INFORMATION

4.1 GENERAL DESCRIPTION OF EUT

Equipment	Xiaomi Router AX1500		
Brand Name	Xiaomi		
Test Model	RD12		
Series Model	N/A		
Model Difference(s)	N/A		
Software Version	1.0.31		
Hardware Version	1.0		
Power Source	DC voltage supplied from AC adapter. Model: AD-0121200100US-5		
Power Rating	I/P: 100-240V~ 50/60Hz 0.5A O/P: 12V === 1A		
Operation Frequency Band(s)	UNII-2A: 5250 MHz ~ 5350 MHz		
Operation Frequency Band(s)	UNII-2C: 5470 MHz ~ 5725 MHz		
Modulation Type	IEEE 802.11a/n/ac: OFDM		
	IEEE 802.11ax: OFDMA		
	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps		
Bit Rate of Transmitter	IEEE 802.11n: up to 300 Mbps		
	IEEE 802.11ac: up to 866.7 Mbps		
	IEEE 802.11ax: up to 1201 Mbps		
	⊠ Master		
Operating Mode(s)	Client device without radar detection		
	Client device with radar detection		
Maximum Output Power _UNII-2A	IEEE 802.11ac (VHT80): 20.32 dBm (0.1076 W)		
Maximum Output Power _UNII-2C	IEEE 802.11ax (HE80): 23.10 dBm (0.2042 W)		

eTest certification Laboratory Inc. www.btl.com.tw

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

IEEE 802.11a IEEE 802.11n (HT20) IEEE 802.11ac (VHT20) IEEE 802.11ax (HE20)		IEEE 802.11n (HT40) IEEE 802.11ac (VHT40) IEEE 802.11ax (HE40)		IEEE 802.11ac (VHT80) IEEE 802.11ax (HE80)		
UNII-2A		UNII-2A		UNI	UNII-2A	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
52	5260	54	5270	58	5290	
56	5280	62	5310			
60	5300					
64	5320					

IEEE 802.11a IEEE 802.11n (HT20) IEEE 802.11ac (VHT20) IEEE 802.11ax (HE20)		IEEE 802.11n (HT40) IEEE 802.11ac (VHT40) IEEE 802.11ax (HE40)		IEEE 802.11ac (VHT80) IEEE 802.11ax (HE80)	
UNII	-2C	UNI	I-2C	UNI	I-2C
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590		
112	5560	126	5630		
116	5580	134	5670		
120	5600				
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				

3. Antenna Specification:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	3.N102.1161	Dipole	N/A	2.46
2	South star	3.N102.1160	Dipole	N/A	2.48

Note:

This EUT supports SISO and MIMO, any transmit signals are correlated with each other, so Directional gain=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi, that is Directional gain=10log[(10^{2.46/20}+10^{2.48/20})²/2]dBi=5.48.
The antenna gain is provided by the manufacturer.

4. Table for Antenna Configuration:

Operating Mode TX Mode	1TX	2TX
IEEE 802.11a	V (Ant. 1)	-
IEEE 802.11n (HT20)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11n (HT40)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ac (VHT20)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ac (VHT40)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ac (VHT80)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ax (HE20)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ax (HE40)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ax (HE80)	-	V(Ant. 1 + Ant. 2)

eTest certification Laboratory Inc. www.btl.com.tw

4.2 MAXIMUM OUTPUT POWER AND E.I.R.P.

Frequency Band (MHz)	Max Output Power (dBm)	Directional Gain (dBi)	Max. e.i.r.p. (dBm)	Max. e.i.r.p. (mW)
5250~5350	20.32	5.48	25.80	380.1894
5470~5725	23.10	5.48	28.58	721.10748

Note:

1) U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

4.3 TRANSMIT POWER CONTROL (TPC)

The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm.

Test Mode: UNII-2C / IEEE 802.11a Mode				
Channel	Frequency	Output Power (TPC High)	Output Power (TPC Low)	
	(MHz)	(dBm)	(dBm)	
100	5500	19.09	13.09	
116	5580	18.87	12.87	
140	5700	18.44	12.44	

Test Mode: UNII-2C / IEEE 802.11n(HT20) Mode				
Channel	Frequency	Output Power (TPC High)	Output Power (TPC Low)	
	(MHz)	(dBm)	(dBm)	
100	5500	22.30	16.30	
116	5580	22.03	16.03	
140	5700	21.05	15.05	

Test Mode: UNII-2C / IEEE 802.11n(HT40) Mode				
Channel	Frequency	Output Power (TPC High)	Output Power (TPC Low)	
	(MHz)	(dBm)	(dBm)	
102	5510	19.19	13.19	
110	5550	22.59	16.59	
134	5670	21.63	15.63	

Test Mode: UNII-2C / IEEE 802.11ac(VHT20) Mode				
Channel	Frequency	Output Power (TPC High)	Output Power (TPC Low)	
	(MHz)	(dBm)	(dBm)	
100	5500	22.01	16.01	
116	5580	21.62	15.62	
140	5700	20.83	14.83	

Test Mode: UNII-2C / IEEE 802.11ac(VHT40) Mode			
Channel	Frequency	Output Power (TPC High)	Output Power (TPC Low)
	(MHz)	(dBm)	(dBm)
102	5510	18.85	12.85
110	5550	22.19	16.19
134	5670	21.30	15.30

Test Mode: UNII-2C / IEEE 802.11ac(VHT80) Mode			
Channel	Frequency Output Power (TPC High)		Output Power (TPC Low)
	(MHz)	(dBm)	(dBm)
106	5530	19.73	13.73
122	5610	22.37	16.37

4.4 DESCRIPTION OF TEST MODES

Test Mode	Description
Mode 1	IEEE 802.11a: 5500MHz
Mode 2	IEEE 802.11n (HT40): 5510MHz
Mode 3	IEEE 802.11ax (HE80): 5530MHz

eTest certification Laboratory Inc. www.btl.com.tw

5. U-NII DFS RULE REQUIREMENTS

5.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables below for the applicability of DFS requirements for each of the operational modes.

Applicability of DFS requirements prior to use a channel

Requirement	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period			\checkmark	
DFS Detection Threshold	\checkmark	Not required	\checkmark	
Channel Availability Check Time	\checkmark	Not required	Not required	
U-NII Detection Bandwidth		Not required		

Applicability of DFS requirements during normal operation

Dequivement	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
DFS Detection Threshold		Not required		
Channel Closing Transmission Time				
Channel Move Time				
U-NII Detection Bandwidth		Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

5.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2 and 3)
e.i.r.p. ≥ 200 milliwatt	-64 dBm
e.i.r.p. < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
e.i.r.p. < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: e.i.r.p. is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

TEST LIMIT

DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds. See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the UNII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

www.btl.com.tw

PARAMETERS OF DFS TEST SIGNALS AND MINIMUM PERCENTAGE OF SUCCESSFUL DETECTIONS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Fuise Madal Test Wavelornis.										
Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum					
Type	(µsec)	(µsec)		Percentage of	Number of					
				Successful	Trials					
				Detection						
0	1	1428	18	See Note 1	See Note 1					
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \left\{ \begin{array}{c} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}}\right) \end{array} \right\}$	60%	30					
2	1-5	150-230	23-29	60%	30					
3	6-10	200-500	16-18	60%	30					
4	11-20	200-500	12-16	60%	30					
Aggregate (Radar Types 1-4) 80% 120										
Note 1: Sho	ort Pulse Rada	r Type 0 should be u	sed for the detection ba	ndwidth test, ch	annel move					
time, and cl	hannel closing	time tests.		,						

Short Pulse Radar Test Waveforms.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be

 $\operatorname{Roundup}\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \operatorname{Round} \operatorname{up} \{17.2\} = 18.$

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)		
1	1930.5	518		
2	1858.7	538		
3	1792.1	558		
4	1730.1	578		
5	1672.2	598		
6	1618.1	618		
7	1567.4	638		
8	1519.8	658		
9	1474.9	678		
10	1432.7	698		
11	1392.8	718		
12	1355	738		
13	1319.3	758		
14	1285.3	778		
15	1253.1	798		
16	1222.5	818		
17	1193.3	838		
18	1165.6	858		
19	1139	878		
20	1113.6	898		
21	1089.3	918		
22	1066.1	938		
23	326.2	3066		

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen (The center frequency for each of the 30 trials of the Bin 5 radar shall be randomly selected within 80% of the Occupied Bandwidth.) Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: If a segment does not contain at least 1 frequency within the U-NII Detection Bandwidth of the UUT, then that segment is not used.

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 - 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

6. MEASUREMENT INSTRUMENTS LIST

Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
EXA Signal Analyzer	KEYSIGHT	N9010A	MY54430168	2023/6/8	2024/6/7
SG EXTENDER	KEYSIGHT	N5182B	MY61500198	2023/10/26	2024/10/25
AP	ASUS	RT-AX88U	N/A	N/A	

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

7. DYNAMIC FREQUENCY SELECTION (DFS)

7.1 DFS MEASUREMENT SYSTEM

Test Precedure

- 1. Master device and client device are set up by conduction method as the following configuration.
- 2. The client device is connected to notebook and to access a IP address on wireless connection with the master device.
- 3. Then the master device is connected to another notebook to access a IP address.
- 4. Finally, let the two IP addresses run traffic with each other through the Run flow software "Lan test" to reach 17% channel loading as below.

Setup for Master with injection at the Master

Radar Test Waveforms are injected into the Master.

Channel Loading

IEEE 802.11a Mode

IEEE 802.11n(HT40) Mode

BLL

IEEE 802.11ax(HE80) Mode

🔰 Keysight Spectrum Analyzer - Swept SA			- F x
XX RL RF PRESEL 50 Ω DC	SENSE:INT SOURCE C	FF ALIGN OFF 09:43:58 PMN	ar 15, 2024 Marker
Marker 1 502.250 µs	Trig: Free Run	type: voltage TRACE	<u>1</u> 23456 WWWWWW
IFGa	in:Low #Atten: 10 dB	DET	Marker Table
		Mkr1 50	
		-42.2	dBm
Log			
-10.0			Marker Count
20.0			
-20.0			[OII]
-30.0	4. Hardend Lee as 201341.	har a taola la companya na matala la taola d	all and
	<u> an </u>	ud see alar ha she ha she alar a she and a she an she an she	Couple
-50.0 Minute Minute Millionan Allow Latingan	والمرجعة المقاربة والمتعالية والمتعالمة والمتعاركة والمتعاركة والمتعار	have an end of the second of the second s	Markers
a statistical state and state the state of t	n a transferie a transferie a transferie da de la construction da de la construction da de la construction da d	i na kuna in tha sha shi shi shi a ta shi a	On <u>Off</u>
-50.0			
-70.0			
-80.0			
-90.0			
Center 5.530000000 GHz		Sp	an 0 Hz
Res BW (CISPR) 1 MHz	VBW 680 kHz	Sweep 10.00 ms (40	001 pts)
MKRI MODELTRCI SCLI X	Y FUNCTIO	N FUNCTION WIDTH FUNCTION	VALUE
1 N 1 t 502	.3 µs -42.20 dBm		
$2 \Delta 1 1 t (\Delta) 4.39$	4 ms (Δ) 0.73 dB		
$\frac{3}{4}$ $\frac{\Delta 1}{1}$ $\frac{1}{1}$ $$	6 ms (Δ) 1.63 dB		All Markers Off
5			
6			
8			Mara
9			Wore
10			2 of 2
	III		
MSG		The STATUS	

Frequency (MHz)	Marker Delta (ms)	Number	On Time (ms)	Total Time (ms)	Duty cycle (%)	Limit (%)
5500	3.81	3	11.43	15	76.20	17.00
5510	3.47	4	13.88	15	92.53	17.00
5530	4.39	2	8.78	10	87.80	17.00

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

7.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

8. TEST RESULTS

8.1 SUMMARY OF DFS TEST RESULT

Clause	Test Parameter	Remarks	Result
	DFS Detection Threshold	Applicable	Pass
	Channel Availability Check Time	Applicable	Pass
ECC 15 407	Channel Move Time	Applicable	Pass
FCC 15.407	Channel Closing Transmission Time	Applicable	Pass
	Non-Occupancy Period	Applicable	Pass
	U-NII Detection Bandwidth	Applicable	Pass

eTest certification Laboratory Inc. www.btl.com.tw

8.2 DFS DETECTION THRESHOLD

Calibration:

For a detection threshold level of -64dBm and the antenna gain is 2.48 dBi, required detection threshold is -61.52 dBm.

Note: Maximum Transmit Power is more than 200 milliwatt in this report, so detection threshold level is -64dBm.

						-		5	-						
鯅 Ki	ysight Spectru	m Analyzer - Sv	vept SA												
l,XI R	L RF P	RESEL 50 S	2 DC			SE	NSE:INT SO	URCE OFF	<u>\</u>	LIGN OFF	-	04:49:14	4 PM Mar	15, 2024	Sweep/Control
Swe	ep Time	e 32.00 r	ns	PNO IFGai	:Fast ↔ n:High	, Trig: Fre #Atten: 0	e Run dB	Avg	Type:	voltage	•	11	TYPE W DET P	2 3 4 5 6 MMWWW N N N N N	Sweep Time
10 d	B/div R	ef -20.00	dBm								N	lkr1 -6	15.0 2.92	8 ms dBm	32.00 ms
-30.0														*	Sweep Setup ►
-40.0															
-50.0															
-60.0						↓ ¹									
-70.0															
-80.0	den (de elle) _{je} lar	dar <mark>i</mark> teratan		il al fulle de		de la serie de		alily calified	u al ha al		n Ila	l mi parità i	K kal ka ki ji	edəsi bilir	
-90.0	-Mikaaskiikiikiikiik _i y	ling opplying of		dipper at	H _a RdY/wa	ih dan ing pangan dan kanalan dan kana National dan kanalan dan kan	. Allen (frei frei frei frei frei frei frei frei	a a shi ta shi ta s	nte lat	կիսների	ilipti (pri)	an line	ywysk.	ulandhyr	
-100															Gate [Off,LO]
-110															Points
Cer	ter 5.540	000000	GHz										Spa	n 0 Hz	40001
#ke	S BW (-60	aB) 3 WIF	Z		#VBV	V 3.U WIHZ			Sv	/eep	32.0	u ms	(4000	rt pts)	
MSG											TUS				

Radar Signal 0

Radar Signal 1

Radar Signal 2

Radar Signal 3

🇾 Ke	ysight Spec	trum Ana	ilyzer - Sw	ept SA									
l XI R	L F	RF PRESE	L 50 Ω	DC			SE	NSE:INT SOUR	RCE OFF	ALIGN OFF	04:54:13 P	4 Mar 15, 2024	Sween/Control
Swe	ep Tir	ne 8.	000 r	ns			Tria: Vide		Avg Type	e: Voltage	TRAC		onceproonalor
					PN IEG	IO:Fast ⊆ ain:High	#Atten: 0	dB			DE		Sweep Time
						uningn			Migut 4 400 m				8.000 ms
												420 ms	
10 di	B/div	Ref -	20.00	dBm							-62.,	24 авт	
LOg													
												*	Sween Setunk
-30.0	<u> </u>												aweep actup?
-4N N													
-50.0													
				1									
-60.0	<u> </u>			<u> </u>									
			i İ			1		1 1		1			
70.0												TRIG LVL	
-70.0													
											1	1.10.1	
-80.0	h di di	ti ti da	in physical sectors in the sector of the sec	dia (U.)	i da hi	<mark>de la judición de la c</mark>	dibit solar y bit i	dia tra facilita di	Administrating pr		<mark>d reliation a battana</mark>		
	(march)	l ilia d	กระเทศไป	بلعان ورو	n dia	والمربعا وأقررته الال	tha bl ie, J. Huberer	n I., ki ki ku ku ku ku	Laka taka atau	anti na tala	Latitudel	dellar de la discono de la	
-90.0	the state	ովիադ	u e cli etc		11.	אריא ייין א ריי	der de arelle - de l	ad it had a		A WILL AND A	h bhaitheadh h	a la m ¹ un Maia	
	ľ											1	
													Gate
-100													[Off.LO]
-110													
													Points
													40001
Cen	ter 5.5	40000	0000	GHz		_		_			S	pan 0 Hz	40001
#Re	s BW (-6dB)	3 MH	z		#VBV	3.0 MHz		S	weep 8	3.000 ms (4	0001 pts)	
MSG										I STAT	US		

Radar Signal 4

Radar Signal 5

📜 Keysight Spectrum Analyzer - Swept SA				
W RL RF PRESEL 50 Ω DC Marker 1 10.7190 s	SEN	ALIGN OFF AVg Type: Voltage	04:59:36 PM Mar 15, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Peak Search
10 dB/div Ref -20.00 dBm	IFGain:High #Atten: 0	dB	Mkr1 10.72 s -62.22 dBm	Next Peak
-30.0				Next Pk Right
-40.0				Next Pk Left
-60.0			1 TRIG LVL	Marker Delta
-80.0 -90.0	n de la decidit de la della construcción con product arresto. La decidita de la della construcción de la decididad de la decididad de la decididad de la decididad de la decid		a line and a second secon	Mkr→CF
-100				Mkr→RefLvl
Center 5.540000000 GHz #Res BW (6dB) 3 MHz	#VBM 3.0 MHz	Sween	Span 0 Hz	More 1 of 2
MSG			JS	

Radar Signal 6

8.3 CHANNEL AVAILABILITY CHECK TIME

If the UUT successfully detected the radar burst, it should be observed as the UUT has no transmissions occurred until the UUT starts transmitting on another channel.

🕅 Kevsiał	ht Spectrum Analyzer - Swept SA					
Marke	RF PRESEL 50 Ω DC r 1 72.3850 s		SENSE:INT SOUP	RCE OFF ALIGN O Avg Type: Voltag	FF 05:27:17 PM Mar 15, 2024 Ge TRACE 1 2 3 4 5 (TYPE WAAAAAAAA	Peak Search
10 dB/di	iv Ref 0.00 dBm	PNO: Fast ++ 11 IFGain:Low #4	Atten: 10 dB		Mkr1 72.39 s -2.25 dBm	NextPeak
-10.0		1 	ويترز وون أحمد منا وحد		u fulicada a posse a presenta da contra c	Next Pk Right
-20.0 -30.0						Next Pk Left
-40.0						Marker Delta
-60.0	والمروبية والمروبية والمروبية والمروبية والمروبية والمروبية					Mkr→CF
-80.0			ad an Ala Mandal Tur, ing ali Ali Ali Ang an Ali Adalah s	d all the distance of the dist	es al faith a field an diùith facai (chin ta fin an bhin aireanna an bhinn aireanna an bhinn aireanna an bhinn	Mkr→RefLvl
Center	5.500000000 GHz	#\/D\\/ 4 (6 1100	Span 0 Hz	More 1 of 2
#Res E MSG (1) A	Aready in Single, press Res	#VEW 1.0	w sweep or seque	nce Cost	p 200.0 S (40001 pts <mark>ATUS</mark>	

IEEE 802.11a Mode

Initial Channel Availability Check Time

The Channel Availability Check time is equal to 60 seconds.

IEEE 802.11a Mode

Radar Burst at the Beginning of the Channel Availability Check Time

📕 Keysight Spectru	um Analyzer - Swept SA								- 6 x
Marker 1 1	PRESEL 50 Ω DC 5.5350 s		SEN	SE:INT SOUR	Avg Type	ALIGN OFF	05:32:27 PI TRAC	Mar 15, 2024	Peak Search
		PNO: Fast 🔸	Trig: Free #Atten: 10	Run)dB			TYF DE		
10 dB/div	Ref 0.00 dBm						Mkr1 -37.4	15.54 s 41 dBm	Next Peak
-10.0									Next Pk Right
-20.0									
-30.0	1								Next Pk Left
-40.0									Marker Delta
-50.0									
-60.0									Mkr→CF
-70.0 <mark>Herklitterin</mark> e		ang dia mang milan mang						antelengen alle finden einer er	
-80.0									Mkr→RefLvl
-90.0									
									More 1 of 2
Center 5.50 #Res BW (C	0000000 GHz ISPR) 1 MH <u>z</u>	#VBW	1.0 MHz			Sweep	S 200.0 s <u>(</u> 4	pan 0 Hz 0001 pt <u>s</u>)	
MSG							3		

T0: The end of power-up sequence.

T1: T0 + 6 seconds.

As visual indicated, a single Radar Burst was commenced within the 6 second window (T0 to T1) and successful detected.

During the measurement window no UUT transmissions occurred.

IEEE 802.11a Mode

Radar Burst at the End of the Channel Availability Check Time

🎉 Keysight Sp	ectrum Analyzer - Swept SA					
Marker 1	RF PRESEL 50 Ω DC 70.4350 s		SENSE:INT SOU	ALIGN OFF	06:20:33 PM Mar 15, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Peak Search
		IFGain:Low	#Atten: 10 dB		DET PNNNNN Mkr1 70 44 s	Next Peak
10 dB/div	Ref 0.00 dBm				-36.89 dBm	
10.0						Next Pk Right
-10.0						
-20.0						Next Pk Left
-30.0		1				
-40.0						Marker Delta
-50.0						Marker Bella
-60.0						Mkr.,CE
-70 0		1			and the state of the state	WIKI→CF
-80.0						MKr→RerLvi
-90.0						More
Center 5.	500000000 GHz				Span 0 Hz	1 of 2
#Res BW	(CISPR) 1 MHz	#VBW	1.0 MHz	Sweep	200.0 s (40001 pts)	
MSG					US CONTRACTOR	

T0: The end of power-up sequence.

T2: T0 + 54 seconds.

T3: T2 + 6 seconds.

As visual indicated, a single Radar Burst was commenced within the 6 second window (T2 to T3) and successful detected.

During the measurement window no UUT transmissions occurred.

Initial Channel Availability Check Time

🎉 Keysight Spectrum Analyzer - Swept SA				
Marker 1 94.7900 s	PNO: East ++++ Trig: Free Ru	INT SOURCE OFF AVg Type: Voltage	07:18:47 PM Mar 15, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWW	Peak Search
10 dB/div Ref 0.00 dBm	IFGain:Low #Atten: 10 dE	3	Mkr1 94.79 s -8.07 dBm	Next Peak
-10.0	1			Next Pk Right
-20.0	Length and the second sec	ng, glaffia to sung, restrict rikkon star intern	sint of all two in this part is a strengt providence from	Next Pk Left
-40.0				Marker Delta
-60.0				Mkr→CF
-70.0 http://www.internet.com/				Mkr→RefLvl
-90.0				More 1 of 2
Center 5.510000000 GHz Res BW (CISPR) 1 MHz	#VBW 1.0 MHz	Sweep	Span 0 Hz 200.0 s (40001 pts)	
	ricelant to millato a new sweep of			

The Channel Availability Check time is equal to 60 seconds.

Radar Burst at the Beginning of the Channel Availability Check Time

🇾 Ke	ysight Spe	trum Analyzer - S	wept SA								
LXI R	L	RF PRESEL 50	Ω DC		SEN	SE:INT SOU		ALIGN OFF	07:24:14 P	MMar 15, 2024	Marker
Mai		57.5000 S		PNO: Fast ↔ IFGain:Low	. Trig: Free #Atten: 1	e Run 0 dB			TYI Di		Select Marker
10 di	3/div	Ref 0.00 (dBm						Mkr1 -37.	37.50 s 44 dBm	1
-10.0											Normal
-20.0											
-30.0											Delta
-40.0			≬ 1								
-50.0											Fixed⊳
-60.0											0.5
-70.0	and dread-too	talagan ang sa kanang sa kata		uupa mina matang matalantang bir		and sharp as a shall.	talengen die two kepterse het.	ւրություններություն	atter (dament from the boson) o	dari kilili meljanjangan k	UI
-80.0				Hard Hard Star (Second Star Star Second Star Second S							Properties►
-90.0											
											More
Cen Res	ter 5.5 BW (C	10000000 ISPR) 1 M	GHz Hz	#VBW	/ 1.0 MHz			Sweep	S 200.0 s (4	pan 0 Hz 0001 pts)	1012
MSG 🤇	Alrea	dy in Single,	press Re	start to initiate a	a new swee	p or seque	nce		S		

T0: The end of power-up sequence.

T1: T0 + 6 seconds.

As visual indicated, a single Radar Burst was commenced within the 6 second window (T0 to T1) and successful detected.

During the measurement window no UUT transmissions occurred.

Radar Burst at the End of the Channel Availability Check Time

🊺 Ke	ysight Spe	trum Analyze	er - Swept SA	1								- ē ×
<mark>ı,xı</mark> ⊪ Mar	⊾ ker 1	8F PRESEL	50Ω DO DS	C		SEI	NSE:INT SOUR		ALIGN OFF	07:27:55 PI TRAC	1 Mar 15, 2024 E 1 2 3 4 5 6	Marker
				PN IFC	NO: Fast 🔸 Gain:Low	#Atten: 1	e Run 0 dB			DE		Select Marker
10 dl	3/div	Ref 0.0	0 dBm							Mkr1 -37.	91.05 s 57 dBm	1
LUY												Normal
-10.0												
-20.0												Delta
-30.0												
-40.0												Fixed⊳
-50.0												
-60.0												Off
-70.0												
-80.0												Properties►
-90.0												
												More 1 of 2
Cen Res	ter 5.5 BW (C	100000 ISPR) 1	00 GHz MHz		#VBW	1.0 MHz			Sweep	S 200.0 s (4	pan 0 Hz 0001 pts)	
MSG 🤇	Alrea	ly in Sing	le, press	Restart	to initiate a	new swee	p or sequer	nce		S		

T0: The end of power-up sequence.

T2: T0 + 54 seconds.

T3: T2 + 6 seconds.

As visual indicated, a single Radar Burst was commenced within the 6 second window (T2 to T3) and successful detected.

During the measurement window no UUT transmissions occurred.

Initial Channel Availability Check Time

🎉 Keysight Spe	ectrum Analyzer - Swept SA				
Marker 1	RF PRESEL 50 Ω DC 115.240 s	RNO: East → Trig: Free	SE:INT SOURCE OFF AVg Type: Voltage Run	09:28:51 PM Mar 15, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Peak Search
10 dBidiy	Ref 0.00 dBm	IFGain:Low #Atten: 10	dB	Mkr1 115.2 s -1.32 dBm	Next Peak
-10.0			*1 		Next Pk Right
-20.0				Der Leenstrangeleinen alle sterrenze ¹ eine se	Next Pk Left
-40.0					Marker Delta
-60.0	security de la lat entrefactor a lateral de la const	dy sylf-t-strategy discolory by the discolory discolory discolory discolory discolory discolory discolory disc	aret terreplaci a		Mkr→CF
-80.0 -90 n					Mkr→RefLvl
Center 5.0 Res BW (0	529796000 GHz CISPR) 1 MHz	VBW 680 kHz	Sweep	Span 0 Hz 200.0 s (40001 pts)	More 1 of 2
MSG				05	

The Channel Availability Check time is equal to 60 seconds.

Radar Burst at the Beginning of the Channel Availability Check Time

🎉 Keysight Spectrum Analyzer - Swept S	A					
X RL RF PRESEL 50 Ω D	DC O	SENSE:INT SOU	AVG Type: V	GN OFF 09:36:59 PM	Mar 15, 2024	Peak Search
	PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 10 dB		TYP DE		
10 dB/div Ref 0.00 dBm	1			Mkr1 -63.3	57.69 s 39 dBm	Next Peak
-10.0						Next Pk Right
-20.0						Next Pk Left
-40.0						Marker Delta
-60.0	1					Mkr→CF
-70.0 and an industrial data and a second	Ngang terlangkakan disebut sa na k	al en el descentio el la decadore de la com	na sining bia dina apita di na	a liiten paarke karaan een foare tied anvere		
-80.0						Mkr→RefLvl
Center 5.530000000 GHz	Z VBW 6	500 KH2	0	S	pan 0 Hz	More 1 of 2
Res DW (CISPR) 1 WHZ	S Restart to initiate a	new sweep or seque	nce I	weep 200.0'S (4	ooon pis)	

T0: The end of power-up sequence.

T1: T0 + 6 seconds.

As visual indicated, a single Radar Burst was commenced within the 6 second window (T0 to T1) and successful detected.

During the measurement window no UUT transmissions occurred.

Radar Burst at the End of the Channel Availability Check Time

🎉 Keysight	Spectrum Analyzer - Swept SA							- ē x
<mark>(X</mark> RL Marker	RF PRESEL 50 Ω DC		SENSE:INT SO		ALIGN OFF	09:40:25 PM TRAC	Mar 15, 2024	Peak Search
Marker	1 112.150 5	PNO: Fast ↔→→ IFGain:Low	Trig: Free Run #Atten: 10 dB			TYP DE		
10 dB/div	Ref 0.00 dBm					Mkr1 -63.4	112.1 s 42 dBm	Next Peak
-10.0								Next Pk Right
-20.0								
-30.0								Next Pk Left
-40.0								
-50.0								Marker Delta
-60.0								Mkr. CE
-70.0 e-torre	م واستهاراً ^و منها أنه ورام ^و مسر والمانين أنه منها أنه وروا المرور وروا و	ujul dalakan serengan per	والمروم والمروم المحاوية المحاوية والمحاولة والمرومة والمرومة والمرومة والمرومة والمرومة والمرومة والمرومة وال	historiatetti tekonomia	n ang ang sang sang sang sang sang sang	राह संचयन्त्र प्रस्त के स्वर्थ	राजीच्यां हा राहा स्थल के जिल्	MKI→CF
-80.0								Mkr→RefLvl
-90.0								More
Center : Res BW	5.530000000 GHz / (CISPR) 1 MHz	VBW 6	80 kHz		Sweep :	S 200.0 s <u>(4</u>	pan 0 Hz 0001 pts)	1 of 2
MSG 🛈 Ali	ready in Single, press Re	start to initiate a	new sweep or seau	ence		;		

T0: The end of power-up sequence.

T2: T0 + 54 seconds.

T3: T2 + 6 seconds.

As visual indicated, a single Radar Burst was commenced within the 6 second window (T2 to T3) and successful detected.

During the measurement window no UUT transmissions occurred.

8.4 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

TX (IEEE 802.11a Mode)

Radar signal 0

Note: T0 denotes the Radar Injection Start.

- T1 denotes the start of Channel Move Time upon the end of the last Radar burst.
- T2 denotes the data transmission time of 200ms from T1.
- T3 denotes the end of Channel Move Time.

Note: An expanded plot for the device vacates the channel in the required 500ms

eTest certification Laboratory Inc.

www.btl.com.tw

Note: T0 denotes the Radar Injection Start.

- T1 denotes the start of Channel Move Time upon the end of the last Radar burst.
- T2 denotes the data transmission time of 200ms from T1.
- T3 denotes the end of Channel Move Time.

Note: An expanded plot for the device vacates the channel in the required 500ms

Note: T0 denotes the Radar Injection Start.

- T1 denotes the start of Channel Move Time upon the end of the last Radar burst.
- T2 denotes the data transmission time of 200ms from T1.
- T3 denotes the end of Channel Move Time.

Note: An expanded plot for the device vacates the channel in the required 500ms

IEEE 802.11a Mode								
Item	Measured Value(s)	Limit(s)						
Channel Move Time	0.0	10						
		200 milliseconds + an aggregate of						
Channel Close Time	0.0	60 milliseconds over remaining 10						
		second period.						

IEEE 802.11n (HT40) Mode								
Item	Measured Value(s)	Limit(s)						
Channel Move Time	0.0	10						
		200 milliseconds + an aggregate of 60						
Channel Close Time	0.0603735	milliseconds over remaining 10						
		second period.						

IEEE 802.11ax (HE80) Mode								
ltem	Measured Value(s)	Limit(s)						
Channel Move Time	0.2257444	10						
		200 milliseconds + an aggregate of 60						
Channel Close Time	0.0	milliseconds over remaining 10 second						
		period.						

____/

8.5 STATISTICAL PERFORMANCE CHECK

TX (IEEE 802.11a Mode)

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Pass times	Fail times	Percentage of Successful Detection (%)
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\begin{array}{c} \text{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \begin{pmatrix} 19 \cdot 10^6 \\ \text{PRI}_{\mu vec} \end{pmatrix} \right\} \end{array}$	29	1	97%
2	1-5	150-230	23-29	26	4	87%
3	6-10	200-500	16-18	29	1	97%
4	11-20	200-500	12-16	27	3	90%
	Aggregate (Rad	ar Types 1-4)		111	9	93%

Table 1: Short Pulse Radar Test Waveforms.

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses Per Burst	Number of Bursts	Pass times	Fail times	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	27	3	90%

Table 3:	Frequency	Hopping	Radar	Test Wa	veform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Pass times	Fail times	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	26	4	87%

Radar Type	Trial #	Detection	Triol #	Detection
Radai Type	IIIai #	YES / NO	mai#	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	NO
	7	YES	22	YES
Type1	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	NO	17	YES
	3	YES	18	YES
	4	YES	19	NO
	5	YES	20	YES
	6	YES	21	NO
	7	YES	22	YES
Туре2	8	YES	23	YES
	9	NO	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Radar Type	Trial #	Detection	Trial #	Detection
Radai Type	IIIdi #	YES / NO	IIIdi #	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Туре3	8	YES	23	YES
	9	YES	24	YES
	10	NO	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	NO	17	YES
	3	NO	18	YES
	4	YES	19	NO
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type4	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Radar Type	Trial #	Detection	Trial #	Detection
Radai Type		YES / NO	IIIdi#	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	NO	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type5	8	YES	23	YES
	9	NO	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	NO	20	YES
	6	YES	21	YES
	7	YES	22	YES
Туре6	8	NO	23	YES
	9	YES	24	NO
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	NO	29	YES
	15	YES	30	YES

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Pass times	Fail times	Percentage of Successful Detection (%)
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\frac{\text{Roundup}}{\left(\frac{19\cdot10^{\delta}}{\text{PRI}_{\mu sec}}\right)}$	29	1	97%
2	1-5	150-230	23-29	30	0	100%
3	6-10	200-500	16-18	28	2	93%
4	11-20	200-500	12-16	28	2	93%
	Aggregate (Rad	ar Types 1-4)		115	5	96%

Table 1: Short Pulse Radar Test Waveforms.

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses Per Burst	Number of Bursts	Pass times	Fail times	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	26	4	87%

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Pass times	Fail times	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	25	5	83%

Radar Type	Trial #	Detection	Trial #	Detection
Radai Type	IIIdi #	YES / NO	IIIdi#	YES / NO
	1	YES	16	YES
	2	NO	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type1	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type2	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Radar Type	Trial #	Detection	Trial #	Detection
Radai Type	IIIdi #	YES / NO	IIIdi #	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Туре3	8	YES	23	YES
	9	YES	24	YES
	10	NO	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	NO	17	YES
	3	NO	18	YES
	4	YES	19	NO
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type4	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Radar Type	Trial #	Detection	Trial #	Detection
Radai Type	IIIdi #	YES / NO	IIIdi #	YES / NO
	1	YES	16	NO
	2	YES	17	YES
	3	YES	18	YES
	4	NO	19	NO
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type5	8	YES	23	NO
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	NO
	4	YES	19	YES
	5	YES	20	YES
	6	NO	21	YES
	7	NO	22	NO
Туре6	8	YES	23	YES
	9	YES	24	YES
	10	NO	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Pass times	Fail times	Percentage of Successful Detection (%)
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\frac{\left[\left(\frac{1}{360}\right),\right]}{\left[\left(\frac{19\cdot10^{6}}{PRI_{\musee}}\right)\right]}$	28	2	93%
2	1-5	150-230	23-29	28	2	93%
3	6-10	200-500	16-18	28	2	93%
4	11-20	200-500	12-16	29	1	97%
	Aggregate (Rad	ar Types 1-4)		113	7	94%

Table 1: Short Pulse Radar Test Waveforms.

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses Per Burst	Number of Bursts	Pass times	Fail times	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	29	1	97%

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Pass times	Fail times	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	0	100%

Padar Type	Trial #	Detection	Trial #	Detection
Radai Type	IIIdi #	YES / NO	IIIdi #	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	NO
	7	YES	22	YES
Type1	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	NO	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	NO	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type2	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	NO
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Padar Tura	Trial #	Detection	Triol #	Detection
Radai Type	IIIai #	YES / NO	mai#	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	NO
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Туре3	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	NO
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	NO	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type4	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

Radar Type	Trial #	Detection	Trial #	Detection
Radai Type	IIIdi #	YES / NO	IIIdi #	YES / NO
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Type5	8	YES	23	YES
	9	NO	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES
	1	YES	16	YES
	2	YES	17	YES
	3	YES	18	YES
	4	YES	19	YES
	5	YES	20	YES
	6	YES	21	YES
	7	YES	22	YES
Туре6	8	YES	23	YES
	9	YES	24	YES
	10	YES	25	YES
	11	YES	26	YES
	12	YES	27	YES
	13	YES	28	YES
	14	YES	29	YES
	15	YES	30	YES

8.6 NON-OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

🎉 Keysight Sp	pectrum Analyzer - Swept SA					- 7 ×						
LXI RL	RF PRESEL 50 Ω DC		SENSE:INT SC	ALIGN OFF	06:59:25 PM Mar 15, 2024	Trace/Detector						
Marker	100.000 S	PNO: Fast 🔸	Trig: Free Run	, tog type: terminge	TYPE WWWWWW							
		IFGain:Low	#Atten: 10 dB			Select Trace						
					MKr1 100.0 S	1						
10 dB/div Log	Ref 0.00 dBm				-10.40 UBIII							
						Detector						
-10.0						Normal►						
det met	1					Auto <u>Man</u>						
-20.0												
						Preset						
-30.0						Detectors						
-40.0												
40.0						Clear Trace						
.50.0												
-30.0												
60.0												
-00.0						Clear All Traces						
70.0	and the second second				and the second							
-70.0	an den same a se an san sa a san sa a sa s											
						Preset						
-80.0						All Traces						
-90.0												
						More						
Center 5	500000000 GHz				Span 0 Hz	2 of 3						
#Res BW	(CISPR) 1 MHz	#VBW	1.0 MHz	Sweep 2	.000 ks (40001 pts)							
	adv in Single press	Restart to initiate a	new sweep or seg									

TX (IEEE 802.11a Mode) 5500MHz Non-Occupancy Period

TX (IEEE 802.11n (HT40) Mode) 5510MHz_Non-Occupancy Period

🎉 Keysight	Spectrum Analyzer - Swept SA					- 7 -
Marker	RF PRESEL 50 Ω DC	S	ENSE:INT SOURCE OFF	ALIGN OFF	08:04:36 PM Mar 15, 2024 TRACE 1 2 3 4 5 (Trace/Detector
		PNO: Fast +++ Trig: Fro IFGain:Low #Atten:	ee Run 10 dB		DET NNNN	Select Trace
10 dB/div	Ref 0.00 dBm				Mkr1 100.0 s -31.52 dBm	1
-10.0						Detector Normal▶
-20.0						Auto <u>Man</u>
-30.0 <mark>velav</mark>	≜ 1					Preset Detectors
-40.0						
-50.0						Clear Trace
-60.0						Clear All Traces
-70.0	ed over the being bit many to the property on a fight	an kan sana u taraha basa na shu an ta da	a Balancara (Balanci tati bara tati da na bara taji da ta	littlistede kousteren je	Na konstanten etti kara kara kara kara kara kara kara kar	
-80.0						Preset All Traces
-90.0						More
Center :	5.510000000 GHz				Span <u>0 Hz</u>	2 of 3
Res BW	(CISPR) 1 MHz	#VBW 1.0 MH	z	Sweep 2.	000 ks (40001 pts	
MSG 🗼 Ali	ready in Single, press Res	tart to initiate a new swe	ep or sequence			

eTest certification Laboratory Inc. www.btl.com.tw

TX (IEEE 802.11ax (HE80) Mode) 5530MHz_Non-Occupancy Period

8.7 U-NII DETECTION BANDWIDTH

Date: 14.MAR.2024 11:37:47

TX (IEEE 802.11n(HT40) Mode) U-NII 99% Channel bandwidth

Date: 14.MAR.2024 12:23:11

Project No.: 2312C025B Report Version: R01

Date: 14.MAR.2024 12:52:35

Page 54 of 58

IEEE 802.11a Mode

Detection Bandwith test tranmission 20M														
EUT FREQUENCY		5500M												
EUT power bandwit	h	19MHz												
Detection Bandwith	limit(100%	6 EUT 99	% Power I	bandwith)	20									
Detection Bandwith	(5510(FH)	-5490(FL))		10										
Test Result	PASS													
		DFS Detection Trials (1=Detection, 0= No Detection)												
Radar Freq (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)			
5488	0	0	0	0	0	0	0	0	0	0	0			
5489	0	0	0	0	0	0	0	0	0	0	0			
5490(FL)	1	1	1	1	1	1	1	1	1	1	100			
5491	1	1	1	1	1	1	1	1	1	1	100			
5492	1	1	1	1	1	1	1	1	1	1	100			
5493	1	1	1	1	1	1	1	1	1	1	100			
5494	1	1	1	1	1	1	1	1	1	1	100			
5495	1	1	1	1	1	1	1	1	1	1	100			
5496	1	1	1	1	1	1	1	1	1	1	100			
5497	1	1	1	1	1	1	1	1	1	1	100			
5498	1	1	1	1	1	1	1	1	1	1	100			
5499	1	1	1	1	1	1	1	1	1	1	100			
5500	1	1	1	1	1	1	1	1	1	1	100			
5501	1	1	1	1	1	1	1	1	1	1	100			
5502	1	1	1	1	1	1	1	1	1	1	100			
5503	1	1	1	1	1	1	1	1	1	1	100			
5504	1	1	1	1	1	1	1	1	1	1	100			
5505	1	1	1	1	1	1	1	1	1	1	100			
5506	1	1	1	1	1	1	1	1	1	1	100			
5507	1	1	1	1	1	1	1	1	1	1	100			
5508	1	1	1	1	1	1	1	1	1	1	100			
5509	1	1	1	1	1	1	1	1	1	1	100			
5510(FH)	1	1	1	1	1	1	1	1	1	1	100			
5511	0	0	0	0	0	0	0	0	0	0	0			
5512	0	0	0	0	0	0	0	0	0	0	0			

eTest certification Laboratory Inc. www.btl.com.tw

Detection Bandwith test tranmission 40M												
EUT FREC	QUENCY	5510M										
EUT powe	r bandwith	38MHZ										
Detection	Bandwith li	imit(100%	of EUT 999	% Power b	andwith)	38						
Detection	Bandwith(5491(FH)-5	5529(FL))	19								
Test Resul	PASS											
Radar			DFS	Detection	Trials (1=D	etection, 0)= No Dete	ection)				
Freq	4	0	0	4	_	0	7	0	0	40	Detection	
(MHz)	1	2	3	4	5	6	1	8	9	10	Rate (%)	
5489	0	0	0	0	0	0	0	0	0	0	0	
5490	0	0	0	0	0	0	0	0	0	0	0	
5491(FL)	1	1	1	1	1	1	1	1	1	1	100	
5492	1	1	1	1	1	1	1	1	1	1	100	
5493	1	1	1	1	1	1	1	1	1	1	100	
5494	1	1	1	1	1	1	1	1	1	1	100	
5495	1	1	1	1	1	1	1	1	1	1	100	
5496	1	1	1	1	1	1	1	1	1	1	100	
5497	1	1	1	1	1	1	1	1	1	1	100	
5498	1	1	1	1	1	1	1	1	1	1	100	
5499	1	1	1	1	1	1	1	1	1	1	100	
5500	1	1	1	1	1	1	1	1	1	1	100	
5500	1	1	1	1	1	1	1	1	1	1	100	
5507	1	1	1	1	1	1	1	1	1	1	100	
5502	1	1	1	1	1	1	1	1	1	1	100	
5503	1	1	1	1	1	1	1	1	1	1	100	
5504	1	1	1	1	1	1	1	1	1	1	100	
5505	1	1	1	1	1	1	1	1	1		100	
5506		1	1				1	1			100	
5507	1	1	1	1	1	1	1	1		1	100	
5508	1	1	1	1	1	1	1	1		1	100	
5509	1	1	1	1	1	1	1	1			100	
5510		1				1			1		100	
5511	1	1	1	1	1	1	1	1			100	
5512	1	1	1	1	1	1	1	1	1	1	100	
5513	1	1	1	1	1	1	1	1	1	1	100	
5514	1	1	1	1	1	1	1	1	1	1	100	
5515	1	1	1	1	1	1	1	1	1	1	100	
5516	1	1	1	1	1	1	1	1	1	1	100	
5517	1	1	1	1	1	1	1	1	1	1	100	
5518	1	1	1	1	1	1	1	1	1	1	100	
5519	1	1	1	1	1	1	1	1	1	1	100	
5520	1	1	1	1	1	1	1	1	1	1	100	
5521	1	1	1	1	1	1	1	1	1	1	100	
5522	1	1	1	1	1	1	1	1	1	1	100	
5523	1	1	1	1	1	1	1	1	1	1	100	
5524	1	1	1	1	1	1	1	1	1	1	100	
5525	1	1	1	1	1	1	1	1	1	1	100	
5526	1	1	1	1	1	1	1	1	1	1	100	
5527	1	1	1	1	1	1	1	1	1	1	100	
5528	1	1	1	1	1	1	1	1	1	1	100	
5529(FH)	1	1	1	1	1	1	1	1	1	1	100	
5530	0	0	0	0	0	0	0	0	0	0	0	
5531	0	0	0	0	0	0	0	0	0	0	0	

eTest certification Laboratory Inc. www.btl.com.tw

Detection Bandwith test tranmission 80M												
EUT FREQUENCY 5530M												
EUT power bandwit	h	77.6MHz										
Detection Bandwith	limit(100%	of EUT 99	% Power I	bandwith)		78						
Detection Bandwith	(5491(FH)	-5569(FL))		39								
Test Result	PASS											
			DFS	Detection	Trials (1=D	etection. ()= No Dete	ection)				
Radar Freg (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)	
5489	0	0	0	0	0	0	0	0	0	0	0	
5490	0	0	0	0	0	0	0	0	0	0	0	
5401(EL)	1	1	1	1	1	1	1	1	1	1	100	
5402	1	1	1	1	1	1	1	1	1	1	100	
5492	1	1	1	1	1	1	1	1	1	1	100	
5493	1	1	1	1	1	1	1			1	100	
5494	1	1	1	1	1	1	1	1	1	1	100	
5495	1	1	1	1	1	1	1	1	1	1	100	
5496	1	1	1	1	1	1	1	1	1	1	100	
5497	1	1	1	1	1	1	1	1	1	1	100	
5498	1	1	1	1	1	1	1	1	1	1	100	
5499	1	1	1	1	1	1	1	1	1	1	100	
5500	1	1	1	1	1	1	1	1	1	1	100	
5501	1	1	1	1	1	1	1	1	1	1	100	
5502	1	1	1	1	1	1	1	1	1	1	100	
5503	1	1	1	1	1	1	1	1	1	1	100	
5504	1	1	1	1	1	1	1	1	1	1	100	
5505	1	1	1	1	1	1	1	1	1	1	100	
5506	1	1	1	1	1	1	1	1	1	1	100	
5507	1	1	1	1	1	1	1	1	1	1	100	
5500	4	4	4	4	4	4	4	4	4	4	100	
5508	4	4	4	4	4	4	4	4	4	4	100	
5510			1			1					100	
5510	1	1	1	1	1	1	1	1	1	1	100	
5511	1	1	1	1	1	1	1	1	1	1	100	
5512	1	1	1	1	1	1	1	1	1	1	100	
5513	1	1	1	1	1	1	1	1	1	1	100	
5514	1	1	1	1	1	1	1	1	1	1	100	
5515	1	1	1	1	1	1	1	1	1	1	100	
5516	1	1	1	1	1	1	1	1	1	1	100	
5517	1	1	1	1	1	1	1	1	1	1	100	
5518	1	1	1	1	1	1	1	1	1	1	100	
5519	1	1	1	1	1	1	1	1	1	1	100	
5520	1	1	1	1	1	1	1	1	1	1	100	
5521	1	1	1	1	1	1	1	1	1	1	100	
5521	1	1	1	1	1	1	1	1	1	1	100	
5522	1	1	1	1	1	1	1	1	1	1	100	
5525											100	
5524	1	1	1	1	1	1	1	1	1	1	100	
5525	1	1	1	1	1	1	1	1	1	1	100	
5526	1	1	1	1	1	1	1	1	1	1	100	
5527	1	1	1	1	1	1	1	1	1	1	100	
5528	1	1	1	1	1	1	1	1	1	1	100	
5529	1	1	1	1	1	1	1	1	1	1	100	
5530	1	1	1	1	1	1	1	1	1	1	100	
5531	1	1	1	1	1	1	1	1	1	1	100	
5532	1	1	1	1	1	1	1	1	1	1	100	
5533	1	1	1	1	1	1	1	1	1	1	100	
5534	1	1	1	1	1	1	1	1	1	1	100	
5535	1	1	1	1	1	1	1	1	1	1	100	
5536	1	1	1	1	1	1	1	1	1	1	100	
5537	1	1	1	1	1	1	1	1	1	1	100	
5537	1	1	1	1	1	1	1	1	1	1	100	
5520	4	4	4	4	4	4	4	4	4	4	100	
5539	4	4	4	4		4	4			4	100	
5540	1	1	1	1	1	1	1		1	1	100	
5541	1	1	1	1	1	1	1		1	1	100	
5542	1	1	1	1	1	1	1	1	1	1	100	
5543	1	1	1	1	1	1	1	1	1	1	100	
5544	1	1	1	1	1	1	1	1	1	1	100	
5545	1	1	1	1	1	1	1	1	1	1	100	
5546	1	1	1	1	1	1	1	1	1	1	100	
5547	1	1	1	1	1	1	1	1	1	1	100	
5548	1	1	1	1	1	1	1	1	1	1	100	
5549	1	1	1	1	1	1	1	1	1	1	100	
5550	1	1	1	1	1	1	1	1	1	1	100	
5551	1	1	1	1	1	1	1	1	1	1	100	
5552	1	1	1	1	1	1	1	1	1	1	100	
5553	1	1	1	1	1	1	1	1	1	1	100	
5554	1	1	1	1	1	1	1	1	1	1	100	
5555	1	1	1	1	1	1	1	1	1	1	100	
5555	4	4	4	4	4	4	4	4	4	4	100	
5555	4		4	4	4	4	4			4	100	
5550			1			1					100	
5558	1	1	1	1		1	1		1	1	100	
5559	1	1	1	1	1	1	1	1	1	1	100	
5560	1	1	1	1	1	1	1	1	1	1	100	
5561	1	1	1	1	1	1	1	1	1	1	100	
5562	1	1	1	1	1	1	1	1	1	1	100	
5563	1	1	1	1	1	1	1	1	1	1	100	
5564	1	1	1	1	1	1	1	1	1	1	100	
5565	1	1	1	1	1	1	1	1	1	1	100	
5566	1	1	1	1	1	1	1	1	1	1	100	
5567	1	1	1	1	1	1	1	1	1	1	100	
5568	1	1	1	1	1	1	1	1	1	1	100	
5569(FH)	1	1	1	1	1	1	1	1	1	1	100	
5570	0	0	0	0	0	0	0	0	0	0	0	
5571	0	0	0	0	0	0	0	0	0	0	0	
5571	U	U	0	U U	U U	0	U U			U U		

BL

eTest certification Laboratory Inc. www.

www.btl.com.tw

9. EUT TEST PHOTO

Please refer to APPENDIX-TEST PHOTOS.

10. EUT PHOTO

Please refer to APPENDIX-EUT PHOTOS.

End of Test Report